Financial Instruments Toolbox ${ }^{\text {TM }}$

 User's Guide
MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com
Sales and services:
www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Financial Instruments Toolbox ${ }^{\text {TM }}$ User's Guide

© COPYRIGHT 2012-2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2012	Online only March 2013
Online only	
September 2013	Online only
March 2014	Online only
October 2014	Online only
March 2015	Online only
September 2015	Online only
March 2016	Online only
September 2016	Online only

Version 1.0 (Release 2012b)
Version 1.1 (Release 2013a)
Version 1.2 (Release 2013b)
Version 1.3 (Release 2014a)
Version 2.0 (Release 2014b)
Version 2.1 (Release 2015a)
Version 2.2 (Release 2015b)
Version 2.3 (Release 2016a)
Version 2.4 (Release 2016b)

Contents

Getting Started

1

Financial Instruments Toolbox Product Description 1-2
Key Features 1-2
Interest-Rate-Based Derivatives 1-4
Equity-Based Derivatives 1-5
Expected Users 1-6
Portfolio Creation 1-7
Introduction 1-7
Interest-Rate-Based Derivatives 1-7
Equity Derivatives 1-8
Adding Instruments to an Existing Portfolio 1-9
Pricing a Portfolio Using the Black-Derman-Toy Model 1-11
Instrument Construction and Portfolio Management 1-18
Instrument Constructors 1-18
Creating Instruments or Properties 1-19
Searching or Subsetting a Portfolio 1-21
Interest-Rate Derivatives
2
Supported Interest-Rate Instruments 2-2
Bond 2-2
Convertible Bond 2-3
Stepped Coupon Bonds 2-5
Sinking Fund Bonds 2-5
Bonds with an Amortization Schedule 2-6
Bond Options 2-6
Bond with Embedded Options 2-7
Stepped Coupon Bonds with Calls and Puts 2-8
Sinking Fund Bonds with an Embedded Option 2-9
Fixed-Rate Note 2-9
Floating-Rate Note 2-10
Floating-Rate Note with an Amortization Schedule 2-10
Floating-Rate Note with Caps, Collars, and Floors 2-11
Floating-Rate Note with Options 2-11
Floating-Rate Note with Embedded Options 2-12
Cap 2-13
Floor 2-13
Range Note 2-14
Swap 2-15
Swap with an Amortization Schedule 2-15
Forward Swap 2-16
Swaption 2-16
Bond Futures 2-17
Calibrate the SABR Model 2-21
Load Market Implied Black Volatility Data 2-21
Method 1: Calibrate Alpha, Rho, and Nu Directly 2-22
Method 2: Calibrate Rho and Nu by Implying Alpha from At- The-Money Volatility 2-22
Use the Calibrated Models 2-24
References 2-26
Price a Swaption Using the SABR Model 2-27
Overview of Interest-Rate Tree Models 2-35
Interest-Rate Modeling 2-35
Rate and Price Trees 2-36
Viewing Rate or Price Movement 2-37
Understanding the Interest-Rate Term Structure 2-40
Introduction 2-40
Interest Rates Versus Discount Factors 2-40
Interest-Rate Term Conversions 2-47
Spot Curve to Forward Curve Conversion 2-47
Alternative Syntax (ratetimes) 2-49
Modeling the Interest-Rate Term Structure 2-52
Creating or Modifying (intenvset) 2-52
Obtaining Specific Properties (intenvget) 2-54
Pricing Using Interest-Rate Term Structure 2-57
Introduction 2-57
Computing Instrument Prices 2-58
Computing Instrument Sensitivities 2-59
OAS for Callable and Puttable Bonds 2-61
Agency OAS 2-61
Understanding Interest-Rate Tree Models 2-64
Introduction 2-64
Building a Tree of Forward Rates 2-65
Specifying the Volatility Model (VolSpec) 2-67
Specifying the Interest-Rate Term Structure (RateSpec) 2-69
Specifying the Time Structure (TimeSpec) 2-70
Creating Trees 2-72
Examining Trees 2-73
Pricing Using Interest-Rate Tree Models 2-84
Introduction 2-84
Computing Instrument Prices 2-84
Computing Instrument Sensitivities 2-93
HJM Sensitivities Example 2-93
BDT Sensitivities Example 2-94
Calibrating Hull-White Model Using Market Data 2-96
Hull-White Model Calibration Example 2-96
Interest-Rate Derivatives Using Closed-Form Solutions 2-106
Pricing Caps and Floors Using the Black Option Model 2-106
Price Swaptions with Interest-Rate Models Using Simulation 2-108
Introduction 2-108
Construct Zero Curve 2-109
Define Swaption Parameters 2-111
Compute the Black Model and the Swaption Volatility Matrix 2-111
Select Calibration Instruments 2-112
Compute Swaption Prices Using Black's Model 2-112
Define Simulation Parameters 2-112
Simulate Interest-Rate Paths Using the Hull-White One-Factor Model 2-113
Simulate Interest-Rate Paths Using the Linear Gaussian Two- Factor Model 2-116
Simulate Interest-Rate Paths Using the LIBOR Market Model 2-119
Compare Interest-Rate Modeling Results 2-124
References 2-125
Pricing Bermudan Swaptions with Monte Carlo Simulation 2-126
Graphical Representation of Trees 2-142
Introduction 2-142
Observing Interest Rates 2-142
Observing Instrument Prices 2-146
Equity Derivatives
3
Understanding Equity Trees 3-2
Introduction 3-2
Building Equity Binary Trees 3-3
Building Implied Trinomial Trees 3-8
Building Standard Trinomial Trees 3-15
Examining Equity Trees 3-18
Differences Between CRR and EQP Tree Structures 3-22
Supported Equity Derivatives 3-24
Asian Option 3-24
Barrier Option 3-25
Basket Option 3-27
Compound Option 3-28
Convertible Bond 3-29
Lookback Option 3-30
Digital Option 3-32
Rainbow Option 3-33
Vanilla Option 3-34
Spread Option 3-36
Forwards Option 3-37
Futures Option 3-38
Supported Energy Derivatives 3-41
Asian Option 3-41
Vanilla Option 3-42
Spread Option 3-43
Lookback Option 3-44
Forwards Option 3-46
Futures Option 3-47
Pricing European and American Spread Options 3-49
Hedging Strategies Using Spread Options 3-67
Pricing Swing Options using the Longstaff-Schwartz Method 3-76
Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion 3-89
Pricing Asian Options 3-105
Pricing Equity Derivatives Using Trees 3-119
Computing Instrument Prices 3-119
Computing Prices Using CRR 3-120
Computing Prices Using EQP 3-122
Computing Prices Using ITT 3-124
Computing Prices Using STT 3-126
Examining Output from the Pricing Functions 3-128
Graphical Representation of Equity Derivative Trees 3-131
Computing Equity Instrument Sensitivities 3-133
CRR Sensitivities Example 3-133
ITT Sensitivities Example 3-134
Equity Derivatives Using Closed-Form Solutions 3-139
Introduction 3-139
Black-Scholes Model 3-139
Black Model 3-140
Roll-Geske-Whaley Model 3-141
Bjerksund-Stensland 2002 Model 3-142
Pricing Using the Black-Scholes Model 3-142
Pricing Using the Black Model 3-144
Pricing Using the Roll-Geske-Whaley Model 3-145
Pricing Using the Bjerksund-Stensland Model 3-146
Pricing European Call Options Using Different Equity Models 3-150
Compute the Option Price on a Future 3-158
Hedging Portfolios
4
Hedging 4-2
Hedging Functions 4-3
Introduction 4-3
Hedging with hedgeopt 4-4
Self-Financing Hedges with hedgeslf 4-11
Pricing and Hedging a Portfolio Using the Black-Karasinski Model 4-16
Specifying Constraints with ConSet 4-31
Introduction 4-31
Setting Constraints 4-31
Portfolio Rebalancing 4-33
Hedging with Constrained Portfolios 4-36
Overview 4-36
Example: Fully Hedged Portfolio 4-36
Example: Minimize Portfolio Sensitivities 4-38
Example: Under-Determined System 4-39
Example: Portfolio Constraints with hedgeslf 4-41

Mortgage-Backed Securities

5
What Are Mortgage-Backed Securities? 5-2
Fixed-Rate Mortgage Pool 5-3
Introduction 5-3
Inputs to Functions 5-4
Generating Prepayment Vectors 5-4
Mortgage Prepayments 5-6
Risk Measurement 5-8
Mortgage Pool Valuation 5-9
Computing Option-Adjusted Spread 5-10
Prepayments with Fewer Than 360 Months Remaining 5-12
Pools with Different Numbers of Coupons Remaining 5-13
Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model 5-16
Pricing Mortgage Backed Securities Using the Black- Derman-Toy Model 5-39
Using Collateralized Mortgage Obligations (CMOs) 5-48
What Are CMOs? 5-48
Prepayment Risk 5-48
CMO Workflow 5-56
Calculate Underlying Mortgage Cash Flows 5-56
Define CMO Tranches 5-56
If Using a PAC or TAC CMO, Calculate Principal Schedule 5-57
Calculate Cash Flows for Each Tranche 5-57
Analyze CMO by Computing Price, Yield, and Spread of CMO Cash Flows 5-57
Create PAC and Sequential CMO 5-59
Agency Option-Adjusted Spreads 6-2
Computing the Agency OAS for Bonds 6-3
Using Zero-Coupon Bonds 6-6
Introduction 6-6
Measuring Zero-Coupon Bond Function Quality 6-6
Pricing Treasury Notes 6-7
Pricing Corporate Bonds 6-8
Stepped-Coupon Bonds 6-10
Introduction 6-10
Cash Flows from Stepped-Coupon Bonds 6-10
Price and Yield of Stepped-Coupon Bonds 6-11
Term Structure Calculations 6-13
Introduction 6-13
Computing Spot and Forward Curves 6-13
Computing Spreads 6-15
Derivative Securities
7
Interest Rate Swaps 7-2
Swap Pricing Assumptions 7-2
Swap Pricing Example 7-3
Portfolio Hedging 7-7
Bond Futures 7-10
Supported Bond Futures 7-10
Analysis of Bond Futures 7-11
Managing Present Value with Bond Futures 7-13
Managing Interest Rate Risk with Bond Futures 7-15
Fitting the Diebold Li Model 7-23
Counterparty Credit Risk and CVA 8-2
First-to-Default Swaps 8-25
Credit Default Swap Option 8-37
Pricing a Single-Name CDS Option 8-37
Pricing a CDS Index Option 8-39
References 8-43
Wrong Way Risk with Copulas 8-44
Interest-Rate Curve Objects
9
Interest-Rate Curve Objects and Workflow 9-2
Class Structure 9-2
Workflow Using Interest-Rate Curve Objects 9-3
Creating Interest-Rate Curve Objects 9-4
Creating an IRDataCurve Object 9-6
IRDataCurve Constructor with Dates and Data 9-6
IRDataCurve Bootstrapping Based on Market Instruments 9-7
Bootstrapping a Swap Curve 9-13
Dual Curve Bootstrapping 9-16
Creating an IRFunctionCurve Object 9-21
Fitting IRFunctionCurve Object Using a Function Handle 9-21
Fitting IRFunctionCurve Object Using Nelson-Siegel Method 9-21
Fitting IRFunctionCurve Object Using Svensson Method 9-23
Fitting IRFunctionCurve Object Using Smoothing Spline Method 9-25
Using fitFunction to Create Custom Fitting Function 9-28
Fitting Interest Rate Curve Functions 9-32
Converting an IRDataCurve or IRFunctionCurve Object 9-40
Introduction 9-40
Using the toRateSpec Method 9-40
Using Vector of Dates and Data Methods 9-42
Numerix Workflows
10
Working with Simple Numerix Trades 10-2
Working with Advanced Numerix Trades 10-5
Use Numerix to Price Cash Deposits 10-10
Use Numerix for Interest-Rate Risk Assessment 10-12
Numerix CAIL Interface Workflow Example Using Matrix, Data, and Call Objects 10-15
Class Reference
A
@IRBootstrapOptions A-2
Hierarchy A-2
Constructor A-2
Public Read-Only Properties A-2
Methods A-3
@IRCurve A-4
Hierarchy A-4
Description A-4
Constructor A-4
Public Read-Only Properties A-4
Methods A-5
@IRDataCurve A-7
Hierarchy A-7
Description A-7
Constructor A-7
Public Read-Only Properties A-7
Methods A-9
@IRFitOptions A-11
Hierarchy A-11
Description A-11
Constructor A-11
Public Read-Only Properties A-11
Methods A-12
@IRFunctionCurve A-13
Hierarchy A-13
Description A-13
Constructor A-13
Public Read-Only Properties A-13
Methods A-15
Functions - Alphabetical List
Pricing Options Structure B-2
Introduction B-2
Default Structure B-2
Customizing the Structure B-4

C
Black-Derman-Toy (BDT) Modeling C-2
Heath-Jarrow-Morton (HJM) Modeling C-3
Hull-White (HW) and Black-Karasinski (BK) Modeling C-4
Cox-Ross-Rubinstein (CRR) Modeling C-5
Implied Trinomial Tree (ITT) Modeling C-6
Leisen-Reimer Tree (LR) Modeling C-7
Equal Probabilities Tree (EQP) Modeling C-8
Closed-Form Solutions Modeling C-9
Financial Derivatives C-10
Fitting Interest-Rate Curve Functions C-11
Interest-Rate Modeling Using Monte Carlo Simulation C-12
Bootstrapping a Swap Curve C-13
Bond Futures C-14
Credit Derivatives C-15
Convertible Bonds C-16

Getting Started

- "Financial Instruments Toolbox Product Description" on page 1-2
- "Interest-Rate-Based Derivatives" on page 1-4
- "Equity-Based Derivatives" on page 1-5
- "Expected Users" on page 1-6
- "Portfolio Creation" on page 1-7
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11
- "Instrument Construction and Portfolio Management" on page 1-18

Financial Instruments Toolbox Product Description
 Design, price, and hedge complex financial instruments

Financial Instruments Toolbox ${ }^{\text {TM }}$ provides functions for pricing, modeling, and analyzing fixed-income, credit, and equity instrument portfolios. You can use the toolbox to perform cash-flow modeling and yield curve fitting analysis, compute prices and sensitivities, view price evolutions, and perform hedging analyses using common equity and fixedincome modeling methods. The toolbox lets you create new financial instrument types, fit yield curves to market data using parametric fitting models and bootstrapping, and construct dual curve-based pricing models.

You can price and analyze fixed-income and equity instruments. For fixed-income modeling, you can calculate price, yield, spread, and sensitivity values for several types of securities and derivatives, including convertible bonds, mortgage-backed securities, treasury bills, bonds, swaps, caps, floors, and floating-rate notes. For equities, you can compute price, implied volatility, and greek values of vanilla options and several exotic derivatives.

Financial Instruments Toolbox contains functions to model counterparty credit risk and CVA exposure. For credit derivatives, the toolbox includes credit default swap pricing and default probability curve modeling functions. For energy derivatives, you can model exotic and vanilla options. The toolbox also provides connectivity to Numerix ${ }^{\circledR}$ CrossAsset Integration Layer.

Key Features

- Yield curve fitting with bootstrapping and parametric fitting models, and termstructure analysis with dual curve construction and pricing of swaps, caps, floors, and swaptions (using LIBOR-OIS and other curves)
- Black Scholes, Black, Garman-Kohlhagen, Roll-Geske-Whaley, Bjerksund-Stensland, Nengjiu Ju, Stulz, Levy jump diffusion, Longstaff-Schwartz, SABR, and tree models and Monte Carlo simulation
- Fixed-income and equity derivative calculations for price, yield, discount rate, cashflow schedule, spread, implied volatility, option adjusted spread (OAS), and greeks
- Counterparty credit risk, CVA modeling, and credit instruments for mortgage pools, balloon mortgages, and credit default swaps
- Interest-rate instruments: bonds, stepped-coupon bonds, futures, vanilla options, Bermudan options, bonds with embedded options, vanilla swaps, forward swaps,
amortizing swaps, swaptions, caps, floors, range notes, floating-rate notes, and collared floating-rate notes
- Equity instruments: stocks, vanilla options, Bermudan options, Asian options, lookback options, barrier options, digital options, rainbow options, basket options, compound options, and chooser options
- Energy and commodity instruments: Asian options, Bermudan options, lookback options, swing options, spread options, and vanilla European/American options

Interest-Rate-Based Derivatives

The toolbox provides functionality that supports the creation and management of these interest-rate-based instruments:

- Bonds
- Bond options (puts and calls)
- Bond with embedded options
- Caps
- Convertible bonds
- Fixed-rate notes
- Floating-rate notes
- Floors
- Swaps
- Swaption

Additionally, the toolbox provides functions to create arbitrary cash flow instruments. The toolbox provides pricing and sensitivity routines for these instruments. For more information, see "Pricing Using Interest-Rate Term Structure" on page 2-57, "Pricing Using Interest-Rate Tree Models" on page 2-84, and"Interest-Rate Derivatives Using Closed-Form Solutions" on page 2-106.

```
See Also
instbond | instcap | instcbond | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
```


Related Examples

- "Creating Instruments or Properties" on page 1-19

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Equity-Based Derivatives

The toolbox also provides functions to create and manage various equity-based derivatives, including the following:

- Asian options
- Barrier options
- Basket options
- Compound options
- Convertible bonds
- Digital options
- Lookback options
- Rainbow options
- Vanilla stock options (put and call options)

The toolbox also provides pricing and sensitivity routines for these instruments. (See "Pricing Equity Derivatives Using Trees" on page 3-119, "Equity Derivatives Using Closed-Form Solutions" on page 3-139, and "Basket Option" on page 3-27.)

See Also
instasian | instbarrier | instcbond | instcompound | instlookback | instoptstock

Related Examples

- "Creating Instruments or Properties" on page 1-19
- "Pricing Equity Derivatives Using Trees" on page 3-119

More About

- "Supported Equity Derivatives" on page 3-24
- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Energy Derivatives" on page 3-41

Expected Users

In general, this guide assumes experience working with financial derivatives and some familiarity with the underlying models.

In designing Financial Instruments Toolbox documentation, we assume that your title is similar to one of these:

- Analyst, quantitative analyst
- Risk manager
- Portfolio manager
- Fund manager, asset manager
- Financial engineer
- Trader
- Student, professor, or other academic

We also assume that your background, education, training, and responsibilities match some aspects of this profile:

- Finance, economics, perhaps accounting
- Engineering, mathematics, physics, other quantitative sciences
- Bachelor's degree minimum; MS or MBA likely; Ph.D. perhaps; CFA
- Comfortable with probability theory, statistics, and algebra
- Understand linear or matrix algebra, calculus, and differential equations
- Previously done traditional programming (C, Fortran, etc.)
- Responsible for instruments or analyses involving large sums of money
- Perhaps new to MATLAB ${ }^{\circledR}$

Portfolio Creation

```
In this section...
"Introduction" on page 1-7
"Interest-Rate-Based Derivatives" on page 1-7
"Equity Derivatives" on page 1-8
"Adding Instruments to an Existing Portfolio" on page 1-9
```


Introduction

The instadd function creates a set of instruments (portfolio) or adds instruments to an existing instrument collection. The TypeString argument specifies the type of the investment instrument. For interest-rate-based derivatives, the types are: Bond, OptBond, CashFlow, Fixed, Float, Cap, Floor, and Swap. For equity derivatives, the types are Asian, Barrier, Compound, Lookback, and OptStock.

The input arguments following TypeString are specific to the type of investment instrument. Thus, the TypeString argument determines how the remainder of the input arguments is interpreted. For example, instadd with the type character vector for Bond creates a portfolio of bond instruments.

```
InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)
```


Interest-Rate-Based Derivatives

In addition to the bond instrument already described, the toolbox can create portfolios containing the following set of interest-rate-based derivatives:

- Bond option

InstSet $=$ instadd('OptBond', BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)

- Arbitrary cash flow instrument

```
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, Basis)
```

- Fixed-rate note instrument

```
InstSet = instadd('Fixed', CouponRate, Settle, Maturity, FixedReset, Basis, Principal)
```

- Floating-rate note instrument

```
InstSet = instadd('Float', Spread, Settle, Maturity, FloatReset, Basis, Principal)
```

- Cap instrument

```
InstSet = instadd('Cap', Strike, Settle, Maturity, CapReset, Basis, Principal)
```

- Convertible bond instrument

```
InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio)
```

- Floor instrument

```
InstSet = instadd('Floor', Strike, Settle, Maturity, FloorReset, Basis, Principal)
```

- Swap instrument

```
InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)
```

- Swaption instrument

```
InstSet = instadd('Swaption', OptSpec, Strike, ExerciseDates, Spread, ...
Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal)
```

- Bond with embedded option instrument

```
InstSet = instadd('OptEmBond', CouponRate, Settle, Maturity, OptSpec, Strike, ...
ExerciseDates, 'AmericanOpt', AmericanOpt, 'Period', Period,'Basis', Basis, ...
'EndMonthRule', EndMonthRule,'Face',Face,'IssueDate', IssueDate, 'FirstCouponDate', ...
FirstCouponDate, 'LastCouponDate', LastCouponDate,'StartDate', StartDate)
```


Equity Derivatives

The toolbox can create portfolios containing the following set of equity derivatives:

- Asian instrument

```
InstSet = instadd('Asian', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...
AvgType, AvgPrice, AvgDate)
```

- Barrier instrument

```
InstSet = instadd('Barrier', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...
BarrierType, Barrier, Rebate)
```

- Compound instrument

InstSet = instadd('Compound', UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, ... COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

- Convertible bond instrument

```
InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio)
```

- Lookback instrument

```
InstSet = instadd('Lookback', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)
```

- Stock option instrument

```
InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity, AmericanOpt)
```


Adding Instruments to an Existing Portfolio

To use the instadd function to add additional instruments to an existing instrument portfolio, provide the name of an existing portfolio as the first argument to the instadd function.

Consider, for example, a portfolio containing two cap instruments only:

```
Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';
Port_1 = instadd('Cap', Strike, Settle, Maturity);
```

These commands create a portfolio containing two cap instruments with the same settlement and maturity dates, but with different strikes. In general, the input arguments describing an instrument can be either a scalar, or a number of instruments (NumInst)-by- 1 vector in which each element corresponds to an instrument. Using a scalar assigns the same value to all instruments passed in the call to instadd.

Use the instdisp command to display the contents of the instrument set:

```
instdisp(Port_1)
\begin{tabular}{lllllll} 
Index & Type Strike Settle & Maturity & CapReset & Basis Principal \\
1 & Cap & 0.06 & \(08-\) Feb-2000 & 15-Jan-2003 & 1 & 0 \\
2 & Cap & 0.07 & \(08-\) Feb-2000 & 15-Jan-2003 & 1 & 0 \\
2 & & 100
\end{tabular}
```

Now add a single bond instrument to Port_1. The bond has a 4.0% coupon and the same settlement and maturity dates as the cap instruments.

```
CouponRate = 0.04;
Port_1 = instadd(Port_1, 'Bond', CouponRate, Settle, Maturity);
```

Use instdisp again to see the resulting instrument set:

```
instdisp(Port_1)
```



```
See Also
hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp | instfields | instfind | instget | instgetcell| instlength | instselect | instsetfield | insttypes | intenvset
```


Related Examples

- "Creating Instruments or Properties" on page 1-19
- "Instrument Construction and Portfolio Management" on page 1-18

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Pricing a Portfolio Using the Black-Derman-Toy Model

This example illustrates how the Financial Instruments Toolbox ${ }^{\text {TM }}$ is used to create a Black-Derman-Toy (BDT) tree and price a portfolio of instruments using the BDT model.

Create the Interest Rate Term Structure

The structure RateSpec is an interest-rate term structure that defines the initial forward-rate specification from which the tree rates are derived. Use the information of annualized zero coupon rates in the table below to populate the RateSpec structure.

```
\begin{tabular}{llll} 
From & \multicolumn{2}{c}{ To } & Rate \\
01 Jan 2005 & 01 Jan 2006 & 0.0275 \\
01 Jan 2005 & 01 Jan 2007 & 0.0312 \\
01 Jan 2005 & 01 Jan 2008 & 0.0363 \\
01 Jan 2005 & 01 Jan 2009 & 0.0415 \\
01 Jan 2005 & 01 Jan 2010 & 0.0458
\end{tabular}
StartDates = ['01 Jan 2005'];
EndDates = ['01 Jan 2006';
    O1 Jan 2007';
    '01 Jan 2008';
    O1 Jan 2009';
    'O1 Jan 2010'];
ValuationDate = ['01 Jan 2005'];
Rates = [0.0275; 0.0312; 0.0363; 0.0415; 0.0458];
Compounding = 1;
RateSpec = intenvset('Compounding',Compounding,'StartDates', StartDates,...
    'EndDates', EndDates, 'Rates', Rates,'ValuationDate', ValuationDa
RateSpec =
    struct with fields:
            FinObj: 'RateSpec'
        Compounding: 1
            Disc: [5\times1 double]
            Rates: [5\times1 double]
            EndTimes: [5\times1 double]
    StartTimes: [5\times1 double]
```

```
    EndDates: [5×1 double]
    StartDates: 732313
ValuationDate: 732313
    Basis: 0
EndMonthRule: 1
```


Specify the Volatility Model

Create the structure VolSpec that specifies the volatility process with the following data.

```
Volatility = [0.005; 0.0055; 0.006; 0.0065; 0.007];
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)
BDTVolSpec =
struct with fields:
                    FinObj: 'BDTVolSpec
    ValuationDate: 732313
    VolDates: [5\times1 double]
    VolCurve: [5\times1 double]
    VolInterpMethod: 'linear'
```


Specify the Time Structure of the Tree

The structure TimeSpec specifies the time structure for an interest-rate tree. This structure defines the mapping between the observation times at each level of the tree and the corresponding dates.

```
Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
BDTTimeSpec =
    struct with fields:
            FinObj: 'BDTTimeSpec'
        ValuationDate: 732313
            Maturity: [5×1 double]
            Compounding: 1
```

Basis: 0
EndMonthRule: 1

Create the BDT Tree

Use the previously computed values for RateSpec, VolSpec and TimeSpec to create the BDT tree.

```
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)
BDTTree =
    struct with fields:
```

```
    FinObj: 'BDTFwdTree
```

 FinObj: 'BDTFwdTree
 VolSpec: [1\times1 struct]
 VolSpec: [1\times1 struct]
 TimeSpec: [1×1 struct]
 TimeSpec: [1×1 struct]
 RateSpec: [1×1 struct]
 RateSpec: [1×1 struct]
 tObs: [00 1 2 3 4 4]
 tObs: [00 1 2 3 4 4]
 dObs: [732313 732678 733043 733408 733774]
 dObs: [732313 732678 733043 733408 733774]
 TFwd: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [4]}
 TFwd: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [4]}
 CFlowT: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [5]}
 CFlowT: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [5]}
 FwdTree: {1\times5 cell}
    ```
    FwdTree: {1\times5 cell}
```


Observe the Interest Rate Tree

Visualize the interest-rate evolution along the tree by looking at the output structure BDTTree. BDTTree returns an inverse discount tree, which you can convert into an interest-rate tree with the cvtree function.

```
BDTTreeR = cvtree(BDTTree);
```

Look at the upper branch and lower branch paths of the tree:

```
%Rate at root node:
RateRoot = treepath(BDTTreeR.RateTree, [0])
%Rates along upper branch:
RatePathUp = treepath(BDTTreeR.RateTree, [\begin{array}{llll}{1}&{1}&{1}&{1}\end{array}])
%Rates along lower branch:
```

```
RatePathDown = treepath(BDTTreeR.RateTree, [l2 2 2 2])
RateRoot =
    0.0275
RatePathUp =
    0.0275
    0.0347
    0.0460
    0.0560
    0.0612
RatePathDown =
    0.0275
    0.0351
    0.0472
    0.0585
    0.0653
```

You can also display a graphical representation of the tree to examine interactively the rates on the nodes of the tree until maturity. The function treeviewer displays the structure of the rate tree in the left pane. The tree visualization in the right pane is blank, but by selecting Diagram and clicking on the nodes you can examine the rates along the paths.
treeviewer(BDTTreeR)

Create an Instrument Porifolio

Create a portfolio consisting of two bond instruments and a option on the 5% Bond.

```
% Bonds
CouponRate = [0.04;0.05];
Settle = '01 Jan 2005';
Maturity = ['01 Jan 2009';'01 Jan 2010'];
Period = 1;
% Option
OptSpec = {'call'};
Strike = 98;
```

```
ExerciseDates = ['01 Jan 2010'];
AmericanOpt = 1;
InstSet = instadd('Bond',CouponRate, Settle, Maturity, Period);
InstSet = instadd(InstSet,'OptBond', 2, OptSpec, Strike, ExerciseDates, AmericanOpt);
```

Examine the set of instruments contained in the variable InstSet.

```
instdisp(InstSet)
```

| Index | Type CouponRate Settle | Maturity | Period | Basis EndMonthRule | IssueDat | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Bond 0.04 | $01-$ Jan-2005 | $01-$ Jan-2009 | 1 | 0 | 1 | NaN |
| 2 | Bond 0.05 | $01-$ Jan-2005 | $01-$ Jan-2010 | 1 | 0 | 1 | NaN |

```
Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt
3 OptBond 2 call 98 01-Jan-2010 1
```


Price the Portfolio Using a BDT Tree

Calculate the price of each instrument in the instrument set.

```
Price = bdtprice(BDTTree, InstSet)
Price =
    99.6374
    102.2460
        4.2460
```

The prices in the output vector Price correspond to the prices at observation time zero ($\mathrm{tObs}=0$), which is defined as the Valuation Date of the interest-rate tree.

In the Price vector, the first element, 99.6374, represents the price of the first instrument (4% Bond); the second element, 102.2460 , represents the price of the second instrument (5% Bond), and 4.2460 represents the price of the Option.

See Also

hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp | instfields | instfind | instget | instgetcell|instlength | instselect | instsetfield | insttypes | intenvset

Related Examples

- "Creating Instruments or Properties" on page 1-19
- "Instrument Construction and Portfolio Management" on page 1-18

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Instrument Construction and Portfolio Management

You can create instruments and manage a collection of instruments as a portfolio.

In this section...

"Instrument Constructors" on page 1-18
"Creating Instruments or Properties" on page 1-19
"Searching or Subsetting a Portfolio" on page 1-21

Instrument Constructors

The toolbox provides constructors for the most common financial instruments. A constructor is a function that builds a structure dedicated to a certain type of object; in this toolbox, an object is a type of market instrument.

The instruments and their constructors in this toolbox are listed below.

| Instrument | Constructor |
| :--- | :--- |
| Asian option | instasian |
| Barrier option | instbarrier |
| Bond | instbond |
| Bond option | instoptbnd |
| Arbitrary cash flow | instcf |
| Compound option | instcompound |
| Convertible bond | instcbond |
| Fixed-rate note | instfixed |
| Floating-rate note | instfloat |
| Cap | instcap |
| Floor | instfloor |
| Lookback option | instlookback |
| Stock option | instoptstock |
| Swap | instswap |
| Swaption | instswaption |

Each instrument has parameters (fields) that describe the instrument. The toolbox functions let you do the following:

- Create an instrument or portfolio of instruments.
- Enumerate stored instrument types and information fields.
- Enumerate instrument field data.
- Search and select instruments.

The instrument structure consists of various fields according to instrument type. A field is an element of data associated with the instrument. For example, a bond instrument contains the fields: CouponRate, Settle, Maturity. Additionally, each instrument has a field that identifies the investment type (bond, cap, floor, and so on).

In reality, the set of parameters for each instrument is not fixed. You have the ability to add additional parameters. These additional fields are ignored by the toolbox functions. They may be used to attach additional information to each instrument, such as an internal code describing the bond.

Parameters not specified when creating an instrument default to NaN, which, in general, means that the functions using the instrument set (such as intenvprice or hjmprice) will use default values. At the time of pricing, an error occurs if any of the required fields is missing, such as Strike in a cap or CouponRate in a bond.

Creating Instruments or Properties

Use the instaddfield function to create a kind of instrument or to add new properties to the instruments in an existing instrument collection.

To create a kind of instrument with instaddfield, you must specify three arguments:

- Type
- FieldName
- Data

Type defines the type of the new instrument, for example, Future. FieldName names the fields uniquely associated with the new type of instrument. Data contains the data for the fields of the new instrument.

An optional fourth argument is ClassList. ClassList specifies the data types of the contents of each unique field for the new instrument.

Use either syntax to create a kind of instrument using instaddfield:

```
InstSet = instaddfield('FieldName', FieldList, 'Data', DataList,...
'Type', TypeString)
InstSet = instaddfield('FieldName', FieldList, 'FieldClass',...
ClassList, 'Data' , DataList, 'Type', TypeString)
```

To add new instruments to an existing set, use:

```
InstSetNew = instaddfield(InstSetOld, 'FieldName', FieldList,...
'Data', DataList, 'Type', TypeString)
```

As an example, consider a futures contract with a delivery date of July 15, 2000, and a quoted price of $\$ 104.40$. Since Financial Instruments Toolbox software does not directly support this instrument, you must create it using the function instaddfield. Use these parameters to create instruments:

- Type: Future
- Field names: Delivery and Price
- Data: Delivery is July 15,2000 , and price is $\$ 104.40$.

Enter the data into MATLAB software:

```
Type = 'Future';
FieldName = {'Delivery', 'Price'};
Data = {'Jul-15-2000', 104.4};
```

Finally, create the portfolio with a single instrument:

```
Port = instaddfield('Type', Type, 'FieldName', FieldName,...
'Data', Data);
```

Now use the function instdisp to examine the resulting single-instrument portfolio:

```
instdisp(Port)
```

```
Index Type Delivery Price
1 Future Jul-15-2000 104.4
```

Because your portfolio Port has the same structure as those created using the function instadd, you can combine portfolios created using instadd with portfolios created using instaddfield. For example, you can now add two cap instruments to Port with instadd.

```
Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
```

```
Maturity = '15-Jan-2003';
Port = instadd(Port, 'Cap', Strike, Settle, Maturity);
```

View the resulting portfolio using instdisp.

```
instdisp(Port)
\begin{tabular}{llll} 
Index & Type & Delivery & Price \\
1 & Future \(15-J u l-2000\) & 104.4
\end{tabular}
\begin{tabular}{lllllll} 
Index Type Strike Settle & Maturity & CapReset & Basis Principal \\
2 & Cap & 0.06 & \(08-\) Feb-2000 & \(15-J a n-2003\) & 1 & 0
\end{tabular}
3 Cap 0.07 08-Feb-2000 15-Jan-2003 1 0 100
```


Searching or Subsetting a Porffolio

Financial Instruments Toolbox provides functions that enable you to:

- Find specific instruments within a portfolio.
- Create a subset portfolio consisting of instruments selected from a larger portfolio.

The instfind function finds instruments with a specific parameter value; it returns an instrument index (position) in a large instrument set. The instselect function, on the other hand, subsets a large instrument set into a portfolio of instruments with designated parameter values; it returns an instrument set (portfolio) rather than an index.

instfind

The general syntax for instfind is

```
IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',...
DataList, 'Index', IndexSet, 'Type', TypeList)
```

InstSet is the instrument set to search. Within InstSet instruments categorized by type, each type can have different data fields. The stored data field is a row vector or character vector for each instrument.

The FieldList, DataList, and TypeList arguments indicate values to search for in the FieldName, Data, and Type data fields of the instrument set. FieldList is a cell array of field name(s) specific to the instruments. DataList is a cell array or matrix of acceptable values for the parameter(s) specified in FieldList. FieldName and Data (consequently, FieldList and DataList) parameters must appear together or not at all.

IndexSet is a vector of integer index(es) designating positions of instruments in the instrument set to check for matches; the default is all indices available in the instrument set. TypeList is a character vector or cell array of character vectors restricting instruments to match one of the TypeList types; the default is all types in the instrument set.

IndexMatch is a vector of positions of instruments matching the input criteria. Instruments are returned in IndexMatch if all the FieldName, Data, Index, and Type conditions are met. An instrument meets an individual field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName.

instfind Examples

The examples use the provided MAT-file deriv.mat.
The MAT-file contains an instrument set, HJMInstSet, that contains eight instruments of seven types.

```
load deriv.mat
instdisp(HJMInstSet)
```


Find all instruments with a maturity date of January 01, 2003.
Mat2003 = . .
instfind(HJMInstSet, 'FieldName', 'Maturity', 'Data', '01-Jan-2003')
Mat2003 =

Find all cap and floor instruments with a maturity date of January 01, 2004.
CapFloor $=$ instfind(HJMInstSet,...
'FieldName','Maturity','Data','01-Jan-2004', 'Type',...
\{'Cap';'Floor'\})
CapFloor =
6
7

Find all instruments where the portfolio is long or short a quantity of 50 .

```
Pos50 = instfind(HJMInstSet,'FieldName',...
'Quantity','Data',{'50';'-50'})
Pos50 =
    2
    3
```


instselect

The syntax for instselect is the same syntax as for instfind. instselect returns a full portfolio instead of indexes into the original portfolio. Compare the values returned by both functions by calling them equivalently.

Previously you used instfind to find all instruments in HJMInstSet with a maturity date of January 01, 2003.

Mat2003 = ...
instfind(HJMInstSet, 'FieldName', 'Maturity ', 'Data', '01-Jan-2003')
Mat2003 =

Now use the same instrument set as a starting point, but execute the instselect function instead, to produce a new instrument set matching the identical search criteria.

```
Select2003 = ...
instselect(HJMInstSet,'FieldName','Maturity','Data',...
'01-Jan-2003')
instdisp(Select2003)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Index } \\
& 1
\end{aligned}
\] & Type
Bond & CouponRate
\[
0.04
\] & \[
\begin{aligned}
& \text { Settle } \\
& 01 \text {-Jan-2000 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Maturity } \\
& 01-J a n-2003
\end{aligned}
\] & \multicolumn{2}{|l|}{Period Basis EndMonthRule 1 NaN NaN} & \[
\begin{aligned}
& \text { e IssueDate } \\
& \text { NaN }
\end{aligned}
\] & \multicolumn{3}{|l|}{FirstCouponDate NaN} & \\
\hline Index & Type & CouponRate & Settle & Maturity & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{lllll} 
FixedReset & Basis Principal & Name & Quantity \\
1 & NaN & NaN & \(4 \%\) & Fixed 80
\end{tabular}}} \\
\hline 2 & Fixed & 0.04 & 01-Jan-2000 & 01-Jan-2003 & & & & & & & \\
\hline Index & Type & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { Spread Settle } \\
20 & 01-J a n-2000
\end{array}
\]}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Maturity } \\
& 01-J a n-2003
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{ll} 
FloatReset \\
1 & Basis \\
1 & NaN
\end{tabular}} & \multirow[t]{2}{*}{s Principal NaN} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Name } \\
& \text { 20BP Float }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Quantity} & & \\
\hline 3 & Float & & & & & & & at 8 & & & \\
\hline Index & Type & LegRate & Settle & Maturity & LegReset Basis & is Principal & LegType & Name & & Quant & ity \\
\hline 4 & Swap & [0.06 20] & 01-Jan-2000 & 01-Jan-2003 & [1 1] \(\begin{aligned} & 1\end{aligned}\) & NaN & [ NaN ] & 6\%/20BP & Swap & 10 & \\
\hline
\end{tabular}
```

These examples use the portfolio ExampleInst provided with the MAT-file InstSetExamples.mat.
load InstSetExamples.mat
instdisp(ExampleInst)

| Index | Type | Strike | Price | Opt | Contracts |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 1 | Option | 95 | 12.2 | Call | 0 |
| 2 | Option | 100 | 9.2 | Call | 0 |
| 3 | Option 105 | 6.8 | Call | 1000 | |
| Index | Type | Delivery | | F | Contracts |
| 4 | Futures | $01-$ Jul-1999 | 104.4 | -1000 | |
| Index | Type | Strike | Price | Opt | Contracts |
| 5 | Option | 105 | 7.4 | Put | -1000 |
| 6 | Option | 95 | 2.9 | Put | 0 |
| Index | Type | Price | Maturity | Contracts | |
| 7 | TBill 99 | $01-$ Jul-1999 | 6 | | |

The instrument set contains three instrument types: Option, Futures, and TBill. Use instselect to make a new instrument set containing only options struck at 95 . In other words, select all instruments containing the field Strike and with the data value for that field equal to 95.

```
InstSet = instselect(ExampleInst,'FieldName','Strike','Data',95);
instdisp(InstSet)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 95 2.9 Put 0
```

You can use all the various forms of instselect and instfind to locate specific instruments within this instrument set.

See Also

hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp | instfields | instfind | instget | instgetcell| instlength | instselect | instsetfield | insttypes | intenvset

Related Examples

- "Portfolio Creation" on page 1-7
- "Hedging Functions" on page 4-3
- "Hedging with hedgeopt" on page 4-4
- "Self-Financing Hedges with hedgeslf" on page 4-11
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11
- "Pricing and Hedging a Portfolio Using the Black-Karasinski Model"
- "Specifying Constraints with ConSet" on page 4-31
- "Portfolio Rebalancing" on page 4-33
- "Hedging with Constrained Portfolios" on page 4-36

More About

- "Hedging" on page 4-2
- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Interest-Rate Derivatives

- "Supported Interest-Rate Instruments" on page 2-2
- "Calibrate the SABR Model" on page 2-21
- "Price a Swaption Using the SABR Model" on page 2-27
- "Overview of Interest-Rate Tree Models" on page 2-35
- "Understanding the Interest-Rate Term Structure" on page 2-40
- "Interest-Rate Term Conversions" on page 2-47
- "Modeling the Interest-Rate Term Structure" on page 2-52
- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Computing Instrument Sensitivities" on page 2-93
- "Calibrating Hull-White Model Using Market Data" on page 2-96
- "Interest-Rate Derivatives Using Closed-Form Solutions" on page 2-106
- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation" on page 2-126
- "Graphical Representation of Trees" on page 2-142

Supported Interest-Rate Instruments

```
In this section...
"Bond" on page 2-2
"Convertible Bond" on page 2-3
"Stepped Coupon Bonds" on page 2-5
"Sinking Fund Bonds" on page 2-5
"Bonds with an Amortization Schedule" on page 2-6
"Bond Options" on page 2-6
"Bond with Embedded Options" on page 2-7
"Stepped Coupon Bonds with Calls and Puts" on page 2-8
"Sinking Fund Bonds with an Embedded Option" on page 2-9
"Fixed-Rate Note" on page 2-9
"Floating-Rate Note" on page 2-10
"Floating-Rate Note with an Amortization Schedule" on page 2-10
"Floating-Rate Note with Caps, Collars, and Floors" on page 2-11
"Floating-Rate Note with Options" on page 2-11
"Floating-Rate Note with Embedded Options" on page 2-12
"Cap" on page 2-13
"Floor" on page 2-13
"Range Note" on page 2-14
"Swap" on page 2-15
"Swap with an Amortization Schedule" on page 2-15
"Forward Swap" on page 2-16
"Swaption" on page 2-16
"Bond Futures" on page 2-17
```


Bond

A bond is a long-term debt security with a preset interest-rate and maturity. At maturity, you must pay the principal and interest.

The price or value of a bond is determined by discounting the expected cash flows of the bond to the present, using the appropriate discount rate. The following equation represents the relationship of the expected cash flows and discount rate:
$B_{0}=\frac{C}{2}\left[\frac{1-\left(1+\frac{r}{2}\right)^{-2 t}}{\frac{r}{2}}\right]+\frac{F}{\left(1+\frac{r}{2}\right)^{2 t}}$
where:
B_{0} is the bond value.
C is the annual coupon payment.
F is the face value of the bond.
r is the required return on the bond.
t is the number of years remaining until maturity.
Financial Instruments Toolbox supports the following for pricing and specifying a bond.

| Function | Purpose |
| :--- | :--- |
| bondbybdt | Price a bond using a BDT interest-rate tree. |
| bondbyhw | Price a bond using an HW interest-rate tree. |
| bondbybk | Price a bond using a BK interest-rate tree. |
| bondbyhjm | Price a bond using an HJM interest-rate tree. |
| bondbyzero | Price a bond using a set of zero curves. |
| instbond | Construct a bond instrument. |

Convertible Bond

A convertible bond is a financial instrument that combines equity and debt features. It is a bond with the embedded option to turn it into a fixed number of shares. The holder of a convertible bond has the right, but not the obligation, to exchange the convertible
security for a predetermined number of equity shares at a preset price. The debt component is derived from the coupon payments and the principal. The equity component is provided by the conversion feature.

Convertible bonds have several defining features:

- Coupon - The coupon in convertible bonds are typically lower than coupons in vanilla bonds since investors are willing to take the lower coupon for the opportunity to participate in the company's stock via the conversion.
- Maturity - Most convertible bonds are issued with long-stated maturities. Shortterm maturity convertible bonds usually do not have call or put provisions.
- Conversion ratio - Conversion ratio is the number of shares that the holder of the convertible bond receives from exercising the call option of the convertible bond: Conversion ratio = par value convertible bond/conversion price of equity

For example, a conversion ratio of 25 means a bond can be exchanged for 25 shares of stock. This also implies a conversion price of $\$ 40(1000 / 25)$. This, $\$ 40$, would be the price at which the owner would buy the shares. This can be expressed as a ratio or as the conversion price and is specified in the contract along with other provisions.

- Option type:
- Callable Convertible: a convertible bond that is callable by the issuer. The issuer of the bond forces conversion, removing the advantage that conversion is at the discretion of the bondholder. Upon call, the bondholder can either convert the bond or redeem at the call price. This option enables the issuer to control the price of the convertible bond and if necessary refinance the debt with a new cheaper one.
- Puttable Convertible: a convertible bond with a put feature that allows the bondholder to sell back the bond at a premium on a specific date. This option protects the holder against rising interest rates by reducing the year to maturity.

| Function | Purpose |
| :--- | :--- |
| cbondbycrr | Price convertible bonds using a CRR binomial tree with the
 Tsiveriotis and Fernandes model. |
| cbondbyeqp | Price convertible bonds using an EQP binomial tree with the
 Tsiveriotis and Fernandes model. |
| cbondbyitt | Price convertible bonds using an implied trinomial tree with
 the Tsiveriotis and Fernandes model. |

| Function | Purpose |
| :--- | :--- |
| cbondbystt | Price convertible bonds using a standard trinomial tree with
 the Tsiveriotis and Fernandes model. |
| instcbond | Construct a cbond instrument for a convertible bond. |

Stepped Coupon Bonds

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond. For more information on options features (call and puts), see "Stepped Coupon Bonds with Calls and Puts" on page 2-8. The following functions have a modified CouponRate argument to support a new variable coupon schedule allowing pricing of stepped coupon bonds.

| Function | Purpose |
| :--- | :--- |
| bondbyzero | Price bonds using a term structure model. |
| bondbybdt | Price bonds using a BDT tree model. |
| bondbyhjm | Price bonds using an HJM tree model. |
| bondbyhw | Price bonds using an HW tree model. |
| bondbybk | Price bonds using a BK tree model. |
| instbond | Construct a bond instrument. |
| instoptbnd | Construct a bond option instrument. |
| instdisp | Display instruments stored in a variable. |

Sinking Fund Bonds

A sinking fund bond is a coupon bond with a sinking fund provision. This provision obligates the issuer to amortize portions of the principal before maturity, affecting bond prices since the time of the principal repayment changes. This means that investors receive the coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk, since it lowers the probability of investors not receiving their principal payment at maturity. For more information on options support for sinking fund bonds, see "Sinking Fund Bonds with an Embedded Option" on page 2-9. The following functions have a modified Face argument to support a variable face schedule for pricing bonds with a sinking provisions.

| Function | Purpose |
| :--- | :--- |
| bondbyzero | Price bonds using a term structure model. |
| bondbybdt | Price bonds using a BDT tree model. |
| bondbyhjm | Price bonds using an HJM tree model. |
| bondbyhw | Price bonds using an HW tree model. |
| bondbybk | Price bonds using a BK tree model. |
| instbond | Construct a bond instrument. |
| instoptbnd | Construct a bond option instrument. |
| instdisp | Display instruments stored in a variable. |

Bonds with an Amortization Schedule

A bond with an amortization schedule repays part of the principal (face value) along with the coupon payments. An amortizing bond is a special case of a sinking fund bond when there is no market purchase option and no call provision. The following functions have a modified Face argument to support an amortization schedule.

| Function | Purpose |
| :--- | :--- |
| bondbyzero | Price bonds using a term structure model. |
| bondbybdt | Price bonds using a BDT tree model. |
| bondbyhjm | Price bonds using an HJM tree model. |
| bondbyhw | Price bonds using an HW tree model. |
| bondbybk | Price bonds using a BK tree model. |

Bond Options

Financial Instruments Toolbox supports three types of put and call options on bonds:

- American option: An option that you exercise any time until its expiration date.
- European option: An option that you exercise only on its expiration date.
- Bermuda option: A Bermuda option resembles a hybrid of American and European options. You can exercise it on predetermined dates only, usually monthly.

Financial Instruments Toolbox supports the following for pricing and specifying a bond option.

| Function | Purpose |
| :--- | :--- |
| optbndbybdt | Price a bond option price using a BDT interest-rate
 tree. |
| optbndbyhw | Price a bond option price using an HW interest-rate
 tree. |
| optbndbybk | Price a bond option price using a BK interest-rate tree. |
| optbndbyhjm | Price a bond option price using an HJM interest-rate
 tree. |
| instoptbnd | Construct a bond option instrument. |

Bond with Embedded Options

A bond with embedded options allows the issuer to buy back or redeem the bond at a predetermined price at specified future dates. Financial Instruments Toolbox supports American, European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:

- For a callable bond: PriceCallableBond = BondPrice - BondCallOption
- For a puttable bond: PricePuttableBond $=$ PriceBond + PricePutOption

In addition, Option Adjusted Spread (OAS) is a useful way to value and compare securities with embedded options, like callable or puttable bonds. For more information on OAS, see "OAS for Callable and Puttable Bonds" on page 2-61.

Financial Instruments Toolbox supports the following for pricing and specifying a bond with embedded options.

| Function | Purpose |
| :--- | :--- |
| optembndbybdt | Price a bond with embedded options using a BDT
 interest-rate tree. |
| optembndbyhw | Price a bond with embedded options using an HW
 interest rate tree. |

| Function | Purpose |
| :--- | :--- |
| optembndbybk | Price a bond with embedded options using a BK
 interest-rate tree. |
| optembndbyhjm | Price a bond with embedded options using an HJM
 interest-rate tree. |
| instoptembnd | Construct a bond-with-embedded-options instrument. |
| oasbybdt | Determine an option adjusted spread using Black-
 Derman-Toy model. |
| oasbybk | Determine an option adjusted spread using Black-
 Karasinski model. |
| oasbyhjm | Determine an option adjusted spread using Heath-
 Jarrow-Morton model. |
| oasbyhw | Determine an option adjusted spread using Hull-White
 model. |
| agencyoas | Compute the OAS of the callable bond using the
 Agency OAS model. |
| agencyprice | Price the callable bond OAS using the Agency OAS
 model. |

Stepped Coupon Bonds with Calls and Puts

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. For more information on stepped coupon bonds, see "Stepped Coupon Bonds" on page 2-5. Stepped coupon bonds can have options features (call and puts). The following functions have a modified CouponRate argument to support a new variable coupon schedule allowing pricing stepped coupon bonds with callable and puttable features:

| Function | Purpose |
| :--- | :--- |
| optembndbybdt | Price bonds with embedded options using a BDT model tree. |
| optembndbyhjm | Price bonds with embedded options using an HJM model tree. |
| optembndbybk | Price bonds with embedded options using a BK model tree. |
| optembndbyhw | Price bonds with embedded options using an HW model tree. |
| instbond | Construct a bond instrument. |

| Function | Purpose |
| :--- | :--- |
| instoptbnd | Construct a bond option instrument. |
| instoptembnd | Construct a bond with an embedded option instrument. |
| instdisp | Display instruments stored in a variable. |

Sinking Fund Bonds with an Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision. For more information on sinking fund bonds, see "Sinking Fund Bonds" on page 2-5. The sinking fund bond can have a sinking fund option provision allowing the issuer to retire the sinking fund obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via a sinking fund call, whichever is cheaper.

If interest rates are high, then the issuer buys back the required amount of bonds from the market since bonds are cheap. But if interest rates are low (bond prices are high), then most likely the issuer buys the bonds at the call price. Unlike a call feature, however, if a bond has a sinking fund option provision, it is an obligation, not an option, for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond trades at a lower price than a nonsinking fund bond. The following functions have a modified Face argument to support a variable face schedule for pricing bonds with a sinking fund option provision.

| Function | Purpose |
| :--- | :--- |
| optembndbybdt | Price bonds with embedded options using a BDT model tree. |
| optembndbyhjm | Price bonds with embedded options using an HJM model tree. |
| optembndbybk | Price bonds with embedded options using a BK model tree. |
| optembndbyhw | Price bonds with embedded options using an HW model tree. |
| instbond | Construct a bond instrument. |
| instoptbnd | Construct a bond option instrument. |
| instdisp | Display instruments stored in a variable. |

Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by which the interest must be paid. The principal may or may not be paid at maturity. In Financial Instruments Toolbox, the principal is always paid at maturity.

| Function | Purpose |
| :--- | :--- |
| fixedbybdt | Price a fixed-rate note using a BDT interest-rate tree. |
| fixedbyhw | Price a fixed-rate note using an HW interest-rate tree. |
| fixedbybk | Price a fixed-rate note using a BK interest-rate tree. |
| fixedbyhjm | Price a fixed-rate note using an HJM interest-rate tree. |
| fixedbyzero | Price a fixed-rate note using a set of zero curves. |
| instfixed | Construct a fixed-rate instrument. |

Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note is reset periodically, relative to a reference index rate, to reflect fluctuations in market interest rates.

| Function | Purpose |
| :--- | :--- |
| floatbybdt | Price a floating-rate note using a BDT interest-rate
 tree. |
| floatbyhw | Price a floating-rate note using an HW interest-rate
 tree. |
| floatbybk | Price a floating-rate note using a BK interest-rate tree. |
| floatbyhjm | Price a floating-rate note using an HJM interest-rate
 tree. |
| floatbyzero | Price a floating-rate note using a set of zero curves. |
| instfloat | Construct a floating-rate note instrument. |

Floating-Rate Note with an Amortization Schedule

A floating-rate note with an amortization schedule repays part of the principal (face value) along with the coupon payments. The following functions have a Principal argument to support an amortization schedule.

| Function | Purpose |
| :--- | :--- |
| floatbyzero | Price floating-rate note from set of zero curves. |

| Function | Purpose |
| :--- | :--- |
| floatbybdt | Price floating-rate note from Black-Derman-Toy interest-rate
 tree. |
| floatbyhjm | Price floating-rate note from Heath-Jarrow-Morton interest-
 rate tree. |
| floatbyhw | Price floating-rate note from Hull-White interest-rate tree. |
| floatbybk | Price floating-rate note from Black-Karasinski interest-rate
 tree. |

Floating-Rate Note with Caps, Collars, and Floors

A floating-rate note with caps, collars, and floors. This type of instrument can carry restrictions on the maximum (cap) or minimum (floor) coupon rate paid. A cap is an unattractive feature for an investor, since they constrain the coupon rates from increasing. A floor is an attractive feature, since it allows investors to get a minimum coupon rate when market rates decrease below a certain level. Also, a floating-rate note can have a collar which is a combination of a cap and a floor together. The following functions have a CapRate and FloorRate argument to support a capped, collared, or floored floating-rate note.

| Function | Purpose |
| :--- | :--- |
| floatbybdt | Price a capped floating-rate note from a Black-Derman-Toy
 interest-rate tree. |
| floatbyhjm | Price a capped floating-rate note from a Heath-Jarrow-Morton
 interest-rate tree. |
| floatbyhw | Price a capped floating-rate note from a Hull-White interest-
 rate tree. |
| floatbybk | Price a capped floating-rate note from a Black-
 Karasinskiinterest-rate tree. |
| instfloat | Create a capped floating-rate note instrument. |
| instadd | Add a capped floating-rate note instrument to a portfolio. |

Floating-Rate Note with Options

Financial Instruments Toolbox supports three types of put and call options on floating rate-notes:

- American option - An option that you exercise any time until its expiration date.
- European option - An option that you exercise only on its expiration date.
- Bermuda option - A Bermuda option resembles a hybrid of American and European options; you can only exercise it on predetermined dates, usually monthly.

Financial Instruments Toolbox supports the following for pricing and specifying a floating rate-note option:

| Function | Purpose |
| :--- | :--- |
| optfloatbybdt | Price an option for floating-rate note using a Black-Derman-
 Toy interest-rate tree. |
| optfloatbyhjm | Price an option for floating-rate note using a Heath-Jarrow-
 Morton interest-rate tree. |
| optfloatbyhw | Price an option for floating-rate note using a Hull-White
 interest-rate tree. |
| optfloatbybk | Price an option for floating-rate note using a Black-Karasinski
 interest-rate tree. |
| instoptfloat | Define the option instrument for floating-rate note. |

Floating-Rate Note with Embedded Options

A floating-rate note with an embedded option enables floating-rate notes to have early redemption features. An FRN with an embedded option gives investors or issuers the option to retire the outstanding principal prior to maturity. An embedded call option gives the right to retire the note prior to the maturity date (callable floater), and an embedded put option gives the right to sell the note back at a specific price (puttable floater).

Financial Instruments Toolbox supports the following for pricing and specifying a floating rate-note with an embedded option:

| Function | Purpose |
| :--- | :--- |
| optemfloatbybdt | Price an embedded option for floating-rate note using a Black-
 Derman-Toy interest-rate tree. |
| optemfloatbybk | Price an embedded option for floating-rate note using a Black-
 Karasinski interest-rate tree. |

| Function | Purpose |
| :--- | :--- |
| optemfloatbyhjm | Price an embedded option for floating-rate note using a Heath-
 Jarrow-Morton interest-rate tree. |
| optemfloatbyhw | Price an embedded option for floating-rate note using a Hull-
 White interest-rate tree. |
| instoptemfloat | Define the floating-rate note with embedded option
 instrument. |

Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the holder, based on an otherwise floating interest rate. The payoff for a cap is:

```
max(CurrentRate - CapRate,0)
```

| Function | Purpose |
| :--- | :--- |
| capbybdt | Price a cap instrument using a BDT interest-rate tree. |
| capbyhw | Price a cap instrument using an HW interest-rate tree. |
| capbybk | Price a cap instrument using a BK interest-rate tree. |
| capbyhjm | Price a cap instrument using an HJM interest-rate
 tree. |
| capbyblk | Price a cap instrument using the Black option pricing
 model. |
| capvolstrip | Strip caplet volatilities from flat cap volatilities. |
| instcap | Construct a cap instrument. |

Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be received by the holder, based on an otherwise floating interest rate. The payoff for a floor is:
$\max ($ FloorRate - CurrentRate, 0$)$

| Function | Purpose |
| :--- | :--- |
| floorbybdt | Price a floor instrument using a BDT interest-rate
 tree. |
| floorbyhw | Price a floor instrument using an HW interest-rate
 tree. |
| floorbybk | Price a floor instrument using a BK interest-rate tree. |
| floorbyhjm | Price a floor instrument using an HJM interest-rate
 tree. |
| floorbyblk | Price a floor instrument using the Black option pricing
 model. |
| floorvolstrip | Strip floorlet volatilities from flat floor volatilities. |
| instfloor | Construct a floor instrument. |

Range Note

A range note is a structured (market-linked) security whose coupon-rate is equal to the reference rate as long as the reference rate is within a certain range. If the reference rate is outside of the range, the coupon-rate is 0 for that period. This type of instrument entitles the holder to cash flows that depend on the level of some reference interestrate that is floored to be positive and gives the holder of the note direct exposure to the reference rate. This type of instrument is useful for cases where you believe that interest rates will stay within a certain range. In return for the drawback that no interest is paid for the time the range is left, a range note offers higher coupon rates than comparable standard products, like vanilla floating notes.

| Function | Purpose |
| :--- | :--- |
| instrangefloat | Create a range note instrument. |
| rangefloatbybdt | Price range floating note using a BDT tree. |
| rangefloatbybk | Price range floating note using a BK tree. |
| rangefloatbyhjm | Price range floating note using an HJM tree. |
| rangefloatbyhw | Price range floating note using an HW tree. |

Swap

A swap is contract between two parties obligating the parties to exchange future cash flows. This toolbox version handles only the vanilla swap, which is composed of a floating-rate leg and a fixed-rate leg.

| Function | Purpose |
| :--- | :--- |
| swapbybdt | Price a swap instrument using a BDT interest-rate
 tree. |
| swapbyhw | Price a swap instrument using an HW interest-rate
 tree. |
| swapbybk | Price a swap instrument using a BK interest-rate tree. |
| swapbyhjm | Price a swap instrument using an HJM interest-rate
 tree. |
| swapbyzero | Price a swap instrument using a set of zero curves and
 price cross currency swaps. |
| instswap | Construct a swap instrument. |

Swap with an Amortization Schedule

A swap with an amortization schedule repays part of the principal (face value) along with the coupon payments. A swap with an amortization schedule is used to manage interest rate risk and serve as a cash flow management tool. For this particular type of swap, the notional amount decreases over time. This means that interest payments decrease not only on the floating leg but also on the fixed leg. The following swap functions have a Principal argument to support an amortization schedule.

| Function | Purpose |
| :--- | :--- |
| swapbyzero | Price swap instrument from set of zero curves. |
| swapbybdt | Price swap instrument from Black-Derman-Toy interest-rate
 tree. |
| swapbyhjm | Price swap instrument from Heath-Jarrow-Morton interest-
 rate tree. |
| swapbyhw | Price swap instrument from Hull-White interest-rate tree. |
| swapbybk | Price swap instrument from Black-Karasinski interest-rate
 tree. |

| Function | Purpose |
| :--- | :--- |
| instswap | Construct swap instrument. |

Forward Swap

In a forward interest-rate swap, a fixed interest-rate loan is exchanged for a floating interest-rate loan at a future specified date. The following functions have a StartDate argument to support the future date for the forward swap.

| Function | Purpose |
| :--- | :--- |
| swapbyzero | Price a forward swap from a zero curve. |
| swapbybdt | Price a forward swap from a Black-Derman-Toy interest-rate
 tree. |
| swapbyhjm | Price a forward swap from a Heath-Jarrow-Morton interest-
 rate tree. |
| swapbyhw | Price a forward swap from a Hull-White interest-rate tree. |
| swapbybk | Price a forward swap from a Black-Karasinskiinterest-rate
 tree. |
| instswap | Create a forward swap instrument. |
| instadd | Add a capped floating-rate note instrument to a portfolio. |

Swaption

A swaption is an option to enter into an interest-rate swap contract. A call swaption allows the option buyer to enter into an interest-rate swap where the buyer of the option pays the fixed-rate and receives the floating-rate. A put swaption allows the option buyer to enter into an interest-rate swap where the buyer of the option receives the fixed-rate and pays the floating-rate.

| Function | Purpose |
| :--- | :--- |
| swaptionbybdt | Price a swaption instrument using a BDT interest-rate
 tree. |
| swaptionbyhw | Price a swaption instrument using an HW interest-rate
 tree. |

| Function | Purpose |
| :--- | :--- |
| swaptionbybk | Price a swaption instrument using a BK interest-rate
 tree. |
| swaptionbyhjm | Price a swaption instrument using an HJM interest-
 rate tree. |
| swaptionbyblk | Price swaptions using the Black model with a forward
 on a swap. |
| instswaption | Construct a swaption instrument. |

Use swaptionbyblk to price a swaption using the Black model. The Black model is standard model used in the swaption market when pricing European swaptions. This type of model is widely used by when speed is important to quickly obtain a price at settlement date, even if the price is less accurate than other swaption pricing models based on interest-rate tree models.

Bond Futures

Bond futures are futures contracts where the commodity for delivery is a government bond. There are established global markets for government bond futures. Bond futures provide a liquid alternative for managing interest-rate risk.

In the U.S. market, the Chicago Mercantile Exchange (CME) offers futures on Treasury bonds and notes with maturities of $2,5,10$, and 30 years. Typically, the following bond future contracts from the CME have maturities of $3,6,9$, and 12 months:

- 30-year U.S. Treasury bond
- 10-year U.S. Treasury bond
- 5-year U.S. Treasury bond
- 2-year U.S. Treasury bond

The short position in a Treasury bond or note future contract must deliver to the long position in one of many possible existing Treasury bonds. For example, in a 30 -year Treasury bond future, the short position must deliver a Treasury bond with at least 15 years to maturity. Because these bonds have different values, the bond future contract is standardized by computing a conversion factor. The conversion factor normalizes the price of a bond to a theoretical bond with a coupon of 6%. The price of a bond future contract is represented as:

InvoicePrice $=$ FutPrice $\times C F+A I$
where:
FutPrice is the price of the bond future.
$C F$ is the conversion factor for a bond to deliver in a futures contract.
$A I$ is the accrued interest.
The short position in a futures contract has the option of which bond to deliver and, in the U.S. bond market, when in the delivery month to deliver the bond. The short position typically chooses to deliver the bond known as the Cheapest to Deliver (CTD). The CTD bond most often delivers on the last delivery day of the month.

Financial Instruments Toolbox supports the following bond futures:

- U.S. Treasury bonds and notes
- German Bobl, Bund, Buxl, and Schatz
- UK gilts
- Japanese government bonds (JGBs)

The functions supporting all bond futures are:

| Function | Purpose |
| :--- | :--- |
| convfactor | Calculates bond conversion factors for U.S. Treasury bonds,
 German Bobl, Bund, Buxl, and Schatz, U.K. gilts, and JGBs. |
| bndfutprice | Prices bond future given repo rates. |
| bndfutimprepo | Calculates implied repo rates for a bond future given price. |

The functions supporting U.S. Treasury bond futures are:

| Function | Purpose |
| :--- | :--- |
| tfutbyprice | Calculates future prices of Treasury bonds given the spot price. |
| tfutbyyield | Calculates future prices of Treasury bonds given current yield. |
| tfutimprepo | Calculates implied repo rates for the Treasury bond future
 given price. |

| Function | Purpose |
| :--- | :--- |
| tfutpricebyrepo | Calculates Treasury bond futures price given the implied repo
 rates. |
| tfutyieldbyrepo | Calculates Treasury bond futures yield given the implied repo
 rates. |

For more information on bond futures, see "Supported Bond Futures" on page 7-10.

See Also

agencyoas | agencyprice | bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | blackvolbyrebonato | blackvolbysabr | bndfutimprepo | bndfutprice | bondbybdt | bondbybk | bondbyhjm | bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | capbylg2f | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | convfactor | fixedbybdt | fixedbybk | fixedbyhjm | fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | floorbylg2f | hjmprice | hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap | hwcalbycap | hwcalbyfloor | hwcalbyfloor | hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption | intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw | optfloatbybdt | optfloatbybk | optfloatbyhjm| optfloatbyhw | optsensbysabr | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw \| swapbybdt | swapbybk \| swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt | swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw | swaptionbylg2f | tfutbyprice | tfutbyyield | tfutimprepo | tfutpricebyrepo| tfutyieldbyrepo

Related Examples

- "Overview of Interest-Rate Tree Models" on page 2-35
- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Graphical Representation of Trees" on page 2-142
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Understanding the Interest-Rate Term Structure" on page 2-40

More About

- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Calibrate the SABR Model

This example shows how to use two different methods to calibrate the SABR stochastic volatility model from market implied Black volatilities. Both approaches use blackvolbysabr.

```
In this section...
"Load Market Implied Black Volatility Data" on page 2-21
"Method 1: Calibrate Alpha, Rho, and Nu Directly" on page 2-22
"Method 2: Calibrate Rho and Nu by Implying Alpha from At-The-Money Volatility " on
page 2-22
"Use the Calibrated Models" on page 2-24
"References" on page 2-26
```


Load Market Implied Black Volatility Data

This example shows how to set up hypothetical market implied Black volatilities for European swaptions over a range of strikes before calibration. The swaptions expire in three years from the Settle date and have 10 -year swaps as the underlying instrument. The rates are expressed in decimals. (Changing the units affect the numerical value and interpretation of the Alpha input parameter to the function blackvolbysabr.)

Load the market implied Black volatility data for swaptions expiring in three years.

```
Settle = '12-Jun-2013';
ExerciseDate = '12-Jun-2016';
MarketStrikes = [2.0 2.5 3.0 3.5 4.0 4.5 5.0]'/100;
MarketVolatilities = [45.6 41.6 37.9 36.6 37.8 39.2 40.0]'/100;
```

At the time of Settle, define the underlying forward rate and the at-the-money volatility.

```
CurrentForwardValue = MarketStrikes(4)
```

ATMVolatility = MarketVolatilities(4)
CurrentForwardValue =
0.0350

ATMVolatility =

0.3660

Method 1: Calibrate Alpha, Rho, and Nu Directly

This example shows how to calibrate the Alpha, Rho, and Nu input parameters directly. The value of Beta is predetermined either by fitting historical market volatility data or by choosing a value deemed appropriate for that market [1].

Define the predetermined Beta.

```
Beta1 = 0.5;
```

After fixing the value of β (Beta), the parameters α (Aplha), ρ (Rho), and $v(\mathrm{Nu})$ are all fitted directly. The Optimization Toolbox ${ }^{\mathrm{TM}}$ function lsqnonlin generates the parameter values that minimize the squared error between the market volatilities and the volatilities computed by blackvolbysabr.

```
% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketVolatilities - ...
    blackvolbysabr(X(1), Beta1, X(2), X(3), Settle, ...
    ExerciseDate, CurrentForwardValue, MarketStrikes);
X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);
Alpha1 = X(1);
Rho1 = X(2);
Nu1 = X(3);
Local minimum possible.
```

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the default value of the function tolerance.

Method 2: Calibrate Rho and Nu by Implying Alpha from At-The-Money Volatility

This example shows how to use an alternative calibration method where the value of β (Beta) is again predetermined as in Method 1.

Define the predetermined Beta.

```
Beta2 = 0.5;
```

However, after fixing the value of β (Beta), the parameters ρ (Rho), and $v(\mathrm{Nu})$ are fitted directly while α (Alpha) is implied from the market at-the-money volatility. Models calibrated using this method produce at-the-money volatilities that are equal to market quotes. This approach is widely used in swaptions, where at-the-money volatilities are quoted most frequently and are important to match. In order to imply α
(Alpha) from market at-the-money volatility ($\sigma_{A T M}$), the following cubic polynomial is solved for α (Alpha), and the smallest positive real root is selected [2].

$$
\frac{(1-\beta)^{2} T}{24 F^{(2-2 \beta)}} \alpha^{3}+\frac{\rho \beta v T}{4 F^{(1-\beta)}} \alpha^{2}+\left(1+\frac{2-3 \rho^{2}}{24} v^{2} T\right) \alpha-\sigma_{A T M} F^{(1-\beta)}=0
$$

where:

- F is the current forward value.
- T is the year fraction to maturity.

To accomplish this, define an anonymous function as:

```
% Year fraction from Settle to option maturity
T = yearfrac(Settle, ExerciseDate, 1);
% This function solves the SABR at-the-money volatility equation as a
% polynomial of Alpha
alpharoots = @(Rho,Nu) roots([...
    (1 - Beta2)^2*T/24/CurrentForwardValue^(2 - 2*Beta2) ...
    Rho*Beta2*Nu*T/4/CurrentForwardValue^(1 - Beta2) ...
    (1 + (2 - 3*Rho^2)*Nu^2*T/24) ...
    -ATMVolatility*CurrentForwardValue^(1 - Beta2)]);
% This function converts at-the-money volatility into Alpha by picking the
% smallest positive real root
atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
    x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));
```

The function atmVol2SabrAlpha converts at-the-money volatility into α (Alpha) for a given set of ρ (Rho) and $v(\mathrm{Nu})$. This function is then used in the objective function to fit parameters ρ (Rho) and $v(\mathrm{Nu})$.

```
% Calibrate Rho and Nu (while converting at-the-money volatility into Alpha
% using atmVol2SabrAlpha)
objFun = @(X) MarketVolatilities - ...
    blackvolbysabr(atmVol2SabrAlpha(X(1), X(2)), ...
    Beta2, X(1), X(2), Settle, ExerciseDate, CurrentForwardValue, ...
    MarketStrikes);
X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf]);
Rho2 = X(1);
Nu2 = X(2);
Local minimum found.
Optimization completed because the size of the gradient is less than
the default value of the function tolerance.
```

The calibrated parameter α (Alpha) is computed using the calibrated parameters ρ (Rho) and $v(\mathrm{Nu})$.

```
% Obtain final Alpha from at-the-money volatility using calibrated parameters
Alpha2 = atmVol2SabrAlpha(Rho2, Nu2);
% Display calibrated parameters
C = {Alpha1 Beta1 Rho1 Nu1;Alpha2 Beta2 Rho2 Nu2};
CalibratedPrameters = cell2table(C,...
    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'Method 1';'Method 2'})
CalibratedPrameters =
\begin{tabular}{llll} 
Alpha & Beta & Rho & Nu \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Method 1 & 0.060277 & 0.5 & 0.2097 & 0.75091 \\
Method 2 & 0.058484 & 0.5 & 0.20568 & 0.79647
\end{tabular}
```


Use the Calibrated Models

This example shows how to use the calibrated models to compute new volatilities at any strike value.

Compute volatilities for models calibrated using Method 1 and Method 2 and plot the results.

```
PlottingStrikes = (1.75:0.1:5.50)'/100;
% Compute volatilities for model calibrated by Method 1
ComputedVols1 = blackvolbysabr(Alpha1, Beta1, Rho1, Nu1, Settle, ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes);
% Compute volatilities for model calibrated by Method 2
ComputedVols2 = blackvolbysabr(Alpha2, Beta2, Rho2, Nu2, Settle, ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes);
figure;
plot(MarketStrikes,MarketVolatilities, 'xk',...
    PlottingStrikes,ComputedVols1,'b', ...
    PlottingStrikes,ComputedVols2,'r', ...
    CurrentForwardValue,ATMVolatility,'ok',...
    'MarkerSize',10);
xlim([0.01 0.06]);
ylim([0.35 0.5]);
xlabel('Strike', 'FontWeight', 'bold');
ylabel('Implied Black Volatility', 'FontWeight', 'bold');
legend('Market Volatilities', 'SABR Model (Method 1)',...
    'SABR Model (Method 2)', 'At-the-money volatility');
```


The model calibrated using Method 2 reproduces the market at-the-money volatility (marked with a circle) exactly.

References

[1] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E., Managing smile risk, Wilmott Magazine, 2002.
[2] West, G., "Calibration of the SABR Model in Illiquid Markets," Applied Mathematical Finance, 12(4), pp. 371-385, 2004.

See Also

blackvolbysabr | optsensbysabr | swaptionbyblk

Related Examples

- "Price a Swaption Using the SABR Model" on page 2-27

Price a Swaption Using the SABR Model

This example shows how to price a swaption using the SABR model. First, a swaption volatility surface is constructed from market volatilities. This is done by calibrating the SABR model parameters separately for each swaption maturity. The swaption price is then computed by using the implied Black volatility on the surface as an input to the swaptionbyblk function.

Step 1. Load market swaption volatility data.

Load the market implied Black volatility data for swaptions.

```
Settle = '12-Jun-2013';
ExerciseDates = {'12-Sep-2013';'12-Jun-2014';'12-Jun-2015'; ...
    '12-Jun-2016';'12-Jun-2017';'12-Jun-2018';'12-Jun-2020'; ...
    12-Jun-2023'};
YearsToExercise = yearfrac(Settle, ExerciseDates, 1);
NumMaturities = length(YearsToExercise);
MarketVolatilities = [ ...
    57.6 53.7 49.4 45.6 44.1 41.1 35.2 32.0
    46.6 46.9 44.8 41.6 39.8 37.4 33.4 31.0
    35.9 39.3 39.6 37.9 37.2 34.7 30.5 28.9
    34.1 36.5 37.8 36.6 35.0 31.9 28.1 26.6
    41.0 41.3 39.5 37.8 36.0 32.6 29.0 26.0
    45.8 43.4 41.9 39.2 36.9 33.2 29.6 26.3
    50.3 46.9 44.0 40.0 37.5 33.8 30.2 27.3]/100;
MarketStrikes = [ ...
    1.00 1.25 1.68 2.00 2.26 2.41 2.58 2.62;
    1.50 1.75 2.18 2.50 2.76 2.91 3.08 3.12;
    2.00 2.25 2.68 3.00 3.26 3.41 3.58 3.62;
    2.50 2.75 3.18 3.50 3.76 3.91 4.08 4.12;
    3.00 3.25 3.68 4.00 4.26 4.41 4.58 4.62;
    3.50 3.75 4.18 4.50 4.76 4.91 5.08 5.12;
    4.00 4.25 4.68 5.00 5.26 5.41 5.58 5.62]/100;
CurrentForwardValues = MarketStrikes(4,:)
ATMVolatilities = MarketVolatilities(4,:)
```

Columns 1 through 7

| 0.0250 | 0.0275 | 0.0318 | 0.0350 | 0.0376 | 0.0391 | 0.0408 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Column 8
0.0412

ATMVolatilities =

Columns 1 through 7
$\begin{array}{lllllll}0.3410 & 0.3650 & 0.3780 & 0.3660 & 0.3500 & 0.3190 & 0.2810\end{array}$
Column 8
0.2660

The current underlying forward rates and the corresponding at-the-money volatilities across the eight swaption maturities are represented in the fourth rows of the two matrices.

Step 2. Calibrate the SABR model parameters for each swaption maturity.

Using a model implemented in the function blackvolbysabr, a static SABR model, where the model parameters are assumed to be constant with respect to time, the parameters are calibrated separately for each swaption maturity (years to exercise) in a for loop. To better represent market at-the-money volatilities, the Alpha parameter values are implied by the market at-the-money volatilities (see "Method 2" for "Calibrate the SABR Model ").

Define the predetermined Beta, calibrate SABR model parameters for each swaption maturity. and display calibrated parameters in a table.

```
Beta = 0.5;
Betas = repmat(Beta, NumMaturities, 1);
Alphas = zeros(NumMaturities, 1);
Rhos = zeros(NumMaturities, 1);
Nus = zeros(NumMaturities, 1);
options = optimoptions('lsqnonlin','Display','none');
```

```
for k = 1:NumMaturities
    % This function solves the SABR at-the-money volatility equation as a
    % polynomial of Alpha
    alpharoots = @(Rho,Nu) roots([...
        (1 - Beta)^2*YearsToExercise(k)/24/CurrentForwardValues(k)^(2 - 2*Beta) ...
        Rho*Beta*Nu*YearsToExercise(k)/4/CurrentForwardValues(k)^(1 - Beta) ...
        (1 + (2 - 3*Rho^2)*Nu^2*YearsToExercise(k)/24) ...
        -ATMVolatilities(k)*CurrentForwardValues(k)^(1 - Beta)]);
    % This function converts at-the-money volatility into Alpha by picking the
    % smallest positive real root
    atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
        x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));
    % Fit Rho and Nu (while converting at-the-money volatility into Alpha)
    objFun = @(X) MarketVolatilities(:,k) - ...
        blackvolbysabr(atmVol2SabrAlpha(X(1), X(2)), ...
        Beta, X(1), X(2), Settle, ExerciseDates(k), CurrentForwardValues(k), ...
        MarketStrikes(:,k));
    X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf], options);
    Rho = X(1);
    Nu = X(2);
    % Get final Alpha from the calibrated parameters
    Alpha = atmVol2SabrAlpha(Rho, Nu);
    Alphas(k) = Alpha;
    Rhos(k) = Rho;
    Nus(k) = Nu;
end
CalibratedPrameters = array2table([Alphas Betas Rhos Nus],...
    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'3M into 10Y';'1Y into 10Y';...
    '2Y into 10Y';'3Y into 10Y';'4Y into 10Y';...
    '5Y into 10Y';'7Y into 10Y';'10Y into 10Y'})
CalibratedPrameters =
Alpha Beta Rho Nu
```

| 3M into 10Y | 0.051947 | 0.5 | 0.39572 | 1.4146 |
| :--- | ---: | ---: | ---: | ---: |
| 1Y into 10Y | 0.054697 | 0.5 | 0.2955 | 1.1257 |
| 2Y into 10Y | 0.058433 | 0.5 | 0.24175 | 0.93463 |
| 3Y into 10Y | 0.058484 | 0.5 | 0.20568 | 0.79647 |
| 4Y into 10Y | 0.056054 | 0.5 | 0.13685 | 0.76993 |
| 5Y into 10Y | 0.051072 | 0.5 | 0.060285 | 0.73595 |
| 7Y into 10Y | 0.04475 | 0.5 | 0.083385 | 0.66341 |
| 10Y into 10Y | 0.044548 | 0.5 | 0.02261 | 0.49487 |

Step 3. Construct a volatility surface.

Use the calibrated model to compute new volatilities at any strike value to produce a smooth smile for a given maturity. This can be repeated for each maturity to form a volatility surface

Compute volatilities using the calibrated models for each maturity and plot the volatility surface.

```
PlottingStrikes = (0.95:0.1:5.8)'/100;
ComputedVols = zeros(length(PlottingStrikes), NumMaturities);
for k = 1:NumMaturities
ComputedVols(:,k) = blackvolbysabr(Alphas(k), Betas(k), Rhos(k), Nus(k), Settle, ...
    ExerciseDates(k), CurrentForwardValues(k), PlottingStrikes);
end
figure;
surf(YearsToExercise, PlottingStrikes, ComputedVols);
xlim([0 10]); ylim([0.0095 0.06]); zlim([0.2 0.8]);
view(113,32);
set(gca, 'Position', [0.13 0.11 0.775 0.815], ...
    PlotBoxAspectRatioMode', 'manual');
xlabel('Years to exercise', 'Fontweight', 'bold');
ylabel('Strike', 'Fontweight', 'bold');
zlabel('Implied Black volatility', 'Fontweight', 'bold');
```


Note, in this volatility surface, the smiles tend to get flatter for longer swaption maturities (years to exercise). This is consistent with the Nu parameter values tending to decrease with swaption maturity, as shown previously in the table for CalibratedPrameters.

Step 4. Use swaptionbyblk to price a swaption.

Use the volatility surface to price a swaption that matures in five years. Define a swaption (for a 10-year swap) that matures in five years and use the interest-rate term structure at the time of the swaption Settle date to define the RateSpec. Use the RateSpec to compute the current forward swap rate using the swapbyzero function. Compute the SABR implied Black volatility for this swaption using the blackvolbysabr function (and it is marked with a red arrow in the figure that
follows). Price the swaption using the SABR implied Black volatility as an input to the swaptionbyblk function.

```
% Define the swaption
SwaptionSettle = '12-Jun-2013';
SwaptionExerciseDate = '12-Jun-2018';
SwapMaturity = '12-Jun-2028';
Reset = 1;
OptSpec = 'call';
Strike = 0.0263;
% Define RateSpec
ValuationDate = '12-Jun-2013';
EndDates = {'12-Jul-2013';'12-Sep-2013';'12-Dec-2013';'12-Jun-2014';...
    '12-Jun-2015';'12-Jun-2016';'12-Jun-2017';'12-Jun-2018';...
    '12-Jun-2019';'12-Jun-2020';'12-Jun-2021';'12-Jun-2022'; ...
    '12-Jun-2023';'12-Jun-2025';'12-Jun-2028';'12-Jun-2033'};
Rates = [0.2 0.3 0.4 0.7 0.5 0.7 1.0 1.4 1.7 1.9 ...
    2.1 2.3 2.5 2.8 3.1 3.3]'/100;
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, ...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)
% Use swapbyzero
LegRate = [NaN 0]; % To compute the forward swap rate, set the coupon rate to NaN.
[~, CurrentForwardSwapRate] = swapbyzero(RateSpec, LegRate, SwaptionSettle, SwapMaturi
    'StartDate', SwaptionExerciseDate);
% Use blackvolbysabr
SABRBlackVolatility = blackvolbysabr(Alphas(6), Betas(6), Rhos(6), Nus(6), SwaptionSet
    SwaptionExerciseDate, CurrentForwardSwapRate, Strike)
text (YearsToExercise(6), Strike, SABRBlackVolatility, '\leftarrow',...
    Color', 'r', 'FontWeight', 'bold', 'FontSize', 22);
% Use swaptionbyblk
Price = swaptionbyblk(RateSpec, OptSpec, Strike, SwaptionSettle, SwaptionExerciseDate,
SwapMaturity, SABRBlackVolatility, 'Reset', Reset)
```

RateSpec =
struct with fields:

```
            FinObj: 'RateSpec'
        Compounding: 1
            Disc: [16\times1 double]
            Rates: [16\times1 double]
            EndTimes: [16\times1 double]
    StartTimes: [16\times1 double]
            EndDates: [16\times1 double]
    StartDates: 735397
ValuationDate: 735397
            Basis: 0
    EndMonthRule: 1
SABRBlackVolatility =
    0.3932
Price =
    14.2403
```


[1] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E., "Managing Smile Risk," Wilmott Magazine, 2002.
[2] West, G., "Calibration of the SABR Model in Illiquid Markets," Applied Mathematical Finance, 12(4), pp. 371-385, 2004.

See Also

blackvolbysabr | swapbyzero | swaptionbyblk

Related Examples

- "Calibrate the SABR Model " on page 2-21

Overview of Interest-Rate Tree Models

In this section...

"Interest-Rate Modeling" on page 2-35
"Rate and Price Trees" on page 2-36
"Viewing Rate or Price Movement" on page 2-37

Interest-Rate Modeling

Financial Instruments Toolbox computes prices and sensitivities of interest-rate contingent claims based on several methods of modeling changes in interest rates over time:

- The interest-rate term structure

This model uses sets of zero-coupon bonds to predict changes in interest rates.

- Heath-Jarrow-Morton (HJM) model

The HJM model considers a given initial term structure of interest rates and a specification of the volatility of forward rates to build a tree representing the evolution of the interest rates, based on a statistical process.

- Black-Derman-Toy (BDT) model

In the BDT model, all security prices and rates depend on the short rate (annualized 1 -period interest rate). The model uses long rates and their volatilities to construct a tree of possible future short rates. The resulting tree can then be used to determine the value of interest-rate sensitive securities from this tree.

- Hull-White (HW) model

The Hull-White model incorporates the initial term structure of interest rates and the volatility term structure to build a trinomial recombining tree of short rates. The resulting tree is used to value interest-rate dependent securities. The implementation of the HW model in Financial Instruments Toolbox is limited to one factor.

- Black-Karasinski (BK) model

The BK model is a single-factor, log-normal version of the HW model.
For detailed information about interest-rate models, see:

- "Pricing Using Interest-Rate Term Structure" on page 2-57 for a discussion of price and sensitivity based on portfolios of zero-coupon bonds
- "Pricing Using Interest-Rate Tree Models" on page 2-84 for a discussion of price and sensitivity based on the HJM and BDT interest-rate models

> Note Historically, the initial version of Financial Instruments Toolbox provided only the HJM interest-rate model. A later version added the BDT model. The current version adds both the HW and BK models. This section provides extensive examples of using the HJM and BDT models to compute prices and sensitivities of interest-rate based financial derivatives.
> The HW and BK tree structures are similar to the BDT tree structure. To avoid needless repetition throughout this section, documentation is provided only where significant deviations from the BDT structure exist. Specifically, "HW and BK Tree Structures" on page 2-79 explains the few noteworthy differences among the various formats.

Rate and Price Trees

The interest-rate or price trees supported in this toolbox can be either binomial (two branches per node) or trinomial (three branches per node). Typically, binomial trees assume that underlying interest rates or prices can only either increase or decrease at each node. Trinomial trees allow for a more complex movement of rates or prices. With trinomial trees, the movement of rates or prices at each node is unrestricted (for example, up-up-up or unchanged-down-down).

Types of Trees

Financial Instruments Toolbox trees can be classified as bushy or recombining. A bushy tree is a tree in which the number of branches increases exponentially relative to observation times; branches never recombine. In this context, a recombining tree is the opposite of a bushy tree. A recombining tree has branches that recombine over time. From any given node, the node reached by taking the path up-down is the same node reached by taking the path down-up. A bushy tree and a recombining binomial tree are illustrated next.

Bushy Tree

Recombiring Binomial Tree

In this toolbox the Heath-Jarrow-Morton model works with bushy trees. The Black-Derman-Toy model, on the other hand, works with recombining binomial trees.

The other two interest rate models supported in this toolbox, Hull-White and BlackKarasinski, work with recombining trinomial trees.

Viewing Rate or Price Movement

This toolbox provides the data file deriv.mat that contains four interest-rate based trees:

- HJMTree - A bushy binomial tree
- BDTTree - A recombining binomial tree
- HWTree and BKTree - Recombining trinomial trees

The toolbox also provides the treeviewer function, which graphically displays the shape and data of price, interest rate, and cash flow trees. Viewed with treeviewer, the bushy shape of an HJM tree and the recombining shape of a BDT tree are apparent.

HJMTree (bushy)

BDTIree (recombining)

With treeviewer, you can also see the recombining shape of HW and BK trinomial trees.

HWTree and BKTree (recombining)

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm |
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk|fixedbyhjm|fixedbyhw|fixedbyzero|floatbybdt|floatbybk | floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw |hjmprice | hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption | intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw | optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw | swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt | swaptionbybk | swaptionbyblk| swaptionbyhjm | swaptionbyhw

Related Examples

- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Graphical Representation of Trees" on page 2-142
- "Understanding the Interest-Rate Term Structure" on page 2-40

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Understanding the Interest-Rate Term Structure

In this section...
"Introduction" on page 2-40
"Interest Rates Versus Discount Factors" on page 2-40

Introduction

The interest-rate term structure represents the evolution of interest rates through time. In MATLAB, the interest-rate environment is encapsulated in a structure called RateSpec (rate specification). This structure holds all information required to completely identify the evolution of interest rates. Several functions included in Financial Instruments Toolbox software are dedicated to the creating and managing of the RateSpec structure. Many others take this structure as an input argument representing the evolution of interest rates.

Before looking further at the RateSpec structure, examine three functions that provide key functionality for working with interest rates: disc2rate, its opposite, rate2disc, and ratetimes. The first two functions map between discount factors and interest rates. The third function, ratetimes, calculates the effect of term changes on the interest rates.

Interest Rates Versus Discount Factors

Discount factors are coefficients commonly used to find the current value of future cash flows. As such, there is a direct mapping between the rate applicable to a period of time, and the corresponding discount factor. The function disc2rate converts discount factors for a given term (period) into interest rates. The function rate2disc does the opposite; it converts interest rates applicable to a given term (period) into the corresponding discount factors.

Calculating Discount Factors from Rates

As an example, consider these annualized zero-coupon bond rates.

| From | To | Rate |
| :--- | :--- | :--- |
| 15 Feb 2000 | 15 Aug 2000 | 0.05 |
| 15 Feb 2000 | 15 Feb 2001 | 0.056 |

| From | To | Rate |
| :--- | :--- | :--- |
| 15 Feb 2000 | 15 Aug 2001 | 0.06 |
| 15 Feb 2000 | 15 Feb 2002 | 0.065 |
| 15 Feb 2000 | 15 Aug 2002 | 0.075 |

To calculate the discount factors corresponding to these interest rates, call rate2disc using the syntax

Disc = rate2disc(Compounding, Rates, EndDates, StartDates, ValuationDate)
where:

- Compounding represents the frequency at which the zero rates are compounded when annualized. For this example, assume this value to be 2 .
- Rates is a vector of annualized percentage rates representing the interest rate applicable to each time interval.
- EndDates is a vector of dates representing the end of each interest-rate term (period).
- StartDates is a vector of dates representing the beginning of each interest-rate term.
- ValuationDate is the date of observation for which the discount factors are calculated. In this particular example, use February 15, 2000 as the beginning date for all interest-rate terms.

Next, set the variables in MATLAB.

```
StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002' ];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];
```

Finally, compute the discount factors.

```
Disc = rate2disc(Compounding, Rates, EndDates, StartDates,...
ValuationDate)
```

Disc =
0.9756
0.9463
0.9151
0.8799
0.8319

By adding a fourth column to the rates table (see "Calculating Discount Factors from Rates" on page 2-40) to include the corresponding discounts, you can see the evolution of the discount factors.

| From | To | Rate | Discount |
| :--- | :--- | :--- | :--- |
| 15 Feb 2000 | 15 Aug 2000 | 0.05 | 0.9756 |
| 15 Feb 2000 | 15 Feb 2001 | 0.056 | 0.9463 |
| 15 Feb 2000 | 15 Aug 2001 | 0.06 | 0.9151 |
| 15 Feb 2000 | 15 Feb 2002 | 0.065 | 0.8799 |
| 15 Feb 2000 | 15 Aug 2002 | 0.075 | 0.8319 |

Optional Time Factor Outputs

The function rate2disc optionally returns two additional output arguments: EndTimes and StartTimes. These vectors of time factors represent the start dates and end dates in discount periodic units. The scale of these units is determined by the value of the input variable Compounding.

To examine the time factor outputs, find the corresponding values in the previous example.

```
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,...
EndDates, StartDates, ValuationDate);
```

Arrange the two vectors into a single array for easier visualization.

```
Times = [StartTimes, EndTimes]
```

Times =

| 0 | 1 |
| :--- | :--- |
| 0 | 2 |
| 0 | 3 |
| 0 | 4 |
| 0 | 5 |

Because the valuation date is equal to the start date for all periods, the StartTimes vector is composed of 0 s . Also, since the value of Compounding is 2 , the rates are compounded semiannually, which sets the units of periodic discount to six months. The vector EndDates is composed of dates separated by intervals of six months from the valuation date. This explains why the EndTimes vector is a progression of integers from 1 to 5 .

Alternative Syntax (rate2disc)

The function rate2disc also accommodates an alternative syntax that uses periodic discount units instead of dates. Since the relationship between discount factors and interest rates is based on time periods and not on absolute dates, this form of rate2disc allows you to work directly with time periods. In this mode, the valuation date corresponds to 0 , and the vectors StartTimes and EndTimes are used as input arguments instead of their date equivalents, StartDates and EndDates. This syntax for rate2disc is:

```
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
```

Using as input the StartTimes and EndTimes vectors computed previously, you should obtain the previous results for the discount factors.

```
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
Disc =
```

0.9756
0.9463
0.9151
0.8799
0.8319

Calculating Rates from Discounts

The function disc2rate is the complement to rate2disc. It finds the rates applicable to a set of compounding periods, given the discount factor in those periods. The syntax for calling this function is:

Rates = disc2rate(Compounding, Disc, EndDates, StartDates, ValuationDate)

Each argument to this function has the same meaning as in rate2disc. Use the results found in the previous example to return the rate values you started with.

```
Rates = disc2rate(Compounding, Disc, EndDates, StartDates,...
ValuationDate)
Rates =
    0.0500
    0.0560
    0.0600
    0.0650
    0.0750
```


Alternative Syntax (disc2rate)

As in the case of rate2disc, disc2rate optionally returns StartTimes and EndTimes vectors representing the start and end times measured in discount periodic units. Again, working with the same values as before, you should obtain the same numbers.
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,... EndDates, StartDates, ValuationDate);

Arrange the results in a matrix convenient to display.
Result = [StartTimes, EndTimes, Rates]
Result =

| 0 | 1.0000 | 0.0500 |
| :--- | :--- | :--- |
| 0 | 2.0000 | 0.0560 |
| 0 | 3.0000 | 0.0600 |
| 0 | 4.0000 | 0.0650 |
| 0 | 5.0000 | 0.0750 |

As with rate2disc, the relationship between rates and discount factors is determined by time periods and not by absolute dates. So, the alternate syntax for disc2rate uses time vectors instead of dates, and it assumes that the valuation date corresponds to time $=0$. The time-based calling syntax is:

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes);
Using this syntax, you again obtain the original values for the interest rates.
Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)
Rates =

0.0500

0.0560
0.0600
0.0650
0.0750

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt \| cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm | fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption | intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw | optfloatbybdt | optfloatbybk| optfloatbyhjm| optfloatbyhw | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw | swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt | swaptionbybk | swaptionbyblk| swaptionbyhjm | swaptionbyhw

Related Examples

- "Modeling the Interest-Rate Term Structure" on page 2-52
- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Graphical Representation of Trees" on page 2-142

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Interest-Rate Term Conversions

Interest-rate evolution is typically represented by a set of interest rates, including the beginning and end of the periods the rates apply to. For zero rates, the start dates are typically at the valuation date, with the rates extending from that valuation date until their respective maturity dates.

Spot Curve to Forward Curve Conversion

Frequently, given a set of rates including their start and end dates, you may be interested in finding the rates applicable to different terms (periods). This problem is addressed by the function ratetimes. This function interpolates the interest rates given a change in the original terms. The syntax for calling ratetimes is
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate);
where:

- Compounding represents the frequency at which the zero rates are compounded when annualized.
- RefRates is a vector of initial interest rates representing the interest rates applicable to the initial time intervals.
- RefEndDates is a vector of dates representing the end of the interest rate terms (period) applicable to RefRates.
- RefStartDates is a vector of dates representing the beginning of the interest rate terms applicable to RefRates.
- EndDates represent the maturity dates for which the interest rates are interpolated.
- StartDates represent the starting dates for which the interest rates are interpolated.
- ValuationDate is the date of observation, from which the StartTimes and EndTimes are calculated. This date represents time $=0$.

The input arguments to this function can be separated into two groups:

- The initial or reference interest rates, including the terms for which they are valid
- Terms for which the new interest rates are calculated

As an example, consider the rate table specified in "Calculating Discount Factors from Rates" on page 2-40.

| From | To | Rate |
| :--- | :--- | :--- |
| 15 Feb 2000 | 15 Aug 2000 | 0.05 |
| 15 Feb 2000 | 15 Feb 2001 | 0.056 |
| 15 Feb 2000 | 15 Aug 2001 | 0.06 |
| 15 Feb 2000 | 15 Feb 2002 | 0.065 |
| 15 Feb 2000 | 15 Aug 2002 | 0.075 |

Assuming that the valuation date is February 15, 2000, these rates represent zerocoupon bond rates with maturities specified in the second column. Use the function ratetimes to calculate the forward rates at the beginning of all periods implied in the table. Assume a compounding value of 2.

```
% Reference Rates.
RefStartDates = ['15-Feb-2000'];
RefEndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002' ];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
RefRates = [0.05; 0.056; 0.06; 0.065; 0.075];
% New Terms.
StartDates = ['15-Feb-2000'; '15-Aug-2000'; '15-Feb-2001';...
'15-Aug-2001'; '15-Feb-2002' ];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
% Find the new rates.
Rates = ratetimes(Compounding, RefRates, RefEndDates,...
RefStartDates, EndDates, StartDates, ValuationDate)
Rates =
    0.0500
    0.0620
    0.0680
    0.0801
    0.1155
```

Place these values in a table like the previous one. Observe the evolution of the forward rates based on the initial zero-coupon rates.

| From | To | Rate |
| :--- | :--- | :--- |
| 15 Feb 2000 | 15 Aug 2000 | 0.0500 |
| 15 Aug 2000 | 15 Feb 2001 | 0.0620 |
| 15 Feb 2001 | 15 Aug 2001 | 0.0680 |
| 15 Aug 2001 | 15 Feb 2002 | 0.0801 |
| 15 Feb 2002 | 15 Aug 2002 | 0.1155 |

Alternative Syntax (ratetimes)

The ratetimes function can provide the additional output arguments StartTimes and EndTimes, which represent the time factor equivalents to the StartDates and EndDates vectors. The ratetimes function uses time factors for interpolating the rates. These time factors are calculated from the start and end dates, and the valuation date, which are passed as input arguments. ratetimes can also use time factors directly, assuming time $=0$ as the valuation date. This alternate syntax is:
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Use this alternate version of ratetimes to find the forward rates again. In this case, you must first find the time factors of the reference curve. Use date2time for this.

RefEndTimes = date2time(ValuationDate, RefEndDates, Compounding)

RefEndTimes =

1
2
3
4
5
RefStartTimes = date2time(ValuationDate, RefStartDates,...
Compounding)
RefStartTimes =
0

These are the expected values, given semiannual discounts (as denoted by a value of 2 in the variable Compounding), end dates separated by 6 -month periods, and the valuation date equal to the date marking beginning of the first period (time factor $=0$).

Now call ratetimes with the alternate syntax.

```
[Rates, EndTimes, StartTimes] = ratetimes(Compounding,...
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);
Rates =
    0.0500
    0.0620
    0.0680
    0.0801
    0.1155
```

EndTimes and StartTimes have, as expected, the same values they had as input arguments.

```
Times = [StartTimes, EndTimes]
```

Times =

| 0 | 1 |
| :--- | :--- |
| 1 | 2 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm |
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk|fixedbyhjm | fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap \| hwcalbyfloor | hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw | optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw | swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt | swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples

- "Modeling the Interest-Rate Term Structure" on page 2-52
- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Graphical Representation of Trees" on page 2-142

More About

- "Understanding the Interest-Rate Term Structure" on page 2-40
- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Modeling the Interest-Rate Term Structure

Financial Instruments Toolbox includes a set of functions to encapsulate interestrate term information into a single structure. These functions present a convenient way to package all information related to interest-rate terms into a common format, and to resolve interdependencies when one or more of the parameters is modified. For information, see:

- "Creating or Modifying (intenvset)" on page 2-52 for a discussion of how to create or modify an interest-rate term structure (RateSpec) using the intenvset function
- "Obtaining Specific Properties (intenvget)" on page 2-54 for a discussion of how to extract specific properties from a RateSpec

Creating or Modifying (intenvset)

The main function to create or modify an interest-rate term structure RateSpec (rates specification) is intenvset. If the first argument to this function is a previously created RateSpec, the function modifies the existing rate specification and returns a new one. Otherwise, it creates a RateSpec.

When using RateSpec to specify the rate term structure to price instruments based on yields (zero coupon rates) or forward rates, specify zero rates or forward rates as the input argument. However, the RateSpec structure is not limited or specific to this problem domain. RateSpec is an encapsulation of rates-times relationships; intenvset acts as either a constructor or a modifier, and intenvget as an accessor. The interest rate models supported by the Financial Instruments Toolbox software work either with zero coupon rates or forward rates.

The other intenvset arguments are name-value pairs. The name-value pair arguments that can be specified or modified are:

- Basis
- Compounding
- Disc
- EndDates
- EndMonthRule
- Rates
- StartDates

- ValuationDate

For more information on Basis, see basis.
Consider again the original table of interest rates (see "Calculating Discount Factors from Rates" on page 2-40).

| From | To | Rate |
| :--- | :--- | :--- |
| 15 Feb 2000 | 15 Aug 2000 | 0.05 |
| 15 Feb 2000 | 15 Feb 2001 | 0.056 |
| 15 Feb 2000 | 15 Aug 2001 | 0.06 |
| 15 Feb 2000 | 15 Feb 2002 | 0.065 |
| 15 Feb 2000 | 15 Aug 2002 | 0.075 |

Use the information in this table to populate the RateSpec structure.

```
StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000';
        '15-Feb-2001';
        '15-Aug-2001';
        '15-Feb-2002';
        '15-Aug-2002' ];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];
rs = intenvset('Compounding',Compounding,'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates,...
'ValuationDate', ValuationDate)
rs =
    FinObj: 'RateSpec'
    Compounding: 2
        Disc: [5x1 double]
            Rates: [5x1 double]
        EndTimes: [5x1 double]
        StartTimes: [5x1 double]
        EndDates: [5x1 double]
        StartDates: 730531
ValuationDate: 730531
    Basis: 0
```


EndMonthRule: 1

Some of the properties filled in the structure were not passed explicitly in the call to RateSpec. The values of the automatically completed properties depend on the properties that are explicitly passed. Consider for example the StartTimes and EndTimes vectors. Since the StartDates and EndDates vectors are passed in, and the ValuationDate, intenvset has all the information required to calculate StartTimes and EndTimes. Hence, these two properties are read-only.

Obtaining Specific Properties (intenvget)

The complementary function to intenvset is intenvget, which gets function-specific properties from the interest-rate term structure. Its syntax is:

```
ParameterValue = intenvget(RateSpec, 'ParameterName')
```

To obtain the vector EndTimes from the RateSpec structure, enter:

```
EndTimes = intenvget(rs, 'EndTimes')
```

EndTimes =
1
2
3
4
5

To obtain Disc, the values for the discount factors that were calculated automatically by intenvset, type:

Disc = intenvget(rs, 'Disc')
Disc =
0.9756
0.9463
0.9151
0.8799
0.8319

These discount factors correspond to the periods starting from StartDates and ending in EndDates.

Caution Although you can directly access these fields within the structure instead of using intenvget, it is advised not to do so. The format of the interest-rate term structure could change in future versions of the toolbox. Should that happen, any code accessing the RateSpec fields directly would stop working.

Now use the RateSpec structure with its functions to examine how changes in specific properties of the interest-rate term structure affect those depending on it. As an exercise, change the value of Compounding from 2 (semiannual) to 1 (annual).

```
rs = intenvset(rs, 'Compounding', 1);
```

Since StartTimes and EndTimes are measured in units of periodic discount, a change in Compounding from 2 to 1 redefines the basic unit from semiannual to annual. This means that a period of six months is represented with a value of 0.5 , and a period of one year is represented by 1 . To obtain the vectors StartTimes and EndTimes, enter:

```
StartTimes = intenvget(rs, 'StartTimes');
EndTimes = intenvget(rs, 'EndTimes');
Times = [StartTimes, EndTimes]
Times =
\begin{tabular}{ll}
0 & 0.5000 \\
0 & 1.0000 \\
0 & 1.5000 \\
0 & 2.0000 \\
0 & 2.5000
\end{tabular}
```

Since all the values in StartDates are the same as the valuation date, all StartTimes values are 0 . On the other hand, the values in the EndDates vector are dates separated by 6 -month periods. Since the redefined value of compounding is 1 , EndTimes becomes a sequence of numbers separated by increments of 0.5 .

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw \| cfbybdt \| cfbybk | cfbyhjm | cfbyhw | cfbyzero \| fixedbybdt | fixedbybk | fixedbyhjm | fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice |

Abstract

hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption | intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw | optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw | swapbybdt \| swapbybk \| swapbyhjm | swapbyhw \| swapbyzero | swaptionbybdt \| swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples

- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Graphical Representation of Trees" on page 2-142

More About

- "Understanding the Interest-Rate Term Structure" on page 2-40
- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Pricing Using Interest-Rate Term Structure

In this section...
"Introduction" on page 2-57
"Computing Instrument Prices" on page 2-58
"Computing Instrument Sensitivities" on page 2-59
"OAS for Callable and Puttable Bonds" on page 2-61
"Agency OAS" on page 2-61

Introduction

The instruments can be presented to the functions as a portfolio of different types of instruments or as groups of instruments of the same type. The current version of the toolbox can compute price and sensitivities for five instrument types of using interestrate curves:

- Bonds
- Fixed-rate notes
- Floating-rate notes
- Swaps
- OAS for callable and puttable bonds
- Agency OAS

In addition to these instruments, the toolbox also supports the calculation of price and sensitivities of arbitrary sets of cash flows.

Options and interest-rate floors and caps are absent from the above list of supported instruments. These instruments are not supported because their pricing and sensitivity function require a stochastic model for the evolution of interest rates. The interest-rate term structure used for pricing is treated as deterministic, and as such is not adequate for pricing these instruments.

Financial Instruments Toolbox also contains functions that use the Heath-JarrowMorton (HJM) and Black-Derman-Toy (BDT) models to compute prices and sensitivities for financial instruments. These models support computations involving options and interest-rate floors and caps. See "Pricing Using Interest-Rate Tree Models" on page

2-84 for information on computing price and sensitivities of financial instruments using the HJM and BDT models.

Computing Instrument Prices

The main function used for pricing portfolios of instruments is intenvprice. This function works with the family of functions that calculate the prices of individual types of instruments. When called, intenvprice classifies the portfolio contained in InstSet by instrument type, and calls the appropriate pricing functions. The map between instrument types and the pricing function intenvprice calls is

| bondbyzero: | Price a bond by a set of zero curves |
| :--- | :--- |
| fixedbyzero: | Price a fixed-rate note by a set of zero curves |
| floatbyzero: | Price a floating-rate note by a set of zero curves |
| swapbyzero: | Price a swap by a set of zero curves |

You can use each of these functions individually to price an instrument. Consult the reference pages for specific information on using these functions.
intenvprice takes as input an interest-rate term structure created with intenvset, and a portfolio of interest-rate contingent derivatives instruments created with instadd.

The syntax for using intenvprice to price an entire portfolio is
Price = intenvprice (RateSpec, InstSet)
where:

- RateSpec is the interest-rate term structure.
- InstSet is the name of the portfolio.

Example: Pricing a Porifolio of Instruments

Consider this example of using the intenvprice function to price a portfolio of instruments supplied with Financial Instruments Toolbox software.

The provided MAT-file deriv.mat stores a portfolio as an instrument set variable ZeroInstSet. The MAT-file also contains the interest-rate term structure ZeroRateSpec. You can display the instruments with the function instdisp.

```
load deriv.mat;
instdisp(ZeroInstSet)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Index & Type & CouponRate & Settle & Maturity & Period & Basis \\
\hline 1 & Bond & 0.04 & 01-Jan-2000 & 01-Jan-2003 & 3 & NaN . \\
\hline 2 & Bond & 0.04 & 01-Jan-2000 & 01-Jan-2004 & 4 & NaN . \\
\hline Index & Type & CouponRate & Settle & Maturity F & FixedReset & Basis \\
\hline 3 & Fixed & 0.04 & 01-Jan-2000 & 01-Jan-2003 1 & 1 N & NaN . \\
\hline Index & Type & Spread Set & tle & Maturity & FloatRese & t Basis. \\
\hline 4 & Float & 20 01- & Jan-2000 & 01 -Jan-2003 & 1 & NaN . \\
\hline Index & Type & LegRate & Settle & Maturity & LegRese & et Basis \\
\hline 5 & Swap & [0.06 20] & 01-Jan-2000 & 01-Jan-2003 & 3 [1 1] & NaN . \\
\hline
\end{tabular}
```

Use intenvprice to calculate the prices for the instruments contained in the portfolio ZeroInstSet.
format bank
Prices = intenvprice(ZeroRateSpec, ZeroInstSet)
Prices =
98.72
97.53
98.72
100.55
3.69

The output Prices is a vector containing the prices of all the instruments in the portfolio in the order indicated by the Index column displayed by instdisp. So, the first two elements in Prices correspond to the first two bonds; the third element corresponds to the fixed-rate note; the fourth to the floating-rate note; and the fifth element corresponds to the price of the swap.

Computing Instrument Sensitivities

In general, you can compute sensitivities either as dollar price changes or as percentage price changes. The toolbox reports all sensitivities as dollar sensitivities.

Using the interest-rate term structure, you can calculate two types of derivative price sensitivities, delta and gamma. Delta represents the dollar sensitivity of prices to shifts in the observed forward yield curve. Gamma represents the dollar sensitivity of delta to shifts in the observed forward yield curve.

The intenvsens function computes instrument sensitivities and instrument prices. If you need both the prices and sensitivity measures, use intenvsens. A separate call to intenvprice is not required.

Here is the syntax
[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)
where, as before:

- RateSpec is the interest-rate term structure.
- InstSet is the name of the portfolio.

Example: Sensitivities and Prices

Here is an example that uses intenvsens to calculate both sensitivities and prices.

```
format bank
load deriv.mat;
[Delta, Gamma, Price] = intenvsens(ZeroRateSpec, ZeroInstSet);
```

Display the results in a single matrix in bank format.

```
All = [Delta Gamma Price]
```

All =

| -272.64 | 1029.84 | 98.72 |
| ---: | ---: | ---: |
| -347.44 | 1622.65 | 97.53 |
| -272.64 | 1029.84 | 98.72 |
| -1.04 | 3.31 | 100.55 |
| -282.04 | 1059.62 | 3.69 |

To view the per-dollar sensitivity, divide the first two columns by the last one.
[Delta./Price, Gamma./Price, Price]
ans =

| -2.76 | 10.43 | 98.72 |
| ---: | ---: | ---: |
| -3.56 | 16.64 | 97.53 |
| -2.76 | 10.43 | 98.72 |
| -0.01 | 0.03 | 100.55 |
| -76.39 | 286.98 | 3.69 |

OAS for Callable and Puttable Bonds

Option Adjusted Spread (OAS) is a useful way to value and compare securities with embedded options, like callable or puttable bonds. Basically, when the constant or flat spread is added to the interest-rate curve/rates in the tree, the pricing model value equals the market price. Financial Instruments Toolbox supports pricing American, European, and Bermuda callable and puttable bonds using different interest rate models. The pricing for a bond with embedded options is:

- For a callable bond, where the holder has bought a bond and sold a call option to the issuer:

```
Price callable bond=Price Option free bond - Price call option
```

- For a puttable bond, where the holder has bought a bond and a put option:

```
Price puttable bond=Price Option free bond + Price put option
```

There are two additional sensitivities related to OAS for bonds with embedded options: Option Adjusted Duration and Option Adjusted Convexity. These are similar to the concepts of modified duration and convexity for option-free bonds. The measure Duration is a general term that describes how sensitive a bond's price is to a parallel shift in the yield curve. Modified Duration and Modified Convexity assume that the bond's cash flows do not change when the yield curve shifts. This is not true for OA Duration or OA Convexity because the cash flows may change due to the option risk component of the bond.

| Function | Purpose |
| :--- | :--- |
| oasbybdt | Compute OAS using a BDT model. |
| oasbybk | Compute OAS using a BK model. |
| oasbyhjm | Compute OAS using an HJM model. |
| oasbyhw | Compute OAS using an HW model. |

Agency OAS

Often bonds are issued with embedded options, which then makes standard price/ yield or spread measures irrelevant. For example, a municipality concerned about the chance that interest rates may fall in the future might issue bonds with a provision that allows the bond to be repaid before the bond's maturity. This is a call option on the
bond and must be incorporated into the valuation of the bond. Option-adjusted spread (OAS), which adjusts a bond spread for the value of the option, is the standard measure for valuing bonds with embedded options. Financial Instruments Toolbox supports computing option-adjusted spreads for bonds with single embedded options using the agency model.

The Securities Industry and Financial Markets Association (SIFMA) has a simplified approach to compute OAS for agency issues (Government Sponsored Entities like Fannie Mae and Freddie Mac) termed "Agency OAS." In this approach, the bond has only one call date (European call) and uses Black's model (see The BMA European Callable Securities Formula at http://www.sifma.org) to value the bond option. The price of the bond is computed as follows:

Price $_{\text {Callable }}=$ Price $_{\text {NonCallable }}-$ Price $_{\text {Option }}$
where
Price $_{\text {Callable }}$ is the price of the callable bond.
$\operatorname{Price}_{\text {NonCallable }}$ is the price of the noncallable bond, that is, price of the bond using bndspread.

Price $_{\text {Option }}$ is the price of the option, that is, price of the option using Black's model.
The Agency OAS is the spread, when used in the previous formula, yields the market price. Financial Instruments Toolbox supports these functions:

Agency OAS

| Agency OAS Functions | Purpose |
| :--- | :--- |
| agencyoas | Compute the OAS of the callable bond using the Agency
 OAS model. |
| agencyprice | Price the callable bond OAS using the Agency OAS model. |

For more information on agency OAS, see "Agency Option-Adjusted Spreads" on page 6-2.

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm

```
| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm |
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt |
fixedbybk| fixedbyhjm| fixedbyhw| fixedbyzero | floatbybdt | floatbybk
| floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin |
floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice|
hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor
| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat| instfloor | instoptbnd| instoptembnd |
instoptemfloat | instoptfloat| instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm |
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm| optemfloatbyhw
| optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk| swaptionbyhjm | swaptionbyhw
```


Related Examples

- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Understanding the Interest-Rate Term Structure" on page 2-40

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Understanding Interest-Rate Tree Models

Binomial interest-rate tree models:

```
In this section...
"Introduction" on page 2-64
"Building a Tree of Forward Rates" on page 2-65
"Specifying the Volatility Model (VolSpec)" on page 2-67
"Specifying the Interest-Rate Term Structure (RateSpec)" on page 2-69
"Specifying the Time Structure (TimeSpec)" on page 2-70
"Creating Trees" on page 2-72
"Examining Trees" on page 2-73
```


Introduction

Financial Instruments Toolbox supports the Black-Derman-Toy (BDT), Black-Karasinski (BK), Heath-Jarrow-Morton (HJM), and Hull-White (HW) interest-rate models. The Heath-Jarrow-Morton model is one of the most widely used models for pricing interestrate derivatives. The model considers a given initial term structure of interest rates and a specification of the volatility of forward rates to build a tree representing the evolution of the interest rates, based on a statistical process. For further explanation, see the book Modelling Fixed Income Securities and Interest Rate Options by Robert A. Jarrow.

The Black-Derman-Toy model is another analytical model commonly used for pricing interest-rate derivatives. The model considers a given initial zero rate term structure of interest rates and a specification of the yield volatilities of long rates to build a tree representing the evolution of the interest rates. For further explanation, see the paper "A One Factor Model of Interest Rates and its Application to Treasury Bond Options" by Fischer Black, Emanuel Derman, and William Toy.

The Hull-White model incorporates the initial term structure of interest rates and the volatility term structure to build a trinomial recombining tree of short rates. The resulting tree is used to value interest rate-dependent securities. The implementation of the Hull-White model in Financial Instruments Toolbox software is limited to one factor.

The Black-Karasinski model is a single factor, log-normal version of the Hull-White model.

For further information on the Hull-White and Black-Karasinski models, see the book Options, Futures, and Other Derivatives by John C. Hull.

Building a Tree of Forward Rates

The tree of forward rates is the fundamental unit representing the evolution of interest rates in a given period of time. This section explains how to create a forward-rate tree using Financial Instruments Toolbox.

Note To avoid needless repetition, this document uses the HJM and BDT models to illustrate the creation and use of interest-rate trees. The HW and BK models are similar to the BDT model. Where specific differences exist, they are documented in "HW and BK Tree Structures" on page 2-79.

The MATLAB functions that create rate trees are hjmtree and bdttree. The hjmtree function creates the structure, HJMTree, containing time and forward-rate information for a bushy tree. The bdttree function creates a similar structure, BDTTree, for a recombining tree.

This structure is a self-contained unit that includes the tree of rates (found in the FwdTree field of the structure) and the volatility, rate, and time specifications used in building this tree.

These functions take three structures as input arguments:

- The volatility model VolSpec. (See "Specifying the Volatility Model (VolSpec)" on page 2-67.)
- The interest-rate term structure RateSpec. (See "Specifying the Interest-Rate Term Structure (RateSpec)" on page 2-69.)
- The tree time layout TimeSpec. (See "Specifying the Time Structure (TimeSpec)" on page 2-70.)

An easy way to visualize any trees you create is with the treeviewer function, which displays trees in a graphical manner. See "Graphical Representation of Trees" on page 2-142 for information about treeviewer.

Calling Sequence

The calling syntax for hjmtree is HJMTree $=$ hjmtree(VolSpec, RateSpec, TimeSpec).

Similarly, the calling syntax for bdttree is BDTTree = bdttree(VolSpec, RateSpec, TimeSpec).

Each of these functions requires VolSpec, RateSpec, and TimeSpec input arguments:

- VolSpec is a structure that specifies the forward-rate volatility process. You create VolSpec using either of the functions hjmvolspec or bdtvolspec.

The hjmvolspec function supports the specification of up to three factors. It handles these models for the volatility of the interest-rate term structure:

- Constant
- Stationary
- Exponential
- Vasicek
- Proportional

A one-factor model assumes that the interest term structure is affected by a single source of uncertainty. Incorporating multiple factors allows you to specify different types of shifts in the shape and location of the interest-rate structure. See hjmvolspec for details.

The bdtvolspec function supports only a single volatility factor. The volatility remains constant between pairs of nodes on the tree. You supply the input volatility values in a vector of decimal values. See bdtvolspec for details.

- RateSpec is the interest-rate specification of the initial rate curve. You create this structure with the function intenvset. (See "Modeling the Interest-Rate Term Structure" on page 2-52.)
- TimeSpec is the tree time layout specification. You create this variable with the functions hjmtimespec or bdttimespec. It represents the mapping between level times and level dates for rate quoting. This structure indirectly determines the number of levels in the tree.

Specifying the Volatility Model (VolSpec)

Because HJM supports multifactor (up to 3) volatility models while BDT (also, BK and HW) supports only a single volatility factor, the hjmvolspec and bdtvolspec functions require different inputs and generate slightly different outputs. For examples, see "Creating an HJM Volatility Model" on page 2-67. For BDT examples, see "Creating a BDT Volatility Model" on page 2-68.

Creating an HJM Volatility Model

The function hjmvolspec generates the structure VolSpec, which specifies the volatility process $\sigma(t, T)$ used in the creation of the forward-rate trees. In this context capital T represents the starting time of the forward rate, and t represents the observation time. The volatility process can be constructed from a combination of factors specified sequentially in the call to function that creates it. Each factor specification starts with a character vector specifying the name of the factor, followed by the pertinent parameters.

HJM Volatility Specification Example

Consider an example that uses a single factor, specifically, a constant-sigma factor. The constant factor specification requires only one parameter, the value of σ. In this case, the value corresponds to 0.10 .

```
HJMVolSpec = hjmvolspec('Constant', 0.10)
HJMVolSpec =
            FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}
    FactorArgs: {{1x1 cell}}
    SigmaShift: 0
    NumFactors: 1
        NumBranch: 2
            PBranch: [0.5000 0.5000]
    Fact2Branch: [-1 1]
```

The NumFactors field of the VolSpec structure, VolSpec. NumFactors = 1, reveals that the number of factors used to generate VolSpec was one. The FactorModels field indicates that it is a Constant factor, and the NumBranches field indicates the number of branches. As a consequence, each node of the resulting tree has two branches, one going up, and the other going down.

Consider now a two-factor volatility process made from a proportional factor and an exponential factor.

```
% Exponential factor
Sigma_0 = 0.1;
Lambda = 1;
% Proportional factor
CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [ 1 ; 2 ; 3 ];
% Build VolSpec
HJMVolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm,...
1e6,'Exponential', Sigma_0, Lambda)
HJMVolSpec =
    FinObj: 'HJMVolSpec'
FactorModels: {'Proportional' 'Exponential'}
    FactorArgs: {{1\times3 cell} {1x2 cell}}
    SigmaShift: 0
    NumFactors: 2
        NumBranch: 3
            PBranch: [0.2500 0.2500 0.5000]
    Fact2Branch: [2x3 double]
```

The output shows that the volatility specification was generated using two factors. The tree has 3 branches per node. Each branch has probabilities of $0.25,0.25$, and 0.5 , going from top to bottom.

Creating a BDT Volatility Model

The function bdtvolspec generates the structure VolSpec, which specifies the volatility process. The function requires three input arguments:

- The valuation date ValuationDate
- The yield volatility end dates VolDates
- The yield volatility values VolCurve

An optional fourth argument InterpMethod, specifying the interpolation method, can be included.

The syntax used for calling bdtvolspec is:

```
BDTVolSpec = bdtvolspec(ValuationDate, VolDates, VolCurve,...
InterpMethod)
```

where:

- ValuationDate is the first observation date in the tree.
- VolDates is a vector of dates representing yield volatility end dates.
- VolCurve is a vector of yield volatility values.
- InterpMethod is the method of interpolation to use. The default is linear.

BDT Volatility Specification Example

Consider the following example:

```
ValuationDate = datenum('01-01-2000');
EndDates = datenum(['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005']);
Volatility = [.2; .19; .18; .17; .16];
```

Use bdtvolspec to create a volatility specification. Because no interpolation method is explicitly specified, the function uses the linear default.

```
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)
BDTVolSpec =
            FinObj: 'BDTVolSpec
    ValuationDate: 730486
        VolDates: [5x1 double]
        VolCurve: [5x1 double]
    VolInterpMethod: 'linear'
```


Specifying the Interest-Rate Term Structure (RateSpec)

The structure RateSpec is an interest term structure that defines the initial forwardrate specification from which the tree rates are derived. "Modeling the Interest-Rate Term Structure" on page 2-52 explains how to create these structures using the function intenvset, given the interest rates, the starting and ending dates for each rate, and the compounding value.

Rate Specification Creation Example

Consider the following example:

```
Compounding = 1;
Rates = [0.02; 0.02; 0.02; 0.02];
StartDates = ['01-Jan-2000';
    '01-Jan-2001';
    '01-Jan-2002';
```

```
    01-Jan-2003'];
EndDates = ['01-Jan-2001';
    '01-Jan-2002';
    '01-Jan-2003';
    '01-Jan-2004'];
ValuationDate = '01-Jan-2000';
RateSpec = intenvset('Compounding',1,'Rates', Rates,...
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate)
RateSpec =
            FinObj: 'RateSpec'
    Compounding: 1
                Disc: [4x1 double]
            Rates: [4x1 double]
                EndTimes: [4\times1 double]
        StartTimes: [4x1 double]
        EndDates: [4x1 double]
        StartDates: [4x1 double]
ValuationDate: 730486
            Basis: 0
    EndMonthRule: 1
```

Use the function datedisp to examine the dates defined in the variable RateSpec. For example:

```
datedisp(RateSpec.ValuationDate)
```

01-Jan-2000

Specifying the Time Structure (TimeSpec)

The structure TimeSpec specifies the time structure for an interest-rate tree. This structure defines the mapping between the observation times at each level of the tree and the corresponding dates.

TimeSpec is built using either the hjmtimespec or bdttimespec function. These functions require three input arguments:

- The valuation date ValuationDate
- The maturity date Maturity
- The compounding rate Compounding

For example, the syntax used for calling hjmtimespec is

```
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)
```

where:

- ValuationDate is the first observation date in the tree.
- Maturity is a vector of dates representing the cash flow dates of the tree. Any instrument cash flows with these maturities fall on tree nodes.
- Compounding is the frequency at which the rates are compounded when annualized.

Creating a Time Specification

Calling the time specification creation functions with the same data used to create the interest-rate term structure, RateSpec builds the structure that specifies the time layout for the tree.

HJM Time Specification Example

Consider the following example:

```
Maturity = EndDates;
HJMTimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)
HJMTimeSpec =
            FinObj: 'HJMTimeSpec'
ValuationDate: 730486
    Maturity: [4x1 double]
    Compounding: 1
        Basis: 0
    EndMonthRule: 1
```

Maturities specified when building TimeSpec need not coincide with the EndDates of the rate intervals in RateSpec. Since TimeSpec defines the time-date mapping of the tree, the rates in RateSpec are interpolated to obtain the initial rates with maturities equal to those in TimeSpec.

Creating a BDT Time Specification

Consider the following example:

```
Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
```

```
BDTTimeSpec =
    FinObj: 'BDTTimeSpec'
ValuationDate: 730486
    Maturity: [4x1 double]
    Compounding: 1
        Basis: 0
    EndMonthRule: 1
```


Creating Trees

Use the VolSpec, RateSpec, and TimeSpec you have previously created as inputs to the functions used to create HJM and BDT trees.

Creating an HJM Tree

```
% Reset the volatility factor to the Constant case
HJMVolSpec = hjmvolspec('Constant', 0.10);
HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)
HJMTree =
    FinObj: 'HJMFwdTree'
    VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [llllll}
    TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
    CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}
```


Creating a BDT Tree

Now use the previously computed values for VolSpec, RateSpec, and TimeSpec as input to the function bdttree to create a BDT tree.

```
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)
BDTTree =
    FinObj: 'BDTFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [0 1.00 2.00 3.00]
    TFwd: {[4\times1 double] [3\times1 double] [2\times1 double] [3.00]}
```

```
CFlowT: {[4\times1 double] [3x1 double] [2x1 double] [4.00]}
FwdTree: {[1.02] [1.02 1.02] [1.01 1.02 1.03] [1.01 1.02 1.02 1.03]}
```


Examining Trees

When working with the models, Financial Instruments Toolbox uses trees to represent forward rates, prices, and so on. At the highest level, these trees have structures wrapped around them. The structures encapsulate information required to interpret completely the information contained in a tree.

Consider this example, which uses the interest rate and portfolio data in the MAT-file deriv.mat included in the toolbox.

Load the data into the MATLAB workspace.

```
load deriv.mat
```

Display the list of the variables loaded from the MAT-file.

| Whos | | | |
| :--- | ---: | ---: | :--- |
| Name | | | |
| | Size | Bytes | Class |
| BDTInstSet | | | |
| BDTTree | 15956 | struct | |
| BKInstSet | 1×1 | 5138 | struct |
| BKTree | 1×1 | 15946 | struct |
| CRRInstSet | 1×1 | 5904 | struct |
| CRRTree | 1×1 | 5058 | struct |
| EQPInstSet | 1×1 | 12434 | struct |
| EQPTree | 1×1 | 5058 | struct |
| HJMInstSet | 1×1 | 15948 | struct |
| HJMTree | 1×1 | 5838 | struct |
| HWInstSet | 1×1 | 5946 | struct |
| HWTree | 1×1 | 12438 | struct |
| ITTInstSet | 1×1 | 8862 | struct |
| ITTTree | 1×1 | 10282 | struct |
| ZeroInstSet | 1×1 | 1580 | struct |

HJM Tree Structure

You can now examine in some detail the contents of the HJMTree structure contained in this file.

```
HJMTree
HJMTree =
    FinObj: 'HJMFwdTree'
VolSpec: [1x1 struct]
```

```
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [00 11 2 3]
    TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
    CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
FwdTree:{[4\times1 double][3\times1\times2 double][2x2x2 double][1\times4\times2 double]}
```

FwdTree contains the actual forward-rate tree. MATLAB represents it as a cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values in FwdTree. The most important are VolSpec, TimeSpec, and RateSpec, which contain the volatility, time structure, and rate structure information respectively.

First Node

Observe the forward rates in FwdTree. The first node represents the valuation date, tObs $=0$.

HJMTree.FwdTree\{1\}
ans =
1.0356
1.0468
1.0523
1.0563

Note Financial Instruments Toolbox uses inverse discount notation for forward rates in the tree. An inverse discount represents a factor by which the current value of an asset is multiplied to find its future value. In general, these forward factors are reciprocals of the discount factors.

Look closely at the RateSpec structure used in generating this tree to see where these values originate. Arrange the values in a single array.
[HJMTree.RateSpec.StartTimes HJMTree.RateSpec.EndTimes...
HJMTree.RateSpec.Rates]
ans =

| 0 | 1.0000 | 0.0356 |
| ---: | ---: | ---: |
| 1.0000 | 2.0000 | 0.0468 |
| 2.0000 | 3.0000 | 0.0523 |

$3.0000 \quad 4.0000 \quad 0.0563$
If you find the corresponding inverse discounts of the interest rates in the third column, you have the values at the first node of the tree. You can turn interest rates into inverse discounts using the function rate2disc.

Disc = rate2disc(HJMTree.TimeSpec.Compounding,...
HJMTree.RateSpec.Rates, HJMTree.RateSpec.EndTimes,...
HJMTree.RateSpec.StartTimes) ;
FRates = 1./Disc
FRates =
1.0356
1.0468
1.0523
1.0563

Second Node

The second node represents the first-rate observation time, tObs $=1$. This node displays two states: one representing the branch going up and the other representing the branch going down.

Note that HJMTree.VolSpec.NumBranch = 2.
HJMTree.VolSpec
ans =
FinObj: 'HJMVolSpec'
FactorModels: \{'Constant'\}
FactorArgs: \{\{1x1 cell\}\}
SigmaShift: 0
NumFactors: 1
NumBranch: 2
PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]
Examine the rates of the node corresponding to the up branch.
HJMTree.FwdTree\{2\}(: , : , 1)
ans =
1.0364
1.0420

1.0461

Now examine the corresponding down branch.

```
HJMTree.FwdTree{2}(:, :, 2)
```


ans =

1.0574
1.0631
1.0672

Third Node

The third node represents the second observation time, tObs $=2$. This node contains a total of four states, two representing the branches going up and the other two representing the branches going down. Examine the rates of the node corresponding to the up states.

```
HJMTree.FwdTree{3} (: , : ,1)
ans =
    1.0317 1.0526
    1.0358 1.0568
```

Next examine the corresponding down states.
HJMTree.FwdTree \{3\} (: , : , 2)
ans =

| 1.0526 | 1.0738 |
| :--- | :--- |
| 1.0568 | 1.0781 |

Isolating a Specific Node

Starting at the third level, indexing within the tree cell array becomes complex, and isolating a specific node can be difficult. The function bushpath isolates a specific node by specifying the path to the node as a vector of branches taken to reach that node. As an example, consider the node reached by starting from the root node, taking the branch up, then the branch down, and then another branch down. Given that the tree has only two branches per node, branches going up correspond to a 1, and branches going down

FRates = bushpath(HJMTree.FwdTree, [lll)

FRates =
1.0356
1.0364
1.0526
1.0674
bushpath returns the spot rates for all the nodes touched by the path specified in the input argument, the first one corresponding to the root node, and the last one corresponding to the target node.

Isolating the same node using direct indexing obtains

```
HJMTree.FwdTree{4}(:, 3, 2)
ans =
    1.0674
```

As expected, this single value corresponds to the last element of the rates returned by bushpath.

You can use these techniques with any type of tree generated with Financial Instruments Toolbox, such as forward-rate trees or price trees.

BDT Tree Structure

You can now examine in some detail the contents of the BDTTree structure.

BDTTree

```
BDTTree =
    FinObj: 'BDTFwdTree
    VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1.00 2.00 3.00]
        TFwd: {[4\times1 double] [3\times1 double] [2\times1 double] [3.00]}
    CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4.00]}
    FwdTree: {[1.10] [1.10 1.14] [1.10 1.14 1.19] [1.09 1.12 1.16 1.22]}
```

FwdTree contains the actual rate tree. MATLAB represents it as a cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values in FwdTree. The most important are VolSpec, TimeSpec, and RateSpec, which contain the volatility, time structure, and rate structure information respectively.

Look at the RateSpec structure used in generating this tree to see where these values originate. Arrange the values in a single array.

```
[BDTTree.RateSpec.StartTimes BDTTree.RateSpec.EndTimes...
BDTTree.RateSpec.Rates]
ans =
\begin{tabular}{lll}
0 & 1.0000 & 0.1000 \\
0 & 2.0000 & 0.1100 \\
0 & 3.0000 & 0.1200 \\
0 & 4.0000 & 0.1250
\end{tabular}
```

Look at the rates in FwdTree. The first node represents the valuation date, tObs $=0$. The second node represents $\mathrm{tObs}=1$. Examine the rates at the second, third, and fourth nodes.

```
BDTTree.FwdTree{2}
ans =
    1.0979 1.1432
```

The second node represents the first observation time, tObs $=1$. This node contains a total of two states, one representing the branch going up (1.0979) and the other representing the branch going down (1.1432).

Note The convention in this document is to display prices going up on the upper branch. So, when displaying rates, rates are falling on the upper branch and increasing on the lower branch.

```
BDTTree.FwdTree{3}
```

ans =
$1.0976 \quad 1.1377 \quad 1.1942$

The third node represents the second observation time, tObs $=2$. This node contains a total of three states, one representing the branch going up (1.0976), one representing the branch in the middle (1.1377) and the other representing the branch going down (1.1942).

BDTTree.FwdTree\{4\}

```
ans =
    1.0872 1.1183 1.1606 1.2179
```

The fourth node represents the third observation time, tObs $=3$. This node contains a total of four states, one representing the branch going up (1.0872), two representing the branches in the middle (1.1183 and 1.1606), and the other representing the branch going down (1.2179).

Isolating a Specific Node

The function treepath isolates a specific node by specifying the path to the node as a vector of branches taken to reach that node. As an example, consider the node reached by starting from the root node, taking the branch up, then the branch down, and finally another branch down. Given that the tree has only two branches per node, branches going up correspond to a 1 , and branches going down correspond to a 2 . The path up-down-down becomes the vector [$\left.\begin{array}{lll}1 & 2 & 2\end{array}\right]$.

FRates =
1.1000
1.0979
1.1377
1.1606
treepath returns the short rates for all the nodes touched by the path specified in the input argument, the first one corresponding to the root node, and the last one corresponding to the target node.

HW and BK Tree Structures

The HW and BK tree structures are similar to the BDT tree structure. You can see this if you examine the sample HW tree contained in the file deriv.mat.

```
load deriv.mat;
HWTree
HWTree =
    FinObj: 'HWFwdTree'
    VolSpec: [1x1 struct
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct
    tObs: [0 1.00 2.00 3.00]
```

```
    dObs: [731947.00 732313.00 732678.00 733043.00]
CFlowT: {[4x1 double] [3\times1 double] [2x1 double] [4.00]}
    Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2.00] [2.00 3.00 4.00] [2.00 2.00 3.00 4.00 4.00]}
FwdTree: {[1.03] [1.05 1.04 1.02] [1.08 1.07 1.05 1.03 1.01] [1.09 1.08 1.06 1.04 1.02]
```

All fields of this structure are similar to their BDT counterparts. There are two additional fields not present in BDT: Probs and Connect. The Probs field represents the occurrence probabilities at each branch of each node in the tree. The Connect field describes the connectivity of the nodes of a given tree level to nodes to the next tree level.

Probs Field

While BDT and one-factor HJM models have equal probabilities for each branch at a node, HW and BK do not. For HW and BK trees, the Probs field indicates the likelihood that a particular branch will be taken in moving from one node to another node on the next level.

The Probs field consists of a cell array with one cell per tree level. Each cell is a 3-by-NUMNODES array with the top row representing the probability of an up movement, the middle row representing the probability of a middle movement, and the last row the probability of a down movement.

As an illustration, consider the first two elements of the Probs field of the structure, corresponding to the first (root) and second levels of the tree.

```
HWTree.Probs{1}
```

0.1666666666667
0.6666666666667
0.1666666666667

HWTree. Probs \{2\}

| 0.12361333418768 | 0.1666666666667 | 0.21877591615172 |
| :--- | :--- | :--- |
| 0.65761074966060 | 0.6666666666667 | 0.65761074966060 |
| 0.21877591615172 | 0.1666666666667 | 0.12361333418768 |

Reading from top to bottom, the values in HWTree. Probs $\{1\}$ correspond to the up, middle, and down probabilities at the root node.

HWTree. Probs \{2 \} is a 3-by-3 matrix of values. The first column represents the top node, the second column represents the middle node, and the last column represents the bottom node. As with the root node, the first, second, and third rows hold the values for up, middle, and down branching off each node.

As expected, the sum of all the probabilities at any node equals 1 .
sum(HWTree.Probs\{2\})
$1.00001 .0000 \quad 1.0000$

Connect Field

The other field that distinguishes HW and BK tree structures from the BDT tree structure is Connect. This field describes how each node in a given level connects to the nodes of the next level. The need for this field arises from the possibility of nonstandard branching in a tree.

The Connect field of the HW tree structure consists of a cell array with 1 cell per tree level.

```
HWTree.Connect
```

ans $=$
[2] [1x3 double] [1x5 double]
Each cell contains a 1-by-NUMNODES vector. Each value in the vector relates to a node in the corresponding tree level and represents the index of the node in the next tree level that the middle branch of the node connects to.

If you subtract 1 from the values contained in Connect, you reveal the index of the nodes in the next level that the up branch connects to. If you add 1 to the values, you reveal the index of the corresponding down branch.

As an illustration, consider HWTree. Connect \{1\}:

```
HWTree.Connect{1}
```

ans $=$

2

This indicates that the middle branch of the root node connects to the second (from the top) node of the next level, as expected. If you subtract 1 from this value, you obtain 1, which tells you that the up branch goes to the top node. If you add 1 , you obtain 3 , which points to the last node of the second level of the tree.

Now consider level 3 in this example:

```
HWTree.Connect{3}
```

| 2 | 2 | 3 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- |

On this level, there is nonstandard branching. This can be easily recognized because the middle branch of two nodes is connected to the same node on the next level.

To visualize this, consider the following illustration of the tree.

Here it becomes apparent that there is nonstandard branching at the third level of the tree, on the top and bottom nodes. The first and second nodes connect to the same trio of nodes on the next level. Similar branching occurs at the bottom and next-to-bottom nodes of the tree.

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk|fixedbyhjm | fixedbyhw|fixedbyzero | floatbybdt|floatbybk | floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |

```
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption | intenvprice | intenvsens | intenvset \| mmktbybdt \| mmktbyhjm|oasbybdt | oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw | optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw | swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt | swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw
```


Related Examples

- "Overview of Interest-Rate Tree Models" on page 2-35
- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Graphical Representation of Trees" on page 2-142

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Pricing Using Interest-Rate Tree Models

In this section...
"Introduction" on page 2-84
"Computing Instrument Prices" on page 2-84

Introduction

For purposes of illustration, this section relies on the HJM and BDT models. The HW and BK functions that perform price and sensitivity computations are not explicitly shown here. Functions that use the HW and BK models operate similarly to the BDT model.

Computing Instrument Prices

The portfolio pricing functions hjmprice and bdtprice calculate the price of any set of supported instruments, based on an interest-rate tree. The functions are capable of pricing these instrument types:

- Bonds
- Bond options
- Bond with embedded options
- Arbitrary cash flows
- Fixed-rate notes
- Floating-rate notes
- Floating-rate notes with options or embedded options
- Caps
- Floors
- Range Notes
- Swaps
- Swaptions

For example, the syntax for calling hjmprice is:
[Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)

Similarly, the calling syntax for bdtprice is:

```
[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)
```

Each function requires two input arguments: the interest-rate tree and the set of instruments, InstSet. An optional argument, Options, further controls the pricing and the output displayed. (See Appendix B for information about the Options argument.)

HJMTree is the Heath-Jarrow-Morton tree sampling of a forward-rate process, created using hjmtree. BDTTree is the Black-Derman-Toy tree sampling of an interest-rate process, created using bdttree. See "Building a Tree of Forward Rates" on page 2-65 to learn how to create these structures.

InstSet is the set of instruments to be priced. This structure represents the set of instruments to be priced independently using the model.

Options is an options structure created with the function derivset. This structure defines how the tree is used to find the price of instruments in the portfolio, and how much additional information is displayed in the command window when calling the pricing function. If this input argument is not specified in the call to the pricing function, a default Options structure is used. The pricing options structure is described in "Pricing Options Structure" on page B-2.

The portfolio pricing functions classify the instruments and call the appropriate instrument-specific pricing function for each of the instrument types. The HJM instrument-specific pricing functions are bondbyhjm, cfbyhjm, fixedbyhjm, floatbyhjm, optbndbyhjm, rangefloatbyhjm, swapbyhjm, and swaptionbyhjm. A similarly named set of functions exists for BDT models. You can also use these functions directly to calculate the price of sets of instruments of the same type.

HJM Pricing Example

Consider the following example, which uses the portfolio and interest-rate data in the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

```
load deriv.mat
```

Use the MATLAB whos command to display a list of the variables loaded from the MATfile.

| BDTInstSet | 1×1 | 15956 | struct |
| :--- | :--- | ---: | :--- |
| BDTTree | 1×1 | 5138 | struct |
| BKInstSet | 1×1 | 15946 | struct |
| BKTree | 1×1 | 5904 | struct |
| CRRInstSet | 1×1 | 12434 | struct |
| CRRTree | 1×1 | 5058 | struct |
| EQPInstSet | 1×1 | 12434 | struct |
| EQPTree | 1×1 | 5058 | struct |
| HJMInstSet | 1×1 | 15948 | struct |
| HJMTree | 1×1 | 5838 | struct |
| HWInstSet | 1×1 | 15946 | struct |
| HWTree | 1×1 | 5904 | struct |
| ITTInstSet | 1×1 | 12438 | struct |
| ITTTree | 1×1 | 8862 | struct |
| ZeroInstSet | 1×1 | 10282 | struct |
| ZeroRateSpec | 1×1 | 1580 | struct |

HJMTree and HJMInstSet are the input arguments required to call the function hjmprice.

Use the function instdisp to examine the set of instruments contained in the variable HJMInstSet.

instdisp(HJMInstSet)

There are eight instruments in this portfolio set: two bonds, one bond option, one fixedrate note, one floating-rate note, one cap, one floor, and one swap. Each instrument has a
corresponding index that identifies the instrument prices in the price vector returned by hjmprice.

Now use hjmprice to calculate the price of each instrument in the instrument set.

```
Price = hjmprice(HJMTree, HJMInstSet)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =
    98.7159
    97.5280
        0.0486
    98.7159
    100.5529
        6.2831
        0.0486
        3.6923
```

Note The warning shown above appears because some of the cash flows for the second bond do not fall exactly on a tree node.

BDT Pricing Example

Load the MAT-file deriv.mat into the MATLAB workspace.
load deriv.mat
Use the MATLAB whos command to display a list of the variables loaded from the MATfile.

| whos | | | | |
| :--- | ---: | ---: | :--- | :--- |
| Name | Size | Bytes | Class | Attributes |
| | | | | |
| BDTInstSet | 1×1 | 15956 | struct | |
| BDTTree | 1×1 | 5138 | struct | |
| BKInstSet | 1×1 | 15946 | struct | |
| BKTree | 1×1 | 5904 | struct | |
| CRRInstSet | 1×1 | 12434 | struct | |
| CRRTree | 1×1 | 5058 | struct | |
| EQPInstSet | 1×1 | 5334 | struct | |
| EQPTree | 1×1 | 5058 | struct | |
| HJMInstSet | 1×1 | 5838 | struct | |
| HJMTree | 1×1 | 5838 | struct | |
| HWInstSet | 1×1 | 15946 | struct | |

| HWTree | 1×1 | 5904 | struct |
| :--- | :--- | ---: | :--- |
| ITTInstSet | 1×1 | 12438 | struct |
| ITTTree | 1×1 | 8862 | struct |
| ZeroInstSet | 1×1 | 10282 | struct |
| ZeroRateSpec | 1×1 | 1580 | struct |

BDTTree and BDTInstSet are the input arguments required to call the function bdtprice.

Use the function instdisp to examine the set of instruments contained in the variable BDTInstSet.
instdisp(BDTInstSet)

There are eight instruments in this portfolio set: two bonds, one bond option, one fixedrate note, one floating-rate note, one cap, one floor, and one swap. Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by bdtprice.

Now use bdtprice to calculate the price of each instrument in the instrument set.

```
Price = bdtprice(BDTTree, BDTInstSet)
```

```
Warning: Not all cash flows are aligned with the tree. Result will
```

be approximated.
Price =
95.5030
93.9079
1.7657
95.5030
100.4865
1.4863
0.0245
7.4222

Price Vector Output

The prices in the output vector Price correspond to the prices at observation time zero (tObs $=0$), which is defined as the valuation date of the interest-rate tree. The instrument indexing within Price is the same as the indexing within InstSet.

In the HJM example, the prices in the Price vector correspond to the instruments in this order.

```
InstNames = instget(HJMInstSet, 'FieldName','Name')
InstNames =
4% bond
4% bond
Option 101
4% Fixed
20BP Float
3% Cap
3% Floor
6%/20BP Swap
```

So, in the Price vector, the fourth element, 98.7159, represents the price of the fourth instrument (4% fixed-rate note); the sixth element, 6.2831 , represents the price of the sixth instrument (3% cap).

In the BDT example, the prices in the Price vector correspond to the instruments in this order.

```
InstNames = instget(BDTInstSet, 'FieldName','Name')
InstNames =
10% Bond
10% Bond
Option 95
10% Fixed
20BP Float
15% Cap
9% Floor
```

```
15%/10BP Swap
```

So, in the Price vector, the fourth element, 95.5030, represents the price of the fourth instrument (10% fixed-rate note); the sixth element, 1.4863 , represents the price of the sixth instrument (15% cap).

Price Tree Structure Output

If you call a pricing function with two output arguments, for example,

```
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet)
```

you generate a price tree along with the price information.
The optional output price tree structure PriceTree holds all the pricing information.

HJM Price Tree

In the HJM example, the first field of this structure, FinObj, indicates that this structure represents a price tree. The second field, PBush, is the tree holding the price of the instruments in each node of the tree. The third field, AIBush, is the tree holding the accrued interest of the instruments in each node of the tree. Finally, the fourth field, tObs, represents the observation time of each level of PBush and AIBush, with units in terms of compounding periods.

In this example, the price tree looks like

```
PriceTree =
FinObj: 'HJMPriceTree'
    PBush: {[8x1 double] [8x1x2 double] ...[8x8 double]}
AIBush: {[8x1 double] [8x1x2 double] ... [8x8 double]}
    tObs: [00 1 2 3 4 4}
```

Both PBush and AIBush are 1-by-5 cell arrays, consistent with the five observation times of tObs. The data display has been shortened here to fit on a single line.

Using the command-line interface, you can directly examine PriceTree.PBush, the field within the PriceTree structure that contains the price tree with the price vectors at every state. The first node represents tObs $=0$, corresponding to the valuation date.

```
PriceTree.PBush{1}
ans =
```

98.7159
97.5280
0.0486
98.7159
100.5529
6.2831
0.0486
3.6923

With this interface, you can observe the prices for all instruments in the portfolio at a specific time.

BDT Price Tree

The BDT output price tree structure PriceTree holds all the pricing information. The first field of this structure, FinObj, indicates that this structure represents a price tree. The second field, PTree, is the tree holding the price of the instruments in each node of the tree. The third field, AITree, is the tree holding the accrued interest of the instruments in each node of the tree. The fourth field, tObs, represents the observation time of each level of PTree and AITree, with units in terms of compounding periods.

You can directly examine the field within the PriceTree structure, which contains the price tree with the price vectors at every state. The first node represents tObs $=0$, corresponding to the valuation date.

```
[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet)
```

```
PriceTree.PTree{1}
```

```
ans =
```

95.5030
93.9079
1.7657
95.5030
100.4865
1.4863
0.0245
7.4222

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm

Abstract

| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm | fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat | instoptfloat | instrangefloat | instswap |instswaption | intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw | optembndbybdt \| optembndbybk | optembndbyhjm | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw | optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw | swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt | swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples

- "Overview of Interest-Rate Tree Models" on page 2-35
- "Computing Instrument Sensitivities" on page 2-93
- "Graphical Representation of Trees" on page 2-142
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Understanding the Interest-Rate Term Structure" on page 2-40
- "Pricing Using Interest-Rate Term Structure" on page 2-57

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Computing Instrument Sensitivities

Sensitivities can be reported either as dollar price changes or percentage price changes. The delta, gamma, and vega sensitivities that the toolbox computes are dollar sensitivities.

The functions hjmsens and bdtsens compute the delta, gamma, and vega sensitivities of instruments using an interest-rate tree. They also optionally return the calculated price for each instrument. The sensitivity functions require the same two input arguments used by the pricing functions (HJMTree and HJMInstSet for HJM; BDTTree and BDTInstSet for BDT).

Sensitivity functions calculate the dollar value of delta and gamma by shifting the observed forward yield curve by 100 basis points in each direction, and the dollar value of vega by shifting the volatility process by 1%. To obtain the per-dollar value of the sensitivities, divide the dollar sensitivity by the price of the corresponding instrument.

HJM Sensitivities Example

The calling syntax for the function is:

```
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet)
```

Use the previous example data to calculate the price of instruments.

```
load deriv.mat
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
```

Note The warning appears because some of the cash flows for the second bond do not fall exactly on a tree node.

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

```
All = [Delta, Gamma, Vega, Price]
```

All =

| -272.65 | 1029.90 | 0.00 | 98.72 |
| ---: | ---: | ---: | ---: |
| -347.43 | 1622.69 | -0.04 | 97.53 |
| -8.08 | 643.40 | 34.07 | 0.05 |
| -272.65 | 1029.90 | 0.00 | 98.72 |
| -1.04 | 3.31 | 0 | 100.55 |
| 294.97 | 6852.56 | 93.69 | 6.28 |
| -47.16 | 8459.99 | 93.69 | 0.05 |
| -282.05 | 1059.68 | 0.00 | 3.69 |

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument in HJMInstSet. To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument price.

BDT Sensitivities Example

The calling syntax for the function is:
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet);
Arrange the sensitivities and prices into a single matrix.

```
All = [Delta, Gamma, Vega, Price]
All =
\begin{tabular}{rrrr}
-232.67 & 803.71 & -0.00 & 95.50 \\
-281.05 & 1181.93 & -0.01 & 93.91 \\
-50.54 & 246.02 & 5.31 & 1.77 \\
-232.67 & 803.71 & 0 & 95.50 \\
0.84 & 2.45 & 0 & 100.49 \\
78.38 & 748.98 & 13.54 & 1.49 \\
-4.36 & 382.06 & 2.50 & 0.02 \\
-253.23 & 863.81 & 0 & 7.42
\end{tabular}
```

To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument price.

```
All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
All =
\begin{tabular}{rrrr}
-2.44 & 8.42 & -0.00 & 95.50 \\
-2.99 & 12.59 & -0.00 & 93.91 \\
-28.63 & 139.34 & 3.01 & 1.77 \\
-2.44 & 8.42 & 0 & 95.50 \\
0.01 & 0.02 & 0 & 100.49 \\
52.73 & 503.92 & 9.11 & 1.49 \\
-177.89 & 15577.42 & 101.87 & 0.02 \\
-34.12 & 116.38 & 0 & 7.42
\end{tabular}
```


Abstract

See Also bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm | fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat | instoptfloat | instrangefloat \| instswap | instswaption | intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw | optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw | swapbybdt | swapbybk | swapbyhjm | swapbyhw \| swapbyzero | swaptionbybdt | swaptionbybk | swaptionbyblk| swaptionbyhjm | swaptionbyhw

Related Examples

- "Overview of Interest-Rate Tree Models" on page 2-35
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Graphical Representation of Trees" on page 2-142
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Understanding the Interest-Rate Term Structure" on page 2-40
- "Pricing Using Interest-Rate Term Structure" on page 2-57

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Calibrating Hull-White Model Using Market Data

The pricing of interest-rate derivative securities relies on models that describe the underlying process. These interest rate models depend on one or more parameters that you must determine by matching the model predictions to the existing data available in the market. In the Hull-White model, there are two parameters related to the short rate process: mean reversion and volatility. Calibration is used to determine these parameters, such that the model can reproduce, as close as possible, the prices of caps or floors observed in the market. The calibration routines find the parameters that minimize the difference between the model price predictions and the market prices for caps and floors.

For a Hull-White model, the minimization is two dimensional, with respect to mean reversion (α) and volatility (σ). That is, calibrating the Hull-White model minimizes the difference between the model's predicted prices and the observed market prices of the corresponding caplets or floorlets.

Hull-White Model Calibration Example

Use market data to identify the implied volatility (σ) and mean reversion (α) coefficients needed to build a Hull-White tree to price an instrument. The ideal case is to use the volatilities of the caps or floors used to calculate Alpha (a) and Sigma (σ). This will most likely not be the case, so market data must be interpolated to obtain the required values.

Consider a cap with these parameters:

```
Settle = ' Jan-21-2008';
Maturity = 'Mar-21-2011';
Strike = 0.0690;
Reset = 4;
Principal = 1000;
Basis = 0;
```

The caplets for this example would fall in:

```
capletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(capletDates')
ans =
21-Mar-2008
```

21-Jun-2008
21-Sep-2008
21-Dec-2008
21-Mar-2009
21-Jun-2009
21-Sep-2009
21-Dec-2009
21-Mar-2010
21-Jun-2010
21-Sep-2010
21-Dec-2010
21-Mar-2011
In the best case, look up the market volatilities for caplets with a Strike $=0.0690$, and maturities in each reset date listed, but the likelihood of finding these exact instruments is low. As a consequence, use data that is available in the market and interpolate to find appropriate values for the caplets.

Based on the market data, you have the cap information for different dates and strikes. Assume that instead of having the data for Strike $=0.0690$, you have the data for Strike1 $=0.0590$ and Strike2 $=0.0790$.

| Maturity | Strike $\mathbf{1}=\mathbf{0 . 0 5 9 0}$ | Strike2 $=\mathbf{0 . 0 7 9 0}$ |
| :--- | :--- | :--- |
| 21-Mar-2008 | 0.1533 | 0.1526 |
| 21-Jun-2008 | 0.1731 | 0.1730 |
| 21-Sep-2008 | 0.1727 | 0.1726 |
| 21-Dec-2008 | 0.1752 | 0.1747 |
| 21-Mar-2009 | 0.1809 | 0.1808 |
| 21-Jun-2009 | 0.1809 | 0.1792 |
| 21-Sep-2009 | 0.1805 | 0.1797 |
| 21-Dec-2009 | 0.1802 | 0.1794 |
| 21-Mar-2010 | 0.1802 | 0.1733 |
| 21-Jun-2010 | 0.1757 | 0.1751 |
| 21-Sep-2010 | 0.1755 | 0.1750 |
| 21-Dec-2010 | 0.1755 | 0.1745 |
| 21-Mar-2011 | 0.1726 | 0.1719 |

The nature of this data lends itself to matrix nomenclature, which is perfect for MATLAB. hwcalbycap requires that the dates, the strikes, and the actual volatility be separated into three variables: MarketStrike, MarketMat, and MarketVol.

```
MarketStrike = [0.0590; 0.0790];
MarketMat = {'21-Mar-2008';
'21-Jun-2008';
21-Sep-2008';
'21-Dec-2008';
21-Mar-2009'
'21-Jun-2009';
'21-Sep-2009 ';
21-Dec-2009
21-Mar-2010'.
'21-Jun-2010';
'21-Sep-2010';
21-Dec-2010';
21-Mar-2011'};
```

```
MarketVol = [lllllllllllllllll
```

MarketVol = [lllllllllllllllll
0.1755 0.1755 0.1726; % First row in table corresponding to Strike1
0.1755 0.1755 0.1726; % First row in table corresponding to Strike1
0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794 0.1733 0.1751
0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794 0.1733 0.1751
0.1750 0.1745 0.1719]; % Second row in table corresponding to Strike2

```
    0.1750 0.1745 0.1719]; % Second row in table corresponding to Strike2
```

Complete the input arguments using this data for RateSpec:

```
Rates= [0.0627;
0.0657;
0.0691;
0.0717;
0.0739;
0.0755;
0.0765;
0.0772;
0.0779;
0.0783;
0.0786;
0.0789;
0.0792;
0.0793];
ValuationDate = '21-Jan-2008';
EndDates = {'21-Mar-2008';'21-Jun-2008';'21-Sep-2008';'21-Dec-2008'; ...
    '21-Mar-2009';'21-Jun-2009';'21-Sep-2009';'21-Dec-2009'; .....
    '21-Mar-2010';'21-Jun-2010';'21-Sep-2010';'21-Dec-2010'; .....
    '21-Mar-2011';'21-Jun-2011'};
Compounding = 4;
Basis = 0;
RateSpec = intenvset('ValuationDate', ValuationDate, ...
    StartDates', ValuationDate, 'EndDates', EndDates, ...
    'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)
RateSpec =
```

```
            FinObj: 'RateSpec'
    Compounding: 4
            Disc: [14x1 double]
            Rates: [14\times1 double]
        EndTimes: [14\times1 double]
    StartTimes: [14x1 double]
    EndDates: [14\times1 double]
    StartDates: 733428
ValuationDate: 733428
            Basis: 0
EndMonthRule: 1
```


Call the calibration routine to find values for volatility parameters Alpha and Sigma

Use hwcalbycap to calculate the values of Alpha and Sigma based on market data. Internally, hwcalbycap calls the Optimization Toolbox function lsqnonlin. You can customize lsqnonlin by passing an optimization options structure created by optimoptions and then this can be passed to hwcalbycap using the name-value pair argument for OptimOptions. For example, optimoptions defines the target objective function tolerance as 100*eps and then calls hwcalbycap:

```
o=optimoptions('lsqnonlin','TolFun', 100*eps);
[Alpha, Sigma] = hwcalbycap(RateSpec, MarketStrike, MarketMat, MarketVol,...
Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal, 'Basis',...
Basis, 'OptimOptions', o)
Local minimum possible.
lsqnonlin stopped because the size of the current step is less than
the default value of the step size tolerance.
Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag = 2.
> In hwcalbycapfloor at 93
    In hwcalbycap at }7
Alpha =
    1.0000e-06
Sigma =
    0.0127
```

The previous warning indicates that the conversion was not optimal. The search algorithm used by the Optimization Toolbox ${ }^{\mathrm{TM}}$ function lsqnonlin did not find a solution that conforms to all the constraints. To discern whether the solution is acceptable, look at the results of the optimization by specifying a third output (OptimOut) for hwcalbycap:

```
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', o);
```

The OptimOut.residual field of the OptimOut structure is the optimization residual. This value contains the difference between the Black caplets and those calculated during the optimization. You can use the OptimOut. residual value to calculate the percentual difference (error) compared to Black caplet prices and then decide whether the residual is acceptable. There is almost always some residual, so decide if it is acceptable to parameterize the market with a single value of Alpha and Sigma.

Price caplets using market data and Black's formula to obtain reference caplet values

To determine the effectiveness of the optimization, calculate reference caplet values using Black's formula and the market data. Note, you must first interpolate the market data to obtain the caplets for calculation:

```
MarketMatNum = datenum(MarketMat);
[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);
FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, 'spline');
```

Compute the price of the cap using the Black model:

```
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal);
Caplets = Caplets(2:end)';
Caplets =
0.3210
1.6355
2.4863
3.1903
3.4110
3.2685
3.2385
3.4803
3.2419
3.1949
3.2991
3.3750
```


Compare optimized values and Black values and display graphically

After calculating the reference values for the caplets, compare the values, analytically and graphically, to determine whether the calculated single values of Alpha and Sigma provide an adequate approximation:

```
OptimCaplets = Caplets+OptimOut.residual;
disp(' ');
disp(' Black76 Calibrated Caplets');
disp([Caplets OptimCaplets])
plot(MarketMatNum(2:end), Caplets, 'or', MarketMatNum(2:end), OptimCaplets, '*b')
datetick('x', 2)
xlabel('Caplet Maturity');
ylabel('Caplet Price');
title('Black and Calibrated Caplets');
h = legend('Black Caplets', 'Calibrated Caplets');
set(h, 'color', [0.9 0.9 0.9]);
set(h, 'Location', 'SouthEast');
set(gcf, 'NumberTitle', 'off')
grid on
Black76 Calibrated Caplets
    0.3210 0.3636
    1.6355 1.6603
    2.4863 2.4974
    3.1903 3.1874
    3.4110 3.4040
    3.2685 3.2639
    3.2385 3.2364
    3.4803 3.4683
    3.2419 3.2408
    3.1949 3.1957
    3.2991 3.2960
    3.3750 3.3663
```


Compare cap prices using the Black, HW analytical, and HW tree models

Using the calculated caplet values, compare the prices of the corresponding cap using the Black model, Hull-White analytical, and Hull-White tree models. To calculate a HullWhite tree based on Alpha and Sigma, use these calibration routines:

- Black model:

CapPriceBLK = CapPrice;

- HW analytical model:

CapPriceHWAnalytical $=$ sum(OptimCaplets);

- HW tree model to price the cap derived from the calibration process:

1 Create VolSpec from the calibration parameters Alpha and Sigma:

```
VolDates = EndDates;
VolCurve = Sigma*ones(14,1);
AlphaDates = EndDates;
AlphaCurve = Alpha*ones(14,1);
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,AlphaDates, AlphaCurve);
```

2 Create the TimeSpec:

```
HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);
```

3 Build the HW tree using the HW2000 method:

```
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec, 'Method', 'HW2OOO');
```

4 Price the cap:

```
Price = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal);
disp(' ')
disp([' CapPrice Black76 ...................: ', num2str(CapPriceBLK,'%15.5f')]);
disp([' CapPrice HW analytical..........: ', num2str(CapPriceHWAnalytical,'%15.5f')]);
disp([' CapPrice HW from capbyhw ..: ', num2str(Price,'%15.5f')]);
disp(' ');
CapPrice Black76 ..........: 34.14220
CapPrice HW analytical.....: 34.18008
CapPrice HW from capbyhw ..: 34.14192
```


Price a portfolio of instruments using the calibrated HW tree

After building a Hull-White tree, based on parameters calibrated from market data, use HWTree to price a portfolio of these instruments:

- Two bonds

```
CouponRate = [0.07; 0.09];
Settle= ' Jan-21-2008';
Maturity = {'Mar-21-2010';'Mar-21-2011'};
Period = 1;
Face = 1000;
Basis = 0;
```

- Bond with an embedded American call option

```
CouponRateOEB = 0.08;
SettleOEB = ' Jan-21-2008';
MaturityOEB = 'Mar-21-2011';
OptSpec = 'call';
StrikeOEB = 950;
ExerciseDatesOEB = 'Mar-21-2011';
AmericanOpt= 1;
Period =1;
Face = 1000;
Basis =0;
```

To price this portfolio of instruments using the calibrated HWTree:

1 Use instadd to create the portfolio InstSet:

```
InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period, Basis, [], [], [], [], [], Face);
InstSet = instadd(InstSet,'OptEmBond', CouponRateOEB, SettleOEB, MaturityOEB, OptSpec,...
StrikeOEB, ExerciseDatesOEB, 'American0pt', AmericanOpt, 'Period', Period,...
'Face',Face, 'Basis', Basis);
```

2 Add the cap instrument used in the calibration:

```
SettleCap = ' Jan-21-2008';
MaturityCap = 'Mar-21-2011';
StrikeCap = 0.0690;
Reset = 4;
Principal = 1000;
InstSet = instadd(InstSet,'Cap', StrikeCap, SettleCap, MaturityCap, Reset, Basis, Principal);
```

3 Assign names to the portfolio instruments:

```
Names = {'7% Bond'; '8% Bond'; 'BondEmbCall'; '6.9% Cap'};
InstSet = instsetfield(InstSet, 'Index',1:4, 'FieldName', {'Name'}, 'Data', Names );
```

4 Examine the set of instruments contained in InstSet:

```
instdisp(InstSet)
```

IdxType CoupRate Settle Mature Period Basis EOMRule IssueDate 1stCoupDate LastCoupDate StartDate Face Name

| 1 | Bond 0.07 | $21-J a n-2008$ | $21-M a r-2010$ | 1 | 0 | $N a N$ | NaN | NaN | NaN | NaN | 1000 | 7% Bond | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | Bond | 0.09 | $21-J a n-2008$ | $21-M a r-2011$ | 1 | 0 | NaN | NaN | NaN | NaN | NaN | 1000 | 8% |
| | $21-J o n d$ | | | | | | | | | | | | |

IdxType CoupRate Settle Mature OptSpec Stke ExDate Per Basis EOMRule IssDate 1stCoupDate LstCoupDate StrtDate Face A 3 OptEmBond 0.08 21-Jan-2008 21-Mar-2011 call 950 21-Jan-2008 21 -Mar-2011 1

Index Type Strike Settle Maturity CapReset Basis Principal Name
4 Cap 0.069 21-Jan-2008 $\quad 21$-Mar-2011 $\quad 4 \quad 0 \quad 1000 \quad 6.9 \%$ Cap
5 Use hwprice to price the portfolio using the calibrated HWTree:
format bank
PricePortfolio = hwprice (HWTree, InstSet)
PricePortfolio =
980.45
1023.05
945.73
34.14

See Also
 bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm
 | bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm |
 capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm | fixedbyhw | fixedbyzero | floatbybdt|floatbybk | floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin |

floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat|instoptfloat|instrangefloat| instswap | instswaption | intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw | optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw | swapbybdt \| swapbybk \| swapbyhjm \| swapbyhw \| swapbyzero \| swaptionbybdt | swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples

- "Overview of Interest-Rate Tree Models" on page 2-35
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Graphical Representation of Trees" on page 2-142
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Understanding the Interest-Rate Term Structure" on page 2-40
- "Pricing Using Interest-Rate Term Structure" on page 2-57

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Interest-Rate Derivatives Using Closed-Form Solutions

Pricing Caps and Floors Using the Black Option Model

Caps and floors are contracts that allow the holder to be protected if interest rates rise or decrease. The Black model uses a forward price as an underlier in place of a spot price. The assumption is that the forward price at maturity of the option is log-normally distributed.

Closed-form solutions for pricing caps and floors using the Black model support the following tasks:

| Task | Function |
| :--- | :--- |
| Price the interest rate caps using the Black option
 pricing model. | capbyblk |
| Price the interest rate floors using the Black option
 pricing model. | floorbyblk |

See Also
 agencyoas | agencyprice | blackvolbyrebonato | blackvolbysabr | bndfutimprepo | bndfutprice | capbyblk | capbylg2f | convfactor | floorbyblk | floorbylg2f | hwcalbycap | hwcalbyfloor | optsensbysabr | swaptionbyblk| swaptionbylg2f | tfutbyprice | tfutbyyield | tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo

Related Examples

- "Calibrate the SABR Model" on page 2-21
- "Price a Swaption Using the SABR Model" on page 2-27
- "Computing the Agency OAS for Bonds" on page 6-3
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures" on page 7-15
- "Fitting the Diebold Li Model" on page 7-23
- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation" on page 2-126

More About

- "Managing Present Value with Bond Futures" on page 7-13
- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Price Swaptions with Interest-Rate Models Using Simulation

In this section...
"Introduction" on page 2-108
"Construct Zero Curve" on page 2-109
"Define Swaption Parameters" on page 2-111
"Compute the Black Model and the Swaption Volatility Matrix" on page 2-111
"Select Calibration Instruments" on page 2-112
"Compute Swaption Prices Using Black's Model" on page 2-112
"Define Simulation Parameters" on page 2-112
"Simulate Interest-Rate Paths Using the Hull-White One-Factor Model" on page 2-113
"Simulate Interest-Rate Paths Using the Linear Gaussian Two-Factor Model" on page 2-116
"Simulate Interest-Rate Paths Using the LIBOR Market Model" on page 2-119
"Compare Interest-Rate Modeling Results" on page 2-124
"References" on page 2-125

Introduction

This example shows how to price European swaptions using interest-rate models in Financial Instruments Toolbox. Specifically, a Hull-White one factor model, a Linear Gaussian two-factor model, and a LIBOR Market Model are calibrated to market data and then used to generate interest-rate paths using Monte Carlo simulation.

The following sections set up the data that is then used with examples for "Simulate Interest-Rate Paths Using the Hull-White One-Factor Model" on page 2-113, "Simulate Interest-Rate Paths Using the Linear Gaussian Two-Factor Model" on page 2-116, and "Simulate Interest-Rate Paths Using the LIBOR Market Model" on page 2-119:

- "Construct Zero Curve" on page 2-109
- "Define Swaption Parameters" on page 2-111
- "Compute the Black Model and the Swaption Volatility Matrix" on page 2-111
- "Select Calibration Instruments" on page 2-112
- "Compute Swaption Prices Using Black's Model" on page 2-112
- "Define Simulation Parameters" on page 2-112

Construct Zero Curve

This example shows how to use ZeroRates for a zero curve that is hard-coded. You can also create a zero curve by bootstrapping the zero curve from market data (for example, deposits, futures/forwards, and swaps)

The hard-coded data for the zero curve is defined as:

```
Settle = datenum('21-Jul-2008');
% Zero Curve
CurveDates = daysadd(Settle,360*([1 3 5 7 10 20]),1);
ZeroRates = [1.9 2.6 3.1 3.5 4 4.3]'/100;
plot(CurveDates,ZeroRates)
datetick
title(['Zero Curve for ' datestr(Settle)]);
```


Construct an IRCurve object.
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
Construct the RateSpec.
RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle)

RateSpec =
struct with fields:
FinObj: 'RateSpec'

```
    Compounding: 2
            Disc: [6\times1 double]
            Rates: [6\times1 double]
        EndTimes: [6\times1 double]
    StartTimes: [6\times1 double]
    EndDates: [6\times1 double]
    StartDates: 733610
ValuationDate: 733610
    Basis: 0
EndMonthRule: 1
```


Define Swaption Parameters

While Monte Carlo simulation is typically used to value more sophisticated derivatives (for example, Bermudan swaptions), in this example, the price of a European swaption is computed with an exercise date of five years and an underlying swap of five years.

```
InstrumentExerciseDate = datenum('21-Jul-2013');
InstrumentMaturity = datenum('21-Jul-2018');
InstrumentStrike = .045;
```


Compute the Black Model and the Swaption Volatility Matrix

Black's model is often used to price and quote European exercise interest-rate options, that is, caps, floors and swaptions. In the case of swaptions, Black's model is used to imply a volatility given the current observed market price. The following matrix shows the Black implied volatility for a range of swaption exercise dates (columns) and underlying swap maturities (rows).

```
SwaptionBlackVol = [22 21 19 17 15 13 12
```



```
    20}181816151412 1
```



```
    18}1616 14 13 12 11 10
    15
    13 13 12 11 11 10 9]/100;
ExerciseDates = [1:5 7 10];
Tenors = [1:5 7 10];
EurExDatesFull = repmat(daysadd(Settle,ExerciseDates* 360,1)', ...
    length(Tenors),1);
EurMatFull = reshape(daysadd(EurExDatesFull,...
    repmat(360*Tenors,1, length(ExerciseDates)),1), size(EurExDatesFull));
```


Select Calibration Instruments

Selecting the instruments to calibrate the model to is one of the tasks in calibration. For Bermudan swaptions, it is typical to calibrate to European swaptions that are coterminal with the Bermudan swaption to be priced. In this case, all swaptions having an underlying tenor that matures before the maturity of the swaption to be priced (21-Jul-2018) are used in the calibration.

```
% Find the swaptions that expire on or before the maturity date of the
% sample swaption
relidx = find(EurMatFull <= InstrumentMaturity);
```


Compute Swaption Prices Using Black's Model

This example shows how to compute swaption prices using Black's Model. The swaption prices are then used to compare the model's predicted values that are obtained from the calibration process.

To compute the swaption prices using Black's model:

```
SwaptionBlackPrices = zeros(size(SwaptionBlackVol));
SwaptionStrike = zeros(size(SwaptionBlackVol));
for iSwaption=1:length(ExerciseDates)
    for iTenor=1:length(Tenors)
        [~,SwaptionStrike(iTenor,iSwaption)] = swapbyzero(RateSpec,[NaN 0], Settle, EurMatFull(iTenor,iSwaption),...
                'StartDate',EurExDatesFull(iTenor,iSwaption),'LegReset',[1 1]);
            SwaptionBlackPrices(iTenor,iSwaption) = swaptionbyblk(RateSpec, 'call', SwaptionStrike(iTenor,iSwaption),Settle,
                EurExDatesFull(iTenor,iSwaption), EurMatFull(iTenor,iSwaption), SwaptionBlackVol(iTenor,iSwaption));
    end
end
```


Define Simulation Parameters

This example shows how to use the simTermStructs method with HullWhite1F, LinearGaussian2F, and LiborMarketModel objects.

To demonstrate using the simTermStructs method with HullWhite1F, LinearGaussian2F, and LiborMarketModel objects, use the following simulation parameters:

```
nPeriods = 5;
DeltaTime = 1;
nTrials = 1000;
Tenor = (1:10)';
```

```
SimDates = daysadd(Settle,360*DeltaTime*(0:nPeriods),1)
SimTimes = diff(yearfrac(SimDates(1),SimDates))
% For 1 year periods and an evenly spaced tenor, the exercise row will be
% the 5th row and the swaption maturity will be the 5th column
exRow = 5;
endCol = 5;
SimDates =
```

733610
733975
734340
734705
735071
735436

SimTimes =

1.0000
1.0000
1.0000
1.0027
1.0000

Simulate Interest-Rate Paths Using the Hull-White One-Factor Model

This example shows how to simulate interest-rate paths using the Hull-White one-factor model. Before beginning this example that uses a HullWhite1F model, make sure that you have set up the data as described in:

- "Construct Zero Curve" on page 2-109
- "Define Swaption Parameters" on page 2-111
- "Compute the Black Model and the Swaption Volatility Matrix" on page 2-111
- "Select Calibration Instruments" on page 2-112
- "Compute Swaption Prices Using Black's Model" on page 2-112
- "Define Simulation Parameters" on page 2-112

The Hull-White one-factor model describes the evolution of the short rate and is specified using the zero curve, alpha, and sigma parameters for the equation

$$
d r=[\theta(t)-a(t) r] d t+\sigma(t) d W
$$

where:
$d r$ is the change in the short-term interest rate over a small interval, $d t$.
r is the short-term interest rate.
$\Theta(t)$ is a function of time determining the average direction in which r moves, chosen such that movements in r are consistent with today's zero coupon yield curve.
a is the mean reversion rate.
$d t$ is a small change in time.
σ is the annual standard deviation of the short rate.
W is the Brownian motion.
The Hull-White model is calibrated using the function swaptionbyhw, which constructs a trinomial tree to price the swaptions. Calibration consists of minimizing the difference between the observed market prices (computed above using the Black's implied swaption volatility matrix, see "Compute the Black Model and the Swaption Volatility Matrix" on page 2-111) and the model's predicted prices.

In this example, the Optimization Toolbox function lsqnonlin is used to find the parameter set that minimizes the difference between the observed and predicted values. However, other approaches (for example, simulated annealing) may be appropriate. Starting parameters and constraints for α and σ are set in the variables $\mathrm{x} 0, \mathrm{lb}$, and ub ; these could also be varied depending upon the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and predicted values using swaptionbyhw and lsqnonlin.

```
TimeSpec = hwtimespec(Settle,daysadd(Settle,360*(1:11),1), 2);
HW1Fobjfun = @(x) SwaptionBlackPrices(relidx) - ...
    swaptionbyhw(hwtree(hwvolspec(Settle,'11-Aug-2015',x(2),'11-Aug-2015',x(1)), RateSpec, TimeSpec), 'call', SwaptionStr
    EurExDatesFull(relidx), 0, EurExDatesFull(relidx), EurMatFull(relidx));
options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);
% Find the parameters that minimize the difference between the observed and
% predicted prices
x0 = [.1 .01];
lb = [lll}00
ub = [11 1];
HW1Fparams = lsqnonlin(HW1Fobjfun,x0,lb,ub,options);
HW_alpha = HW1Fparams(1)
HW_sigma = HW1Fparams(2)
```

| Iteration | Func-count | $f(x)$ | step | optimality |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 3 | 0.953772 | | 20.5 |
| 1 | 6 | 0.142828 | 0.0169199 | 1.53 |
| 2 | 9 | 0.123022 | 0.0146705 | 2.31 |
| 3 | 12 | 0.122222 | 0.0154098 | 0.482 |
| 4 | 15 | 0.122217 | 0.00131297 | 0.00409 |

Local minimum possible.
lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the selected value of the function tolerance.
HW_alpha =
0.0967

HW_sigma =
0.0088

Construct the HullWhite1F model using the HullWhite1F constructor.

```
HW1F = HullWhite1F(RateSpec,HW_alpha,HW_sigma)
HW1F =
    HullWhite1F with properties:
    ZeroCurve: [1x1 IRDataCurve]
    Alpha: @(t,V)inAlpha
    Sigma: @(t,V)inSigma
```

Use Monte Carlo simulation to generate the interest-rate paths with HullWhite1F.simTermStructs.

```
HW1FSimPaths = HW1F.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);
trialIdx = 1;
figure
surf(Tenor,SimDates,HW1FSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of Hull White Model'])
xlabel('Tenor (Years)')
```


Price the European swaption.

```
DF = exp(bsxfun(@times,-HW1FSimPaths,repmat(Tenor',[nPeriods+1 1])));
SwapRate = (1 - DF(exRow,endCol,:))./sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
PayoffValue = 100*max(SwapRate-InstrumentStrike,0).*sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
RealizedDF = prod(exp(bsxfun(@times,-HW1FSimPaths(1:exRow,1,:),SimTimes(1:exRow))),1);
HW1F_SwaptionPrice = mean(RealizedDF.*PayoffValue)
HW1F_SwaptionPrice =
```

 2.1839

Simulate Interest-Rate Paths Using the Linear Gaussian Two-Factor Model

This example shows how to simulate interest-rate paths using the Linear Gaussian twofactor model. Before beginning this example that uses a LinearGaussian2F model, make sure that you have set up the data as described in:

- "Construct Zero Curve" on page 2-109
- "Define Swaption Parameters" on page 2-111
- "Compute the Black Model and the Swaption Volatility Matrix" on page 2-111
- "Select Calibration Instruments" on page 2-112
- "Compute Swaption Prices Using Black's Model" on page 2-112
- "Define Simulation Parameters" on page 2-112

The Linear Gaussian two-factor model (called the G2++ by Brigo and Mercurio, see "Interest-Rate Modeling Using Monte Carlo Simulation" on page C-12) is also a short rate model, but involves two factors. Specifically:

$$
\begin{aligned}
& r(t)=x(t)+y(t)+\phi(t) \\
& d x(t)=-a(t) x(t) d t+\sigma(t) d W_{1}(t), x(0)=0 \\
& d y(t)=-b(t) y(t) d t+\eta(t) d W_{2}(t), y(0)=0
\end{aligned}
$$

where $d W_{1}(t) d W_{2}(t)=\rho d t$ is a two-dimensional Brownian motion with correlation ρ, and ϕ is a function chosen to match the initial zero curve.

The function swaptionbylg2f is used to compute analytic values of the swaption price for model parameters, and consequently can be used to calibrate the model. Calibration consists of minimizing the difference between the observed market prices (computed above using the Black's implied swaption volatility matrix, see "Compute the Black Model and the Swaption Volatility Matrix" on page 2-111) and the model's predicted prices.

In this example, the approach is similar to "Simulate Interest-Rate Paths Using the Hull-White One-Factor Model" on page 2-113 and the Optimization Toolbox function lsqnonlin is used to minimize the difference between the observed swaption prices and the predicted swaption prices. However, other approaches (for example, simulated annealing) may also be appropriate. Starting parameters and constraints for a, b, η, ρ, and σ are set in the variables xO, lb, and ub; these could also be varied depending upon the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and predicted values using swaptionbylg2f and lsqnonlin.

G2PPobjfun $=a(x)$ SwaptionBlackPrices(relidx) - swaptionbylg2f(irdc, $x(1), x(2), x(3), x(4), x(5)$, SwaptionStrike(relidx), \ldots

lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the selected value of the function tolerance.

LG2Fparams =
0.5752
0.1181
0.0146
0.0119
0.7895

Create the G2PP object and use Monte Carlo simulation to generate the interest-rate paths with LinearGaussian2F.simTermStructs.

```
LG2f_a = LG2Fparams(1);
LG2f-b = LG2Fparams(2);
LG2f_sigma = LG2Fparams(3);
LG2f eta = LG2Fparams(4);
LG2f_rho = LG2Fparams(5);
G2PP = LinearGaussian2F(RateSpec,LG2f a,LG2f b,LG2f sigma,LG2f eta,LG2f rho);
G2PPSimPaths = G2PP.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime, 'Tenor',Tenor, 'antithetic',true);
trialIdx = 1;
figure
surf(Tenor,SimDates,G2PPSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of G2++ Model'])
xlabel('Tenor (Years)')
```


Price the European swaption.
DF $=\exp \left(b s x f u n\left(\right.\right.$ atimes, $-G 2 P P S i m P a t h s, r e p m a t\left(\right.$ Tenor $\left.\left.\left.^{\prime},[n P e r i o d s+11]\right)\right)\right)$;
SwapRate $=(1-\operatorname{DF}($ exRow, endCol, :)) ./sum (bsxfun (@times, 1, DF (exRow, 1 : endCol, :)));
PayoffValue $=100 * \max ($ SwapRate-InstrumentStrike, 0).*sum (bsxfun(@times, 1, DF (exRow, 1:endCol, :))) ;
RealizedDF $=\operatorname{prod}(\exp (b s x f u n(@ t i m e s,-G 2 P P S i m P a t h s(1: \operatorname{exRow}, 1,:)$, SimTimes (1:exRow))),1);
G2PP_SwaptionPrice $=$ mean(RealizedDF. *PayoffValue)
G2PP_SwaptionPrice =
2.0988

Simulate Interest-Rate Paths Using the LIBOR Market Model

This example shows how to simulate interest-rate paths using the LIBOR market model. Before beginning this example that uses a LiborMarketModel, make sure that you have set up the data as described in:

- "Construct Zero Curve" on page 2-109
- "Define Swaption Parameters" on page 2-111
- "Compute the Black Model and the Swaption Volatility Matrix" on page 2-111
- "Select Calibration Instruments" on page 2-112
- "Compute Swaption Prices Using Black's Model" on page 2-112
- "Define Simulation Parameters" on page 2-112

The LIBOR Market Model (LMM) differs from short rate models in that it evolves a set of discrete forward rates. Specifically, the lognormal LMM specifies the following diffusion equation for each forward rate

$$
\frac{d F_{i}(t)}{F_{i}}=-\mu_{i} d t+\sigma_{i}(t) d W_{i}
$$

where:
W is an N -dimensional geometric Brownian motion with

$$
d W_{i}(t) d W_{j}(t)=\rho_{i j}
$$

The LMM relates the drifts of the forward rates based on no-arbitrage arguments. Specifically, under the Spot LIBOR measure, the drifts are expressed as

$$
\mu_{i}(t)=-\sigma_{i}(t) \sum_{j=q(t)}^{i} \frac{\tau_{j} \rho_{i, j} \sigma_{j}(t) F_{j}(t)}{1+\tau_{j} F_{j}(t)}
$$

where:
τ_{i} is the time fraction associated with the i th forward rate
$q(t)$ is an index defined by the relation

$$
T_{q(t)-1}<t<T_{q(t)}
$$

and the Spot LIBOR numeraire is defined as

$$
B(t)=P\left(t, T_{q(t)}\right) \prod_{n=0}^{q(t)-1}\left(1+\tau_{n} F_{n}\left(T_{n}\right)\right)
$$

The choice with the LMM is how to model volatility and correlation and how to estimate the parameters of these models for volatility and correlation. In practice, you may use a
combination of historical data (for example, observed correlation between forward rates) and current market data. For this example, only swaption data is used. Further, many different parameterizations of the volatility and correlation exist. For this example, two relatively straightforward parameterizations are used.

One of the most popular functional forms in the literature for volatility is:

$$
\sigma_{i}(t)=\varphi_{i}\left(a\left(T_{i}-t\right)+b\right) e^{c\left(T_{i}-t\right)}+d
$$

where ϕ adjusts the curve to match the volatility for the i th forward rate. For this example, all of the ϕ 's are taken to be 1 . For the correlation, the following functional form is used:

$$
\rho_{i, j}=e^{-\beta|i-j|}
$$

Once the functional forms have been specified, these parameters must be estimated using market data. One useful approximation, initially developed by Rebonato, is the following, which relates the Black volatility for a European swaption, given a set of volatility functions and a correlation matrix

$$
\left(v_{\alpha, \beta}^{L F M}\right)^{2}=\sum_{i, j=\alpha+1}^{\beta} \frac{w_{i}(0) w_{j}(0) F_{i}(0) F_{j}(0) \rho_{i, j}}{S_{\alpha, \beta}(0)^{2}} \int_{0}^{T_{\alpha}} \sigma_{i}(t) \sigma_{j}(t) d t
$$

where:

$$
w_{i}(t)=\frac{\tau_{i} P\left(t, T_{i}\right)}{\sum_{k=\alpha+1}^{\beta} \tau_{\kappa} P\left(t, t_{\kappa}\right)}
$$

This calculation is done using the function blackvolbyrebonato to compute analytic values of the swaption price for model parameters, and consequently, is then used to calibrate the model. Calibration consists of minimizing the difference between the observed implied swaption Black volatilities and the predicted Black volatilities.

In this example, the approach is similar to "Simulate Interest-Rate Paths Using the HullWhite One-Factor Model" on page 2-113 and "Simulate Interest-Rate Paths Using the Linear Gaussian Two-Factor Model" on page 2-116 where the Optimization Toolbox function lsqnonlin is used to minimize the difference between the observed swaption
prices and the predicted swaption prices. However, other approaches (for example, simulated annealing) may also be appropriate. Starting parameters and constraints for a, b, d, and β are set in the variables $\mathbf{x 0}, \mathrm{lb}$, and ub; these could also be varied depending upon the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and predicted values using blackvolbyrebonato and lsqnonlin.

```
nRates = 10;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
objfun = @(x) SwaptionBlackVol(relidx) - blackvolbyrebonato(RateSpec,...
    repmat({@(t) ones(size(t)).*(x(1)*t + x(2)).*exp(-x(3)*t) + x(4)},nRates-1,1),...
    CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),x(5)),...
    EurExDatesFull(relidx), EurMatFull(relidx),'Period',1);
options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);
x0 = [.2 . 05 1 .05 .2];
lb = [lllllll}000.5 0 .01]
ub = [llllll}
LMMparams = lsqnonlin(objfun, x0,lb,ub,options)
\begin{tabular}{ccccc} 
Iteration & Func-count & \begin{tabular}{c}
\(f(x)\)
\end{tabular} & \begin{tabular}{c} 
Norm of \\
step
\end{tabular} & \begin{tabular}{c} 
First-order \\
optimality
\end{tabular} \\
0 & 6 & 0.156251 & & 0.483 \\
1 & 12 & 0.00870177 & 0.188164 & 0.0339 \\
2 & 18 & 0.00463441 & 0.165527 & 0.00095 \\
3 & 24 & 0.00331055 & 0.351017 & 0.0154 \\
4 & 30 & 0.00294775 & 0.0892617 & \(7.47 \mathrm{e}-05\) \\
5 & 36 & 0.00281565 & 0.385779 & 0.00917 \\
6 & 42 & 0.00278988 & 0.0145632 & \(4.15 \mathrm{e}-05\) \\
7 & 48 & 0.00278522 & 0.115042 & 0.00116
\end{tabular}
```

lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the selected value of the function tolerance.

LMMparams =

| 0.0781 | 0.1656 | 0.5121 | 0.0617 | 0.0100 |
| :--- | :--- | :--- | :--- | :--- |

Calculate VolFunc for the LMM object.

```
a = LMMparams(1);
b = LMMparams(2);
c = LMMparams(3);
d = LMMparams(4);
Beta = LMMparams(5);
VolFunc = repmat({@(t) ones(size(t)).*(a*t + b).*exp(-c*t) + d},nRates-1,1);
```

Plot the volatility function.
figure

```
fplot(VolFunc{1},[0 20])
title('Volatility Function')
CorrelationMatrix = CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),Beta);
```


Inspect the correlation matrix.

```
disp('Correlation Matrix')
fprintf([repmat('%1.3f ',1,length(CorrelationMatrix)) ' \n'],CorrelationMatrix)
Correlation Matrix
1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932 0.923
0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932
0.980 0.990 1.000 0.990 0.980}00.970 0.961 0.951 0.942
0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951
0.961 0.970 0.980}0.9.990 1.000 0.990 0.980 0.970 0.961
0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980}00.9.97
0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980
0.932 0.942 0.951 0.961 0.970 0.980}00.9.990 1.000 0.990
0.923 0.932 0.942 0.951 0.961 0.970}00.980 0.990 1.000
```

Create the LMM object and use Monte Carlo simulation to generate the interest-rate paths with LiborMarketModel.simTermStructs.

```
LMM = LiborMarketModel(irdc,VolFunc,CorrelationMatrix,'Period',1);
[LMMZeroRates, ForwardRates] = LMM.simTermStructs(nPeriods,'nTrials',nTrials);
```

```
trialIdx = 1;
```

figure
tmpPlotData $=$ LMMZeroRates(:,:,trialIdx);
tmpPlotData(tmpPlotData $==0)=\mathrm{NaN}$;
surf(Tenor, SimDates, tmpPlotData)
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of LIBOR Market Model'])
xlabel('Tenor (Years)')

Price the European swaption.
DF $=\exp \left(b s x f u n\left(@ t i m e s,-L M M Z e r o R a t e s, r e p m a t\left(\right.\right.\right.$ Tenor $\left.\left.\left.^{\prime},[n P e r i o d s+11]\right)\right)\right)$;
SwapRate $=(1-\operatorname{DF}($ exRow,endCol, :))./sum(bsxfun(@times,1,DF(exRow,1:endCol, :)));
PayoffValue $=100 * \max (S w a p R a t e-I n s t r u m e n t S t r i k e, 0) . * s u m(b s x f u n(@ t i m e s, 1, D F(e x R o w, 1: e n d C o l,:))$);
RealizedDF $=\operatorname{prod}(\exp (b s x f u n(@ t i m e s,-\operatorname{LMMZeroRates}(2: \operatorname{exRow}+1,1,:), \operatorname{SimTimes}(1: \operatorname{exRow}))), 1)$;
LMM_SwaptionPrice = mean(RealizedDF.*PayoffValue)
LMM_SwaptionPrice =
1.9915

Compare Interest-Rate Modeling Results

This example shows how to compare the results for pricing a European swaption with different interest-rate models.

Compare the results for pricing a European swaption with interest-rate models using Monte Carlo simulation.

```
disp(' ')
fprintf(' # of Monte Carlo Trials: %8d\n' , nTrials)
fprintf(' # of Time Periods/Trial: %8d\n\n' , nPeriods)
fprintf('HW1F European Swaption Price: %8.4f\n', HW1F_SwaptionPrice)
fprintf('LG2F Europesn Swaption Price: %8.4f\n', G2PP_SwaptionPrice)
fprintf(' LMM European Swaption Price: %8.4f\n', LMM_S_waptionPrice)
    # of Monte Carlo Trials: 1000
        # of Time Periods/Trial: 5
HW1F European Swaption Price: 2.1839
LG2F Europesn Swaption Price: 2.0988
    LMM European Swaption Price: 1.9915
```


References

Brigo, D. and F. Mercurio, Interest Rate Models - Theory and Practice with Smile, Inflation and Credit, Springer Finance, 2006.

Andersen, L. and V. Piterbarg, Interest Rate Modeling, Atlantic Financial Press. 2010.
Hull, J, Options, Futures, and Other Derivatives, Springer Finance, 2003.
Glasserman, P, Monte Carlo Methods in Financial Engineering, Prentice Hall, 2008.
Rebonato, R., K. McKay, and R. White, The Sabr/Libor Market Model: Pricing, Calibration and Hedging for Complex Interest-Rate Derivatives, John Wiley \& Sons, 2010.

See Also

HullWhite1F | LinearGaussian2F | LiborMarketModel | HullWhite1F.simTermStructs | LinearGaussian2F.simTermStructs | LiborMarketModel.simTermStructs | blackvolbyrebonato | capbylg2f | floorbylg2f | lsqnonlin | swaptionbyhw | swaptionbylg2f

Related Examples

- "Pricing Bermudan Swaptions with Monte Carlo Simulation" on page 2-126

Pricing Bermudan Swaptions with Monte Carlo Simulation

This example shows how to price Bermudan swaptions using interest-rate models in Financial Instruments Toolbox ${ }^{\text {TM }}$. Specifically, a Hull-White one factor model, a Linear Gaussian two-factor model, and a LIBOR Market Model are calibrated to market data and then used to generate interest-rate paths using Monte Carlo simulation.

Zero Curve

In this example, the ZeroRates for a zero curve is hard-coded. You can also create a zero curve by bootstrapping the zero curve from market data (for example, deposits, futures/ forwards, and swaps). The hard-coded data for the zero curve is defined as:

```
Settle = datenum('21-Jul-2008');
% Zero Curve
CurveDates = daysadd(Settle,360*([1 3 5 7 10 20]),1);
ZeroRates = [1.9 2.6 3.1 3.5 4 4.3]'/100;
plot(CurveDates,ZeroRates)
datetick
title(['Zero Curve for ' datestr(Settle)]);
RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle);
```


Define Swaption Parameters

For this example we will compute the price of a 10-no-call-1 Bermudan swaption.
BermudanExerciseDates = daysadd(Settle, 360*(1:9), 1);
BermudanMaturity = datenum('21-Jul-2018');
BermudanStrike = .045;

Black's Model and the Swaption Volatility Matrix

Black's model is often used to price and quote European exercise interest-rate options, that is, caps, floors and swaptions. In the case of swaptions, Black's model is used to imply a volatility given the current observed market price. The following matrix
shows the Black implied volatility for a range of swaption exercise dates（columns）and underlying swap maturities（rows）．

```
SwaptionBlackVol = [lllllll}22~19 17 15 13 12
    21}101917⿺夂卜16 15 13 11
    20}1018161615 14 12 11
    19}1917⿺151514 13 12 1
```



```
    15
    13 13 12 11 111 10 9]/100;
ExerciseDates = [1:5 7 10];
Tenors = [1:5 7 10];
EurExDatesFull = repmat(daysadd(Settle,ExerciseDates* 360,1)',...
    length(Tenors),1);
EurMatFull = reshape(daysadd(EurExDatesFull,...
    repmat(360*Tenors,1,length(ExerciseDates)),1),size(EurExDatesFull));
```


Selecting the Calibration Instruments

Selecting the instruments to calibrate the model to is one of the tasks in calibration． For Bermudan swaptions，it is typical to calibrate to European swaptions that are co－ terminal with the Bermudan swaption to be priced．In this case，all swaptions having an underlying tenor that matures before the maturity of the swaption to be priced are used in the calibration．

```
% Find the swaptions that expire on or before the maturity date of the
% sample swaption
relidx = find(EurMatFull <= BermudanMaturity);
```


Compute Swaption Prices Using Black＇s Model

Swaption prices are computed using Black＇s Model．The swaption prices are then used to compare the model＇s predicted values．To compute the swaption prices using Black＇s model：

```
% Compute Swaption Prices using Black's model
SwaptionBlackPrices = zeros(size(SwaptionBlackVol));
SwaptionStrike = zeros(size(SwaptionBlackVol));
for iSwaption=1:length(ExerciseDates)
    for iTenor=1:length(Tenors)
        [~,SwaptionStrike(iTenor,iSwaption)] = swapbyzero(RateSpec,[NaN 0], Settle, Eur
            'StartDate',EurExDatesFull(iTenor,iSwaption),'LegReset',[1 1]);
```

```
    SwaptionBlackPrices(iTenor,iSwaption) = swaptionbyblk(RateSpec, 'call', Swaptic
    EurExDatesFull(iTenor,iSwaption), EurMatFull(iTenor,iSwaption), SwaptionBla
    end
end
```


Simulation Parameters

The following parameters will be used; each exercise date is a simulation date.

```
nPeriods = 9;
DeltaTime = 1;
nTrials = 1000;
Tenor = (1:10)';
SimDates = daysadd(Settle,360*DeltaTime*(0:nPeriods),1);
SimTimes = diff(yearfrac(SimDates(1),SimDates));
```


Hull White 1 Factor Model

The Hull-White one-factor model describes the evolution of the short rate and is specified by the following:

$$
d r=[\theta(t)-\alpha r] d t+\sigma d W
$$

The Hull-White model is calibrated using the function SWAPTIONNYHW, which constructs a trinomial tree to price the swaptions. Calibration consists of minimizing the difference between the observed market prices (computed above using the Black's implied swaption volatility matrix) and the model's predicted prices.

In this example, the Optimization Toolbox ${ }^{\mathrm{TM}}$ function LSQNONLIN is used to find the parameter set that minimizes the difference between the observed and predicted values. However, other approaches (for example, simulated annealing) may be appropriate. Starting parameters and constraints for α and σ are set in the variables x0, lb and ub; these could also be varied depending upon the particular calibration approach.

```
TimeSpec = hwtimespec(Settle,daysadd(Settle,360*(1:11),1), 2);
HW1Fobjfun = @(x) SwaptionBlackPrices(relidx)
    swaptionbyhw(hwtree(hwvolspec(Settle,'11-Aug-2015',x(2),'11-Aug-2015',x(1)), RateSp
    EurExDatesFull(relidx), 0, EurExDatesFull(relidx), EurMatFull(relidx));
options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);
```

```
% Find the parameters that minimize the difference between the observed and
% predicted prices
x0 = [.1 .01];
lb = [0 0];
ub = [11 1];
HW1Fparams = lsqnonlin(HW1Fobjfun,x0,lb,ub,options);
HW_alpha = HW1Fparams(1);
HW_sigma = HW1Fparams(2);
% Construct the HullWhite1F model using the HullWhite1F constructor.
HW1F = HullWhite1F(RateSpec,HW_alpha,HW_sigma);
% Use Monte Carlo simulation to generate the interest-rate paths with
% HullWhite1F.simTermStructs.
HW1FSimPaths = HW1F.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);
% Examine one simulation
trialIdx = 1;
figure
surf(Tenor,SimDates,HW1FSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of Hull White Mode
xlabel('Tenor (Years)')
% Price the swaption using the helper function hBermudanSwaption
HW1FBermPrice = hBermudanSwaption(HW1FSimPaths,SimDates,Tenor,BermudanStrike,...
    BermudanExerciseDates,BermudanMaturity);
```

| | | | Norm of | First-order |
| :---: | :---: | :---: | :---: | :---: |
| Iteration | Func-count | $f(x)$ | 0.953772 | |
| optimality | | | | |

Local minimum possible.
lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the selected value of the function tolerance.

Evolution of the Zero Curve for Trial:1 of Hull White Model

Linear Gaussian 2 Factor Model

The Linear Gaussian two-factor model (called the G2++ by Brigo and Mercurio) is also a short rate model, but involves two factors. Specifically:

$$
\begin{aligned}
& r(t)=x(t)+y(t)+\varphi(t) \\
& d x(t)=-a x(t) d t+\sigma d W_{1}(t)
\end{aligned}
$$

$$
d y(t)=-b y(t) d t+\eta d W_{2}(t)
$$

where $d W_{1}(t) d W_{2}(t)$ is a two-dimensional Brownian motion with correlation ρ

$$
d W_{1}(t) d W_{2}(t)=\rho
$$

and φ is a function chosen to match the initial zero curve.
The function SWAPTIONBYLG2F is used to compute analytic values of the swaption price for model parameters and consequently can be used to calibrate the model. Calibration consists of minimizing the difference between the observed market prices and the model's predicted prices.

```
% Calibrate the set of parameters that minimize the difference between the
% observed and predicted values using SWAPTIONBYLG2F and LSQNONLIN.
G2PPobjfun = @(x) SwaptionBlackPrices(relidx)
    swaptionbylg2f(RateSpec,x(1),x(2),x(3),x(4),x(5),SwaptionStrike(relidx),...
    EurExDatesFull(relidx),EurMatFull(relidx),'Reset',1);
x0 = [. .2 .1 .02 .01 -.5];
lb = [llllll}00000-1]
ub = [[11 1 1 1 1 1 1}];
LG2Fparams = lsqnonlin(G2PPobjfun,x0,lb,ub,options);
LG2f_a = LG2Fparams(1);
LG2f_b = LG2Fparams(2);
LG2f_sigma = LG2Fparams(3);
LG2f_eta = LG2Fparams(4);
LG2f_rho = LG2Fparams(5);
% Create the G2PP object and use Monte Carlo simulation to generate the
% interest-rate paths with LinearGaussian2F.simTermStructs.
G2PP = LinearGaussian2F(RateSpec,LG2f_a,LG2f_b,LG2f_sigma,LG2f_eta,LG2f_rho);
G2PPSimPaths = G2PP.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);
% Examine one simulation
trialIdx = 1;
figure
surf(Tenor,SimDates,G2PPSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of G2++ Model'])
```

xlabel('Tenor (Years)')
\% Price the swaption using the helper function hBermudanSwaption
LG2FBermPrice $=$ hBermudanSwaption(G2PPSimPaths,SimDates, Tenor, BermudanStrike,BermudanE)

| Iteration | Func-count | $\mathrm{f}(\mathrm{x})$ | Norm of
 step | First-order
 optimality |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 6 | 12.1928 | | 67.1 |
| 1 | 12 | 1.36663 | 0.0974259 | 8.54 |
| 2 | 18 | 1.36663 | 0.112377 | 8.54 |
| 3 | 24 | 0.442322 | 0.0280943 | 1.3 |
| 4 | 30 | 0.236944 | 0.0561887 | 3.23 |
| 5 | 36 | 0.13078 | 0.0840413 | 7.66 |
| 6 | 42 | 0.0394584 | 0.0145003 | 6.79 |
| 7 | 48 | 0.0275889 | 0.0372417 | 0.755 |
| 8 | 54 | 0.0261953 | 0.112377 | 0.693 |
| 9 | 60 | 0.0234048 | 0.206007 | 0.142 |
| 10 | 66 | 0.0225717 | 0.14034 | 0.116 |
| 11 | 72 | 0.02254 | 0.0245656 | 1.45 |
| 12 | 78 | 0.0225305 | 0.0188008 | 1.36 |

Local minimum possible.
lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the selected value of the function tolerance.

LIBOR Market Model

The LIBOR Market Model (LMM) differs from short rate models in that it evolves a set of discrete forward rates. Specifically, the lognormal LMM specifies the following diffusion equation for each forward rate

$$
\frac{d F_{i}(t)}{F_{i}}=-\mu_{i} d t+\sigma_{i}(t) d W_{i}
$$

where
σ_{i} is the volatility function for each rate and $d W$ is an N dimensional geometric Brownian motion with:

$$
d W_{i}(t) d W_{j}(t)=\rho_{i j}
$$

The LMM relates the drifts of the forward rates based on no-arbitrage arguments.
The choice with the LMM is how to model volatility and correlation and how to estimate the parameters of these models for volatility and correlation. In practice, you may use a combination of historical data (for example, observed correlation between forward rates) and current market data. For this example, only swaption data is used. Further, many different parameterizations of the volatility and correlation exist. For this example, two relatively straightforward parameterizations are used.

One of the most popular functional forms in the literature for volatility is:

$$
\sigma_{i}(t)=\phi_{i}\left(a\left(T_{i}-t\right)+b\right) e^{c\left(T_{i}-t\right)}+d
$$

where ϕ adjusts the curve to match the volatility for the $i^{\text {th }}$ forward rate. For this example, all of the Phi's will be taken to be 1 .

For the correlation, the following functional form will be used:

$$
\rho_{i, j}=e^{-\beta|i-j|}
$$

Once the functional forms have been specified, these parameters need to be estimated using market data. One useful approximation, initially developed by Rebonato, is the following, which computes the Black volatility for a European swaption, given an LMM with a set of volatility functions and a correlation matrix.

$$
\left(v_{\alpha, \beta}^{L F M}\right)^{2}=\sum_{i, j=\alpha+1}^{\beta} \frac{w_{i}(0) w_{j}(0) F_{i}(0) F_{j}(0) \rho_{i, j}}{S_{\alpha, \beta}(0)^{2}} \int_{0}^{T_{\alpha}} \sigma_{i}(t) \sigma_{j}(t) d t
$$

where

$$
w_{i}(t)=\frac{\tau_{i} P\left(t, T_{i}\right)}{\sum_{k=\alpha+1}^{\beta} \tau_{k} P\left(t, t_{k}\right)}
$$

This calculation is done using BLACKVOLBYREBONATO to compute analytic values of the swaption price for model parameters, and consequently, is then used to calibrate the model. Calibration consists of minimizing the difference between the observed implied swaption Black volatilities and the predicted Black volatilities.

```
nRates = 10;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
objfun = @(x) SwaptionBlackVol(relidx) - blackvolbyrebonato(RateSpec,...
    repmat({@(t) ones(size(t)).*(x(1)*t + x(2)).*exp(-x(3)*t) + x(4)},nRates-1,1),...
    CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),x(5)),...
    EurExDatesFull(relidx),EurMatFull(relidx),'Period',1);
x0 = [ . 2 .05 1 .05 .2];
lb = [00 0 .5 0 .01];
ub = [llllll}
LMMparams = lsqnonlin(objfun,x0,lb,ub,options);
% Calculate VolFunc for the LMM object.
a = LMMparams(1);
b = LMMparams(2);
c = LMMparams(3);
d = LMMparams(4);
Beta = LMMparams(5);
VolFunc = repmat({@(t) ones(size(t)).*(a*t + b).*exp(-c*t) + d},nRates-1,1);
% Plot the volatility function
figure
fplot(VolFunc{1},[0 20])
title('Volatility Function')
% Inspect the correlation matrix
CorrelationMatrix = CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),Beta);
disp('Correlation Matrix')
fprintf([repmat('%1.3f ',1,length(CorrelationMatrix)) ' \n'],CorrelationMatrix)
% Create the LMM object and use Monte Carlo simulation to generate the
% interest-rate paths with LiborMarketModel.simTermStructs.
LMM = LiborMarketModel(RateSpec,VolFunc,CorrelationMatrix,'Period',1);
[LMMZeroRates, ForwardRates] = LMM.simTermStructs(nPeriods,'nTrials',nTrials);
```

```
% Examine one simulation
trialIdx = 1;
figure
tmpPlotData = LMMZeroRates(:,:,trialIdx);
tmpPlotData(tmpPlotData == 0) = NaN;
surf(Tenor,SimDates,tmpPlotData)
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of LIBOR Market Mor
xlabel('Tenor (Years)')
% Price the swaption using the helper function hBermudanSwaption
LMMTenor = 1:10;
LMMBermPrice = hBermudanSwaption(LMMZeroRates,SimDates,LMMTenor,.045,BermudanExerciseDa
\begin{tabular}{ccccc} 
& & & Norm of & First-order \\
Iteration & Func-count & \(f(x)\) & step & 0.156251
\end{tabular}
Local minimum possible.
lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the selected value of the function tolerance.
```

| Correlation Matrix | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1.000 | 0.990 | 0.980 | 0.970 | 0.961 | 0.951 | 0.942 | 0.932 | 0.923 |
| 0.990 | 1.000 | 0.990 | 0.980 | 0.970 | 0.961 | 0.951 | 0.942 | 0.932 |
| 0.980 | 0.990 | 1.000 | 0.990 | 0.980 | 0.970 | 0.961 | 0.951 | 0.942 |
| 0.970 | 0.980 | 0.990 | 1.000 | 0.990 | 0.980 | 0.970 | 0.961 | 0.951 |
| 0.961 | 0.970 | 0.980 | 0.990 | 1.000 | 0.990 | 0.980 | 0.970 | 0.961 |
| 0.951 | 0.961 | 0.970 | 0.980 | 0.990 | 1.000 | 0.990 | 0.980 | 0.970 |
| 0.942 | 0.951 | 0.961 | 0.970 | 0.980 | 0.990 | 1.000 | 0.990 | 0.980 |
| 0.932 | 0.942 | 0.951 | 0.961 | 0.970 | 0.980 | 0.990 | 1.000 | 0.990 |
| 0.923 | 0.932 | 0.942 | 0.951 | 0.961 | 0.970 | 0.980 | 0.990 | 1.000 |

Evolution of the Zero Curve for Trial:1 of LIBOR Market Model

Results

```
disp(' ')
fprintf(' # of Monte Carlo Trials: %8d\n' , nTrials)
fprintf(' # of Time Periods/Trial: %8d\n\n' , nPeriods)
fprintf('HW1F Bermudan Swaption Price: %8.4f\n', HW1FBermPrice)
fprintf('LG2F Bermudan Swaption Price: %8.4f\n', LG2FBermPrice)
fprintf(' LMM Bermudan Swaption Price: %8.4f\n', LMMBermPrice)
```

```
# of Monte Carlo Trials: 1000
# of Time Periods/Trial: 9
```

HW1F Bermudan Swaption Price: 3.7629

```
LG2F Bermudan Swaption Price: 3.5496
    LMM Bermudan Swaption Price: 3.4911
```


Bibliography

This example is based on the following books, papers and journal articles:
1 Andersen, L. and V. Piterbarg (2010). Interest Rate Modeling, Atlantic Financial Press.

2 Brigo, D. and F. Mercurio (2001). Interest Rate Models - Theory and Practice with Smile, Inflation and Credit (2nd ed. 2006 ed.). Springer Verlag.
3 Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer.
4 Hull, J. (2008). Options, Futures, and Other Derivatives. Prentice Hall.
5 Rebonato, R., K. McKay, and R. White (2010). The Sabr/Libor Market Model: Pricing, Calibration and Hedging for Complex Interest-Rate Derivatives. John Wiley \& Sons.

See Also

agencyoas | agencyprice | blackvolbyrebonato | blackvolbysabr | bndfutimprepo | bndfutprice | capbyblk | capbylg2f | convfactor | floorbyblk | floorbylg2f | hwcalbycap | hwcalbyfloor | optsensbysabr | swaptionbyblk| swaptionbylg2f | tfutbyprice | tfutbyyield | tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo

Related Examples

- "Calibrate the SABR Model " on page 2-21
- "Price a Swaption Using the SABR Model" on page 2-27
- "Computing the Agency OAS for Bonds" on page 6-3
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures" on page 7-15
- "Fitting the Diebold Li Model" on page 7-23
- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108

More About

- "Managing Present Value with Bond Futures" on page 7-13
- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Graphical Representation of Trees

```
In this section...
"Introduction" on page 2-142
"Observing Interest Rates" on page 2-142
"Observing Instrument Prices" on page 2-146
```


Introduction

You can use the function treeviewer to display a graphical representation of a tree, allowing you to examine interactively the prices and rates on the nodes of the tree until maturity. To get started with this process, first load the data file deriv.mat included in this toolbox.

```
load deriv.mat
```

Note treeviewer price tree diagrams follow the convention that increasing prices appear on the upper branch of a tree and, consequently, decreasing prices appear on the lower branch. Conversely, for interest rate displays, decreasing interest rates appear on the upper branch (prices are rising) and increasing interest rates on the lower branch (prices are falling).

For information on the use of treeviewer to observe interest rate movement, see "Observing Interest Rates" on page 2-142. For information on using treeviewer to observe the movement of prices, see "Observing Instrument Prices" on page 2-146.

Observing Interest Rates

If you provide the name of an interest rate tree to the treeviewer function, it displays a graphical view of the path of interest rates. For example, here is the treeviewer representation of all the rates along both the up and down branches of HJMTree.

```
treeviewer(HJMTree)
```


The example in "Isolating a Specific Node" on page 2-76 used bushpath to find the path of forward rates along an HJM tree by taking the first branch up and then two branches down the rate tree.

FRates =
1.0356
1.0364
1.0526
1.0674

With the treeviewer function you can display the identical information by clicking along the same sequence of nodes, as shown next.

Next is a treeviewer representation of interest rates along several branches of BDTTree.

```
treeviewer(BDTTree)
```


Note When using treeviewer with recombining trees, such as BDT, BK, and HW, you must click each node in succession from the beginning to the end. Because these trees can recombine, treeviewer is unable to complete the path automatically.

The example in "Isolating a Specific Node" on page 2-76 used treepath to find the path of interest rates taking the first branch up and then two branches down the rate tree.

FRates $=$ treepath (BDTTree. FwdTree, [lll $\left.\begin{array}{l}1 \\ 2\end{array}\right]$
FRates =
1.1000
1.0979
1.1377
1.1606

You can display the identical information by clicking along the same sequence of nodes, as shown next.

Observing Instrument Prices

To use treeviewer to display a tree of instrument prices, provide the name of an instrument set along with the name of a price tree in your call to treeviewer, for example:

```
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)
```

With treeviewer you select each instrument individually in the instrument portfolio for display.

You can use an analogous process to view instrument prices based on the BDT interest rate tree included in deriv.mat.
load deriv.mat
[BDTPrice, BDTPriceTree] = bdtprice(BDTTree, BDTInstSet); treeviewer(BDTPriceTree, BDTInstSet)

Valuation Date Prices

You can use treeviewer instrument-by-instrument to observe instrument prices through time. For the first 4% bond in the HJM instrument portfolio, treeviewer indicates a valuation date price of 98.72 , the same value obtained by accessing the PriceTree structure directly.

As a further example, look at the sixth instrument in the price vector, the 3% cap. At the valuation date, its value obtained directly from the structure is 6.2831 . Use treeviewer on this instrument to confirm this price.

Additional Observation Times

The second node represents the first-rate observation time, tObs = 1 . This node displays two states, one representing the branch going up and the other one representing the branch going down.

Examine the prices of the node corresponding to the up branch.
PriceTree.PBush\{2\}(:,: , 1)
ans $=$
100.1563
99.7309
0.1007
100.1563
100.3782
3.2594
0.1007
3.5597

As before, you can use treeviewer, this time to examine the price for the 4% bond on the up branch. treeviewer displays a price of 100.2 for the first node of the up branch, as expected.

Now examine the corresponding down branch.

```
PriceTree.PBush{2}(:,:,2)
```

ans $=$
96.3041
94.1986

0
96.3041
100.3671
8.6342

0
-0.3923
Use treeviewer once again, now to observe the price of the 4% bond on the down branch. The displayed price of 96.3 conforms to the price obtained from direct access of
the PriceTree structure. You may continue this process as far along the price tree as you want.

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm | fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec | hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption | intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw
| optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw | swapbybdt \| swapbybk \| swapbyhjm | swapbyhw \| swapbyzero | swaptionbybdt | swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples

- "Overview of Interest-Rate Tree Models" on page 2-35
- "Pricing Using Interest-Rate Term Structure" on page 2-57
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Understanding the Interest-Rate Term Structure" on page 2-40

More About

- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

Equity Derivatives

- "Understanding Equity Trees" on page 3-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41
- "Pricing European and American Spread Options" on page 3-49
- "Hedging Strategies Using Spread Options" on page 3-67
- "Pricing Swing Options using the Longstaff-Schwartz Method" on page 3-76
- "Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion" on page 3-89
- "Pricing Asian Options" on page 3-105
- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Computing Equity Instrument Sensitivities" on page 3-133
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing European Call Options Using Different Equity Models" on page 3-150
- "Compute the Option Price on a Future" on page 3-158

Understanding Equity Trees

Binomial equity options pricing tree models:

```
In this section...
"Introduction" on page 3-2
"Building Equity Binary Trees" on page 3-3
"Building Implied Trinomial Trees" on page 3-8
"Building Standard Trinomial Trees" on page 3-15
"Examining Equity Trees" on page 3-18
"Differences Between CRR and EQP Tree Structures" on page 3-22
```


Introduction

Financial Instruments Toolbox supports five types of recombining tree models to represent the evolution of stock prices:

- Cox-Ross-Rubinstein (CRR) model
- Equal probabilities (EQP) model
- Leisen-Reimer (LR) model
- Implied trinomial tree (ITT) model
- Standard trinomial tree (STT) model

For a discussion of recombining trees, see "Rate and Price Trees" on page 2-36.
The CRR, EQP, LR, STT, and ITT models are examples of discrete time models. A discrete time model divides time into discrete bits; prices can only be computed at these specific times.

The CRR model is one of the most common methods used to model the evolution of stock processes. The strength of the CRR model lies in its simplicity. It is a good model when dealing with many tree levels. The CRR model yields the correct expected value for each node of the tree and provides a good approximation for the corresponding local volatility. The approximation becomes better as the number of time steps represented in the tree is increased.

The EQP model is another discrete time model. It has the advantage of building a tree with the exact volatility in each tree node, even with small numbers of time steps. It also provides better results than CRR in some given trading environments, for example, when stock volatility is low and interest rates are high. However, this additional precision causes increased complexity, which is reflected in the number of calculations required to build a tree.

The LR model is another discrete time model. It has the advantage of producing estimates close to the Black-Scholes model using only a few steps, while also minimizing the oscillation.

The ITT model is a CRR-style implied trinomial tree which takes advantage of prices quoted from liquid options in the market with varying strikes and maturities to build a tree that more accurately represents the market. An ITT model is commonly used to price exotic options in such a way that they are consistent with the market prices of standard options.

The STT model is another discrete time model. It is considered to produce more accurate results than the binomial model when fewer time steps are modeled. The STT model is sometimes more stable and accurate than the binomial model when pricing exotic options.

Building Equity Binary Trees

The tree of stock prices is the fundamental unit representing the evolution of the price of a stock over a given period of time. The MATLAB functions crrtree, eqptree, and lrtree create CRR trees, EQP trees, and LR trees, respectively. These functions create an output tree structure along with information about the parameters used for creating the tree.

The functions crrtree, eqptree, and lrtree take three structures as input arguments:

- The stock parameter structure StockSpec
- The interest-rate term structure RateSpec
- The tree time layout structure TimeSpec

Calling Sequence for Equity Binary Trees

The calling syntax for crrtree is:

```
CRRTree = crrtree (StockSpec, RateSpec, TimeSpec)
```

Similarly, the calling syntax for eqptree is:

```
EQPTree = eqptree (StockSpec, RateSpec, TimeSpec)
```

And, the calling syntax for lrtree is:

```
LRTree = lrtree(StockSpec, RateSpec, TimeSpec, Strike)
```

All three functions require the structures StockSpec, RateSpec, and TimeSpec as input arguments:

- StockSpec is a structure that specifies parameters of the stock whose price evolution is represented by the tree. This structure, created using the function stockspec, contains information such as the stock's original price, its volatility, and its dividend payment information.
- RateSpec is the interest-rate specification of the initial rate curve. Create this structure with the function intenvset.
- TimeSpec is the tree time layout specification. Create these structures with the functions crrtimespec, eqptimespec, and lrtimespec. The structures contain information regarding the mapping of relevant dates into the tree structure, plus the number of time steps used for building the tree.

Specifying the Stock Structure for Equity Binary Trees

The structure StockSpec encapsulates the stock-specific information required for building the binary tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input arguments and accepts up to three additional input arguments that depend on the existence and type of dividend payments.

The syntax for calling stockspec is:
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ... DividendAmounts, ExDividendDates)
where:

- Sigma is the decimal annual volatility of the underlying security.
- AssetPrice is the price of the stock at the valuation date.
- DividendType is a character vector specifying the type of dividend paid by the stock. Allowed values are cash, constant, or continuous.
- DividendAmounts has a value that depends on the specification of DividendType. For DividendType cash, DividendAmounts is a vector of cash dividends. For DividendType constant, it is a vector of constant annualized dividend yields. For DividendType continuous, it is a scalar representing a continuously annualized dividend yield.
- ExDividendDates also has a value that depends on the nature of DividendType. For DividendType cash or constant, ExDividendDates is vector of dividend dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using a Binary Tree

Consider a stock with a price of $\$ 100$ and an annual volatility of 15%. Assume that the stock pays three cash $\$ 5.00$ dividends on dates January 01, 2003; July 01, 2003; and January 01, 2004. You specify these parameters in MATLAB as:

```
Sigma = 0.15;
AssetPrice = 100;
DividendType = 'cash';
DividendAmounts = [5; 5; 5];
ExDividendDates = {'jan-01-2004', 'july-01-2005', 'jan-01-2006'};
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
StockSpec =
```

```
            FinObj: 'StockSpec'
```

 FinObj: 'StockSpec'
 Sigma: 0.1500
 Sigma: 0.1500
 AssetPrice: 100
 AssetPrice: 100
 DividendType: 'cash'
 DividendType: 'cash'
 DividendAmounts: [3x1 double]
 DividendAmounts: [3x1 double]
 ExDividendDates: [3x1 double]
    ```
    ExDividendDates: [3x1 double]
```


Specifying the Interest-Rate Term Structure for Equity Binary Trees

The RateSpec structure defines the interest rate environment used when building the stock price binary tree. "Modeling the Interest-Rate Term Structure" on page 2-52 explains how to create these structures using the function intenvset, given the interest rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Equity Binary Trees

The TimeSpec structure defines the tree layout of the binary tree:

- It maps the valuation and maturity dates to their corresponding times.
- It defines the time of the levels of the tree by dividing the time span between valuation and maturity into equally spaced intervals. By specifying the number of intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

```
TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods)
```

where:

- ValuationDate is a scalar date marking the pricing date and first observation in the tree (location of the root node). You enter ValuationDate either as a serial date number (generated with datenum) or a date character vector.
- Maturity is a scalar date marking the maturity of the tree, entered as a serial date number or a date character vector.
- NumPeriods is a scalar defining the number of time steps in the tree; for example, NumPeriods $=10$ implies 10 time steps and 11 tree levels ($0,1,2, \ldots, 9,10$).

TimeSpec Example Using a Binary Tree

Consider building a CRR tree, with a valuation date of January 1, 2003, a maturity date of January 1, 2008, and 20 time steps. You specify these parameters in MATLAB as:

```
ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
NumPeriods = 20;
TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec =
            FinObj: 'BinTimeSpec'
    ValuationDate: 731582
        Maturity: 733408
    NumPeriods: 20
            Basis: 0
EndMonthRule: 1
            tObs: [1\times21 double]
            dObs: [1x21 double]
```

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs. These two fields represent the observation times and corresponding dates of all tree levels, with dObs (1) and tObs(1), respectively, representing the root node (ValuationDate), and dObs(end) and tObs (end) representing the last tree level (Maturity).

Note There is no relationship between the dates specified for the tree and the implied tree level times, and the maturities specified in the interest-rate term structure. The rates in RateSpec are interpolated or extrapolated as required to meet the time distribution of the tree.

Examples of Binary Tree Creation

You can now use the StockSpec and TimeSpec structures described previously to build an equal probability tree (EQPTree), a CRR tree (CRRTree), or an LR tree (LRTree). First, you must define the interest-rate term structure. For this example, assume that the interest rate is fixed at 10% annually between the valuation date of the tree (January 1,2003) until its maturity.

```
ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
Rate = 0.1;
RateSpec = intenvset('Rates', Rate, 'StartDates', ...
ValuationDate, 'EndDates', Maturity, 'Compounding', -1);
```

To build a CRRTree, enter:

```
CRRTree =
    FinObj: 'BinStockTree'
        Method: 'CRR'
    StockSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [1x21 double]
            dObs: [1x21 double]
        STree: {1x21 cell}
        UpProbs: [1x20 double]
```

CRRTree $=$ crrtree(StockSpec, RateSpec, TimeSpec)

To build an EQPTree, enter:

```
EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)
EQPTree =
    FinObj: 'BinStockTree'
    Method: 'EQP'
StockSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
            tObs: [1x21 double]
            dObs: [1x21 double]
            STree: {1x21 cell}
        UpProbs: [1x20 double]
```


Building Implied Trinomial Trees

The tree of stock prices is the fundamental unit representing the evolution of the price of a stock over a given period of time. The MATLAB function itttree creates an output tree structure along with the information about the parameters used to create the tree.

The function itttree takes four structures as input arguments:

- The stock parameter structure StockSpec
- The interest-rate term structure RateSpec
- The tree time layout structure TimeSpec
- The stock option specification structure StockOptSpec

Calling Sequence for Implied Trinomial Trees

The calling syntax for itttree is:

```
ITTTree = itttree (StockSpec,RateSpec,TimeSpec,StockOptSpec)
```

- StockSpec is a structure that specifies parameters of the stock whose price evolution is represented by the tree. This structure, created using the function stockspec, contains information such as the stock's original price, its volatility, and its dividend payment information.
- RateSpec is the interest-rate specification of the initial rate curve. Create this structure with the function intenvset.
- TimeSpec is the tree time layout specification. Create these structures with the function itttimespec. This structure contains information regarding the mapping of
relevant dates into the tree structure, plus the number of time steps used for building the tree.
- StockOptSpec is a structure containing parameters of European stock options instruments. Create this structure with the function stockoptspec.

Specifying the Stock Structure for Implied Trinomial Trees

The structure StockSpec encapsulates the stock-specific information required for building the trinomial tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input arguments and accepts up to three additional input arguments that depend on the existence and type of dividend payments.

The syntax for calling stockspec is:
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ... DividendAmounts, ExDividendDates)
where:

- Sigma is the decimal annual volatility of the underlying security.
- AssetPrice is the price of the stock at the valuation date.
- DividendType is a character vector specifying the type of dividend paid by the stock. Allowed values are cash, constant, or continuous.
- DividendAmounts has a value that depends on the specification of DividendType. For DividendType cash, DividendAmounts is a vector of cash dividends. For DividendType constant, it is a vector of constant annualized dividend yields. For DividendType continuous, it is a scalar representing a continuously annualized dividend yield.
- ExDividendDates also has a value that depends on the nature of DividendType. For DividendType cash or constant, ExDividendDates is vector of dividend dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using an Implied Trinomial Tree

Consider a stock with a price of $\$ 100$ and an annual volatility of 12%. Assume that the stock is expected to pay a dividend yield of 6%. You specify these parameters in MATLAB as:

```
So=100;
DividendYield = 0.06;
Sigma=.12;
StockSpec = stockspec(Sigma, So, 'continuous', DividendYield)
StockSpec =
                    FinObj: 'StockSpec'
                    Sigma: 0.1200
        AssetPrice: 100
        DividendType: 'continuous
        DividendAmounts: 0.0600
        ExDividendDates: []
```


Specifying the Interest-Rate Term Structure for Implied Trinomial Trees

The structure RateSpec defines the interest rate environment used when building the stock price binary tree. "Modeling the Interest-Rate Term Structure" on page 2-52 explains how to create these structures using the function intenvset, given the interest rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Implied Trinomial Trees

The TimeSpec structure defines the tree layout of the trinomial tree:

- It maps the valuation and maturity dates to their corresponding times.
- It defines the time of the levels of the tree by dividing the time span between valuation and maturity into equally spaced intervals. By specifying the number of intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:
TimeSpec $=$ itttimespec(ValuationDate, Maturity, NumPeriods) where:

- ValuationDate is a scalar date marking the pricing date and first observation in the tree (location of the root node). You enter ValuationDate either as a serial date number (generated with datenum) or a date character vector.
- Maturity is a scalar date marking the maturity of the tree, entered as a serial date number or a date character vector.
- NumPeriods is a scalar defining the number of time steps in the tree; for example, NumPeriods = 10 implies 10 time steps and 11 tree levels ($0,1,2, \ldots, 9,10$).

TimeSpec Example Using an Implied Trinomial Tree

Consider building an ITT tree, with a valuation date of January 1, 2006, a maturity date of January 1, 2008, and four time steps. You specify these parameters in MATLAB as:

```
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods)
TimeSpec =
            FinObj: 'ITTTimeSpec'
    ValuationDate: 732678
        Maturity: 733408
    NumPeriods: 4
        Basis: 0
    EndMonthRule: 1
        tObs: [0 0.5000 1 1.5000 2]
        dObs: [732678 732860 733043 733225 733408]
```

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs. These two fields represent the observation times and corresponding dates of all tree levels, with dObs (1) and tObs(1), respectively, representing the root node (ValuationDate), and dObs(end) and tObs (end) representing the last tree level (Maturity).

Specifying the Option Stock Structure for Implied Trinomial Trees

The StockOptSpec structure encapsulates the option-stock-specific information required for building the implied trinomial tree. You generate StockOptSpec with the function stockoptspec. This function requires five input arguments. An optional sixth argument InterpMethod, specifying the interpolation method, can be included. The syntax for calling stockoptspec is:
[StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)
where:

- Optprice is a NINST-by-1 vector of European option prices.
- Strike is a NINST-by-1 vector of strike prices.
- Settle is a scalar date marking the settlement date.
- Maturity is a NINST-by- 1 vector of maturity dates.
- OptSpec is a NINST-by-1 cell array of character vectors for the values 'call' or 'put'.

Option Stock Structure Example Using an Implied Trinomial Tree

Consider the following data quoted from liquid options in the market with varying strikes and maturity. You specify these parameters in MATLAB as:

```
Settle = '01/01/06';
Maturity = ['07/01/06';
    '07/01/06';
    '07/01/06';
    '07/01/06';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '07/01/07';
    '07/01/07';
    07/01/07';
    '07/01/07';
    '01/01/08';
    01/01/08';
    '01/01/08';
    '01/01/08'];
Strike = [113;
    101;
    100;
    88;
    128;
    112;
    100;
    78;
    144;
    112;
    100;
    69;
    162;
    112;
    100;
        61];
OptPrice =[ 0;
    4.807905472659144;
    1.306321897011867;
    0.048039195057173;
    2.310953054191461;
```

```
    1.421950392866235;
    0.020414826276740;
        0;
    5.091986935627730;
    1.346534812295291;
    0.005101325584140;
        0;
    8.047628153217246;
    1.219653432150932;
    0.001041436654748];
OptSpec = { 'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put'};
StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)
StockOptSpec =
FinObj:
'StockOptSpec'
OptPrice: \([16 \times 1\) double]
Strike: \([16 \times 1\) double]
Settle: 732678
Maturity: \([16 \times 1\) double]
OptSpec: \(\{16 \times 1\) cell\}
(price'
```

Note: The algorithm for building the ITT tree requires specifying option prices for all tree nodes. The maturities of those options correspond to those of the tree levels, and the strike to the prices on the tree nodes. The types of option are Calls for the nodes above the central nodes, and Puts for those below and including the central nodes.

Clearly, all these options will not be available in the market, hence making interpolation and extrapolation necessary to obtain the node option prices. The degree to which the tree reflects the market will unavoidably be tied to the results of these interpolations and
extrapolations. Keeping in mind that extrapolation is less accurate than interpolation, and more so the further away the extrapolated points are from the data points, the function itttree issues a warning with a list of the options for which extrapolation was necessary.

In some cases, it may be desirable to view a list of ideal option prices to form an idea of the ranges needed. This can be achieved by calling the function itttree specifying only the first three input arguments. The second output argument is a structure array containing the list of ideal options needed.

Creating an Implied Trinomial Tree

You can now use the StockSpec, TimeSpec, and StockOptSpec structures described in "Stock Structure Example Using an Implied Trinomial Tree" on page 3-9, "TimeSpec Example Using an Implied Trinomial Tree" on page 3-11, and "Option Stock Structure Example Using an Implied Trinomial Tree" on page 3-12 to build an implied trinomial tree (ITT). First, you must define the interest rate term structure. For this example, assume that the interest rate is fixed at 8% annually between the valuation date of the tree (January 1, 2006) until its maturity.

```
Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
    'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);
```

To build an ITTTree, enter:

```
ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)
ITTTree =
            FinObj: 'ITStockTree
        StockSpec: [1x1 struct]
    StockOptSpec: [1\times1 struct]
        TimeSpec: [1x1 struct]
        RateSpec: [1x1 struct]
            tObs: [0 0.500000000000000 1 1.500000000000000 2]
            dObs: [732678 732860 733043 733225 733408]
            STree: {1x5 cell}
            Probs: {[3\times1 double] [3\times3 double] [3\times5 double] [3\times7 double]}
```


Building Standard Trinomial Trees

The tree of stock prices is the fundamental unit representing the evolution of the price of a stock over a given period of time. The MATLAB function stttree creates an output tree structure along with the information about the parameters used to create the tree.

The function stttree takes three structures as input arguments:

- The stock parameter structure StockSpec
- The interest-rate term structure RateSpec
- The tree time layout structure TimeSpec

Calling Sequence for Standard Trinomial Trees

The calling syntax for stttree is:
STTTree = stttree (StockSpec, RateSpec,TimeSpec)

- StockSpec is a structure that specifies parameters of the stock whose price evolution is represented by the tree. This structure, created using the function stockspec, contains information such as the stock's original price, its volatility, and its dividend payment information.
- RateSpec is the interest-rate specification of the initial rate curve. Create this structure with the function intenvset.
- TimeSpec is the tree time layout specification. Create these structures with the function stttimespec. This structure contains information regarding the mapping of relevant dates into the tree structure, plus the number of time steps used for building the tree.

Specifying the Stock Structure for Standard Trinomial Trees

The structure StockSpec encapsulates the stock-specific information required for building the trinomial tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input arguments and accepts up to three additional input arguments that depend on the existence and type of dividend payments.

The syntax for calling stockspec is:
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...

```
DividendAmounts, ExDividendDates)
```

where:

- Sigma is the decimal annual volatility of the underlying security.
- AssetPrice is the price of the stock at the valuation date.
- DividendType is a character vector specifying the type of dividend paid by the stock. Allowed values are cash, constant, or continuous.
- DividendAmounts has a value that depends on the specification of DividendType. For DividendType cash, DividendAmounts is a vector of cash dividends. For DividendType constant, it is a vector of constant annualized dividend yields. For DividendType continuous, it is a scalar representing a continuously annualized dividend yield.
- ExDividendDates also has a value that depends on the nature of DividendType. For DividendType cash or constant, ExDividendDates is vector of dividend dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using a Standard Trinomial Tree

Consider a stock with a price of $\$ 100$ and an annual volatility of 12%. Assume that the stock is expected to pay a dividend yield of 6%. You specify these parameters in MATLAB as:

```
So=100;
```

DividendYield = 0.06;
Sigma=.12;
StockSpec = stockspec(Sigma, So, 'continuous', DividendYield)
StockSpec =
FinObj: 'StockSpec'
Sigma: 0.1200
AssetPrice: 100
DividendType: 'continuous'
DividendAmounts: 0.0600
ExDividendDates: []

Specifying the Interest-Rate Term Structure for Standard Trinomial Trees

The structure RateSpec defines the interest rate environment used when building the stock price binary tree. "Modeling the Interest-Rate Term Structure" on page 2-52
explains how to create these structures using the function intenvset, given the interest rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Standard Trinomial Trees

The TimeSpec structure defines the tree layout of the trinomial tree:

- It maps the valuation and maturity dates to their corresponding times.
- It defines the time of the levels of the tree by dividing the time span between valuation and maturity into equally spaced intervals. By specifying the number of intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:
TimeSpec = stttimespec(ValuationDate, Maturity, NumPeriods)
where:

- ValuationDate is a scalar date marking the pricing date and first observation in the tree (location of the root node). You enter ValuationDate either as a serial date number (generated with datenum) or a date character vector.
- Maturity is a scalar date marking the maturity of the tree, entered as a serial date number or a date character vector.
- NumPeriods is a scalar defining the number of time steps in the tree; for example, NumPeriods $=10$ implies 10 time steps and 11 tree levels ($0,1,2, \ldots, 9,10$).

TimeSpec Example Using a Standard Trinomial Tree

Consider building an STT tree, with a valuation date of January 1, 2006, a maturity date of January 1, 2008, and four time steps. You specify these parameters in MATLAB as:

```
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
TimeSpec = stttimespec(ValuationDate, EndDate, NumPeriods)
TimeSpec =
    FinObj: 'STTTimeSpec'
    ValuationDate: 732678
        Maturity: 733408
```

```
    NumPeriods: 4
    Basis: 0
EndMonthRule: 1
        tObs: [0 0.5000 1 1.5000 2]
        dObs: [732678 732860 733043 733225 733408]
```

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs. These two fields represent the observation times and corresponding dates of all tree levels, with dObs (1) and tObs (1), respectively, representing the root node (ValuationDate), and dObs(end) and tObs (end) representing the last tree level (Maturity).

Creating a Standard Trinomial Tree

You can now use the StockSpec, TimeSpec structures described in "Stock Structure Example Using an Implied Trinomial Tree" on page 3-9 and "TimeSpec Example Using an Implied Trinomial Tree" on page 3-11, to build a standard trinomial tree (STT). First, you must define the interest rate term structure. For this example, assume that the interest rate is fixed at 8% annually between the valuation date of the tree (January 1, 2006) until its maturity.

```
Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
    'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);
```

To build an STTTree, enter:

```
STTTree = stttree(StockSpec, RateSpec, TimeSpec)
STTTree =
    FinObj: 'STStockTree
    StockSpec: [1x1 struct]
    TimeSpec: [1\times1 struct]
    RateSpec: [1x1 struct]
            tObs: [0 0.5000 1 1.5000 2]
            dObs: [732678 732860 733043 733225 733408]
            STree: {1x5 cell}
            Probs: {[3\times1 double] [3\times3 double] [3\times5 double] [3\times7 double]}
```


Examining Equity Trees

Financial Instruments Toolbox uses equity binary and trinomial trees to represent prices of equity options and of underlying stocks. At the highest level, these trees have
structures wrapped around them. The structures encapsulate information required to interpret information in the tree.

To examine an equity, binary, or trinomial tree, load the data in the MAT-file deriv.mat into the MATLAB workspace.
load deriv.mat
Display the list of variables loaded from the MAT-file with the whos command.

| Name | Size | Bytes | Class |
| :--- | ---: | ---: | :--- | Attributes

Examining a CRRTree

You can examine in some detail the contents of the CRRTree structure contained in this file.

```
CRRTree
CRRTree =
    FinObj: 'BinStockTree
    Method: 'CRR
    StockSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
    tObs: [lllllll
            dObs: [ll31582 731947 732313 732678 733043]
            STree: {[100] [110.5171 90.4837] [122.1403 100 81.8731] [1x4 double] [1x5 double]}
        UpProbs: [0.7309 0.7309 0.7309 0.7309]
```

The Method field of the structure indicates that this is a CRR tree, not an EQP tree.
The fields StockSpec, TimeSpec, and RateSpec hold the original structures passed into the function crrtree. They contain all the context information required to interpret the tree data.

The fields tObs and dObs are vectors containing the observation times and dates, that is, the times and dates of the levels of the tree. In this particular case, tObs reveals that the tree has a maturity of four years (tObs (end) = 4) and that it has four time steps (the length of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of one day. This means that all values in tObs that correspond to a given day from 00:00 hours to 24:00 hours are mapped to the corresponding value in dObs. You can use the function datestr to convert these MATLAB serial dates into their character vector representations.

The field UpProbs is a vector representing the probabilities for up movements from any node in each level. This vector has one element per tree level. All nodes for a given level have the same probability of an up movement. In the specific case being examined, the probability of an up movement is 0.7309 for all levels, and the probability for a down movement is $0.2691(1-0.7309)$.

Finally, the field STree contains the actual stock tree. It is represented in MATLAB as a cell array with each cell array element containing a vector of prices corresponding to a tree level. The prices are in descending order, that is, CRRTree. STree \{3\} (1) represents the topmost element of the third level of the tree, and CRRTree.STree\{3\} (end) represents the bottom element of the same level of the tree.

Examining an ITTTree

You can examine in some detail the contents of the ITTTree structure contained in this file.

```
ITTTree
ITTTree =
        FinObj: 'ITStockTree
    StockSpec: [1x1 struct]
    StockOptSpec: [1\times1 struct]
        TimeSpec: [1x1 struct]
        RateSpec: [1x1 struct]
            tObs: [[00 1 2 3 4 4}
            dObs: [732678 733043 733408 733773 734139]
            STree: {1x5 cell}
            Probs: {[3\times1 double] [3\times3 double] [3\times5 double] [3\times7 double]}
```

The fields StockSpec, StockOptSpec, TimeSpec, and RateSpec hold the original structures passed into the function itttree. They contain all the context information required to interpret the tree data.

The fields tObs and dObs are vectors containing the observation times and dates, the times and dates of the levels of the tree. In this particular case, tObs reveals that the tree has a maturity of four years (tObs (end) = 4) and that it has four time steps (the length of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of one day. This means that all values in tObs that correspond to a given day from 00:00 hours to 24:00 hours are mapped to the corresponding value in dObs. You can use the function datestr to convert these MATLAB serial dates into their character vector representations.

The field Probs is a vector representing the probabilities for movements from any node in each level. This vector has three elements per tree node. In the specific case being examined, at tObs $=1$, the probability for an up movement is 0.4675 , and the probability for a down movement is 0.1934 .

Finally, the field STree contains the actual stock tree. It is represented in MATLAB as a cell array with each cell array element containing a vector of prices corresponding to a tree level. The prices are in descending order, that is, ITTTree. STree \{4\} (1) represents the top element of the fourth level of the tree, and ITTTree.STree\{4\} (end) represents the bottom element of the same level of the tree.

Isolating a Specific Node for a CRRTree

The function treepath can isolate a specific set of nodes of a binary tree by specifying the path used to reach the final node. As an example, consider the nodes touched by starting from the root node, then following a down movement, then an up movement, and finally a down movement. You use a vector to specify the path, with 1 corresponding to an up movement and 2 corresponding to a down movement. An up-down-up path is then represented as $\left[\begin{array}{lll}2 & 1 & 2\end{array}\right]$. To obtain the values of all nodes touched by this path, enter:

```
SVals = treepath(CRRTree.STree, [2 1 2])
SVals =
```

 100.0000
 90.4837
 100.0000
 90.4837
 The first value in the vector SVals corresponds to the root node, and the last value corresponds to the final node reached by following the path indicated.

Isolating a Specific Node for an ITTTree

The function trintreepath can isolate a specific set of nodes of a trinomial tree by specifying the path used to reach the final node. As an example, consider the nodes touched by starting from the root node, then following an up movement, then a middle movement, and finally a down movement. You use a vector to specify the path, with 1 corresponding to an up movement, 2 corresponding to a middle movement, and 3 corresponding to a down movement. An up-down-middle-down path is then represented as $\left.\begin{array}{llll}1 & 3 & 2 & 3\end{array}\right]$. To obtain the values of all nodes touched by this path, enter:

```
pathSVals = trintreepath(ITTTree, [\begin{array}{llll}{1}&{3}&{2}&{3}\end{array}])
pathSVals =
```

50.0000
66.3448
50.0000
50.0000
37.6819

The first value in the vector pathSVals corresponds to the root node, and the last value corresponds to the final node reached by following the path indicated.

Differences Between CRR and EQP Tree Structures

In essence, the structures representing CRR trees and EQP trees are similar. If you create a CRR or an EQP tree using identical input arguments, only a few of the tree structure fields differ:

- The Method field has a value of 'CRR' or 'EQP ' indicating the method used to build the structure.
- The prices in the STree cell array have the same structure, but the prices within the cell array are different.
- For EQP, the structure field UpProb always holds a vector with all elements set to 0.5 , while for CRR, these probabilities are calculated based on the input arguments passed when building the tree.

See Also

crrtimespec | crrtree | eqptimespec | eqptree | intenvset | itttimespec | itttree | lrtimespec | lrtree | stockoptspec | stockspec | treepath | trintreepath

Related Examples

- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Creating Instruments or Properties" on page 1-19
- "Graphical Representation of Equity Derivative Trees" on page 3-131

More About

- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41
- "Supported Interest-Rate Instruments" on page 2-2

Supported Equity Derivatives

```
In this section...
"Asian Option" on page 3-24
"Barrier Option" on page 3-25
"Basket Option" on page 3-27
"Compound Option" on page 3-28
"Convertible Bond" on page 3-29
"Lookback Option" on page 3-30
"Digital Option" on page 3-32
"Rainbow Option" on page 3-33
"Vanilla Option" on page 3-34
"Spread Option" on page 3-36
"Forwards Option" on page 3-37
"Futures Option" on page 3-38
```


Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying asset during the life (or some part of the life) of the option. They are similar to lookback options in that there are two types of Asian options: fixed (average price option) and floating (average strike option). Fixed Asian options have a specified strike, while floating Asian options have a strike equal to the average value of the underlying asset over the life of the option.

There are four Asian option types, each with its own characteristic payoff formula:

- Fixed call (average price option): $\max \left(0, S_{a v}-X\right)$
- Fixed put (average price option): $\max \left(0, X-S_{a v}\right.$)
- Floating call (average strike option): $\max \left(0, S-S_{\omega v}\right)$
- Floating put (average strike option): $\max \left(0, S_{a v}-S\right)$
where:
$S_{a v}$ is the average price of underlying asset.
S is the price of the underlying asset.
X is the strike price (applicable only to fixed Asian options).
$S_{a v}$ is defined using either a geometric or an arithmetic average.
The following functions support Asian options.

Function	Purpose
asianbycrr	Price Asian options from a CRR binomial tree.
asianbyeqp	Price Asian options from an EQP binomial tree.
asianbyitt	Price Asian options using an implied trinomial tree (ITT).
asianbystt	Price Asian options using a standard trinomial tree (STT).
instasian	Construct an Asian option.
asianbyls	Price European or American Asian options using the Longstaff- Schwartz model.
asiansensbyls	Calculate prices and sensitivities of European or American Asian options using the Longstaff-Schwartz model.
asianbykv	Price European geometric Asian options using the Kemna Vorst model.
asiansensbykv	Calculate prices and sensitivities of European geometric Asian options using the Kemna Vorst model.
asianbylevy	Price European arithmetic Asian options using the Levy model.
asiansensbylevy	Calculate prices and sensitivities of European arithmetic Asian options using the Levy model.

Barrier Option

A barrier option is similar to a vanilla put or call option, but its life either begins or ends when the price of the underlying stock passes a predetermined barrier value. There are four types of barrier options.

Up Knock-In

This option becomes effective when the price of the underlying stock passes above a barrier that is above the initial stock price. Once the barrier has knocked in, it will not knock out even if the price of the underlying instrument moves below the barrier again.

Up Knock-Out

This option terminates when the price of the underlying stock passes above a barrier that is above the initial stock price. Once the barrier has knocked out, it will not knock in even if the price of the underlying instrument moves below the barrier again.

Down Knock-In

This option becomes effective when the price of the underlying stock passes below a barrier that is below the initial stock price. Once the barrier has knocked in, it will not knock out even if the price of the underlying instrument moves above the barrier again.

Down Knock-Out

This option terminates when the price of the underlying stock passes below a barrier that is below the initial stock price. Once the barrier has knocked out, it will not knock in even if the price of the underlying instrument moves above the barrier again.

Rebates

If a barrier option fails to exercise, the seller may pay a rebate to the buyer of the option. Knock-outs may pay a rebate when they are knocked out, and knock-ins may pay a rebate if they expire without ever knocking in.

The following functions support barrier options.

Function	Purpose
barrierbycrr	Price barrier options from a CRR binomial tree.
barrierbyeqp	Price barrier options from an EQP binomial tree.
barrierbyitt	Price barrier options using an implied trinomial tree (ITT).
barrierbystt	Price barrier options using a standard trinomial tree (STT).
barrierbyfd	Price barrier option using finite difference method.
barriersensbyfd	Calculate barrier option price and sensitivities using finite difference method.

Function	Purpose
barrierbybls	Price a European barrier option using Black-Scholes option pricing model.
barriersensbybls	Calculate price and sensitivities for a European barrier option using Black-Scholes option pricing model.
barrierbyls	Price a barrier option using Longstaff-Schwartz model.
barriersensbyls	Calculate price and sensitivities for a barrier option using Longstaff-Schwartz model.
instbarrier	Construct a barrier option.

Basket Option

A basket option is an option on a portfolio of several underlying equity assets. Payout for a basket option depends on the cumulative performance of the collection of the individual assets. A basket option tends to be cheaper than the corresponding portfolio of plain vanilla options for these reasons:

- If the basket components correlate negatively, movements in the value of one component neutralize opposite movements of another component. Unless all the components correlate perfectly, the basket option is cheaper than a series of individual options on each of the assets in the basket.
- A basket option minimizes transaction costs because an investor has to purchase only one option instead of several individual options.

The payoff for a basket option is as follows:

- For a call: $\max \left(\sum W i * S i-K ; 0\right)$
- For a put: $\max \left(\sum K-W i * S i ; 0\right)$
where:
$S i$ is the price of asset i in the basket.
$W i$ is the quantity of asset i in the basket.
K is the strike price.

Financial Instruments Toolbox software supports Longstaff-Schwartz and Nengiu Ju models for pricing basket options. The Longstaff-Schwartz model supports both European, Bermuda, and American basket options. The Nengiu Ju model only supports European basket options. If you want to price either an American or Bermuda basket option, use the functions for the Longstaff-Schwartz model. To price a European basket option, use either the functions for the Longstaff-Schwartz model or the Nengiu Ju model.

Function	Purpose
basketbyls	Price basket options using the Longstaff-Schwartz model.
basketsensbyls	Calculate price and sensitivities for basket options using the Longstaff-Schwartz model.
basketbyju	Price European basket options using the Nengjiu Ju approximation model.
basketsensbyju	Calculate European basket options price and sensitivity using the Nengjiu Ju approximation model.
basketstockspec	Specify a basket stock structure.

Compound Option

A compound option is basically an option on an option; it gives the holder the right to buy or sell another option. With a compound option, a vanilla stock option serves as the underlying instrument. Compound options thus have two strike prices and two exercise dates.

There are four types of compound options:

- Call on a call
- Put on a put
- Call on a put
- Put on a call

Note The payoff formulas for compound options are too complex for this discussion. If you are interested in the details, consult the paper by Mark Rubinstein entitled "Double Trouble," published in Risk 5 (1991).

Consider the third type, a call on a put. It gives the holder the right to buy a put option. In this case, on the first exercise date, the holder of the compound option pay the first strike price and receives a put option. The put option gives the holder the right to sell the underlying asset for the second strike price on the second exercise date.

The following functions support compound options.

Function	Purpose
compoundbycrr	Price compound options from a CRR binomial tree.
compoundbyeqp	Price compound options from an EQP binomial tree.
compoundbyitt	Price compound options using an implied trinomial tree (ITT).
compoundbystt	Price compound options using a standard trinomial tree (STT).
instcompound	Construct a compound option.

Convertible Bond

A convertible bond is a financial instrument that combines equity and debt features. It is a bond with the embedded option to turn it into a fixed number of shares. The holder of a convertible bond has the right, but not the obligation, to exchange the convertible security for a predetermined number of equity shares at a preset price. The debt component is derived from the coupon payments and the principal. The equity component is provided by the conversion feature.

Convertible bonds have several defining features:

- Coupon - The coupon in convertible bonds are typically lower than coupons in vanilla bonds since investors are willing to take the lower coupon for the opportunity to participate in the company's stock via the conversion.
- Maturity - Most convertible bonds are issued with long-stated maturities. Shortterm maturity convertible bonds usually do not have call or put provisions.
- Conversion ratio - Conversion ratio is the number of shares that the holder of the convertible bond will receive from exercising the call option of the convertible bond:

Conversion ratio = par value convertible bond/conversion price of equity

For example, a conversion ratio of 25 means a bond can be exchanged for 25 shares of stock. This also implies a conversion price of $\$ 40(1000 / 25)$. This, $\$ 40$, would be the
price at which the owner would buy the shares. This can be expressed as a ratio or as the conversion price and is specified in the contract along with other provisions.

- Option type:
- Callable Convertible: a convertible bond that is callable by the issuer. The issuer of the bond forces conversion, removing the advantage that conversion is at the discretion of the bondholder. Upon call, the bondholder can either convert the bond or redeem at the call price. This option enables the issuer to control the price of the convertible bond and if necessary refinance the debt with a new cheaper one.
- Puttable Convertible: a convertible bond with a put feature that allows the bondholder to sell back the bond at a premium on a specific date. This option protects the holder against rising interest rates by reducing the year to maturity.

Function	Purpose
cbondbycrr	Price convertible bonds using a CRR binomial tree with the Tsiveriotis and Fernandes model.
cbondbyeqp	Price convertible bonds using an EQP binomial tree with the Tsiveriotis and Fernandes model.
cbondbyitt	Price convertible bonds using an implied trinomial tree with the Tsiveriotis and Fernandes model.
cbondbystt	Price convertible bonds using a standard trinomial tree with the Tsiveriotis and Fernandes model.
instcbond	Construct a cbond instrument for a convertible bond.

Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating. Fixed lookback options have a specified strike price, while floating lookback options have a strike price determined by the asset path. So, there are a total of four lookback option types, each with its own characteristic payoff formula:

- Fixed call: $\max \left(0, S_{\max }-X\right)$
- Fixed put: $\max \left(0, X-S_{\min }\right)$
- Floating call: $\max \left(0, S-S_{\min }\right)$
- Floating put: $\max \left(0, S_{\max }-S\right)$
where:
$S_{\max }$ is the maximum price of underlying stock found along the particular path followed to the node.
$S_{\min }$ is the minimum price of underlying stock found along the particular path followed to the node.
S is the price of the underlying stock on the node.
X is the strike price (applicable only to fixed lookback options).
The following functions support lookback options.

Function	Purpose
lookbackbycrr	Price lookback options from a CRR binomial tree.
lookbackbyeqp	Price lookback options from an EQP binomial tree.
lookbackbyitt	Price lookback options using an implied trinomial tree (ITT).
lookbackbystt	Price lookback options using an implied trinomial tree (ITT).
instlookback	Construct a lookback option based on an equity tree model.
lookbackbycvgsg	Calculate prices of European lookback fixed and floating strike options using the Conze-Viswanathan and Goldman-Sosin- Gatto models. For more information, see "Lookback Option" on page 3-44.
lookbacksensbycvgsg	Calculate prices and sensitivities of European fixed and floating strike lookback options using the Conze-Viswanathan and Goldman-Sosin-Gatto models. For more information, see "Lookback Option" on page 3-44.
lookbackbyls	Calculate prices of lookback fixed and floating strike options using the Longstaff-Schwartz model. For more information, see "Lookback Option" on page 3-44.

Function	Purpose
lookbacksensbyls	Calculate prices and sensitivities of lookback fixed and floating strike options using the Longstaff-Schwartz model. For more information, see "Lookback Option" on page 3-44.

Digital Option

A digital option is an option whose payoff is characterized as having only two potential values: a fixed payout, when the option is in the money or a zero payout otherwise. This is the case irrespective of how far the asset price at maturity is above (call) or below (put) the strike.

Digital options are attractive to sellers because they guarantee a known maximum loss when the option is exercised. This overcomes a fundamental problem with the vanilla options, where the potential loss is unlimited. Digital options are attractive to buyers because the option payoff is a known constant amount, and this amount can be adjusted to provide the exact quantity of protection required.

Financial Instruments Toolbox supports four types of digital options:

- Cash-or-nothing option - Pays some fixed amount of cash if the option expires in the money.
- Asset-or-nothing option - Pays the value of the underlying security if the option expires in the money.
- Gap option - One strike decides if the option is in or out of money; another strike decides the size the size of the payoff.
- Supershare - Pays out a proportion of the assets underlying a portfolio if the asset lies between a lower and an upper bound at the expiry of the option.

The following functions calculate pricing and sensitivity for digital options.

Function	Purpose
cashbybls	Calculate the price of cash-or-nothing digital options using the Black-Scholes model.
assetbybls	Calculate the price of asset-or-nothing digital options using the Black-Scholes model.
gapbybls	Calculate the price of gap digital options using the Black-Scholes model.

Function	Purpose
supersharebybls	Calculate the price of supershare digital options using the Black-Scholes model.
cashsensbybls	Calculate the price and sensitivities of cash-or- nothing digital options using the Black-Scholes model.
assetsensbybls	Calculate the price and sensitivities of asset-or- nothing digital options using the Black-Scholes model.
gapsensbybls	Calculate the price and sensitivities of gap digital options using the Black-Scholes model.
supersharesensbybls	Calculate the price and sensitivities of supershare digital options using the Black-Scholes model.

Rainbow Option

A rainbow option payoff depends on the relative price performance of two or more assets. A rainbow option gives the holder the right to buy or sell the best or worst of two securities, or options that pay the best or worst of two assets.

Rainbow options are popular because of the lower premium cost of the structure relative to the purchase of two separate options. The lower cost reflects the fact that the payoff is generally lower than the payoff of the two separate options.

Financial Instruments Toolbox supports two types of rainbow options:

- Minimum of two assets - The option holder has the right to buy(sell) one of two risky assets, whichever one is worth less.
- Maximum of two assets - The option holder has the right to buy(sell) one of two risky assets, whichever one is worth more.

The following rainbow options speculate/hedge on two equity assets.

Function	Purpose
minassetbystulz	Calculate the European rainbow option price on minimum of two risky assets using the Stulz option pricing model.

Function	Purpose
minassetsensbystulz	Calculate the European rainbow option prices and sensitivities on minimum of two risky assets using the Stulz pricing model.
maxassetbystulz	Calculate the European rainbow option price on maximum of two risky assets using the Stulz option pricing model.
maxassetsensbystulz	Calculate the European rainbow option prices and sensitivities on maximum of two risky assets using the Stulz pricing model.

Vanilla Option

A vanilla option is a category of options that includes only the most standard components. A vanilla option has an expiration date and straightforward strike price. American-style options and European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

- For a call: $\max (S t-K, 0)$
- For a put: $\max (K-S t, 0)$
where:
$S t$ is the price of the underlying asset at time t.
K is the strike price.
The following functions support specifying or pricing a vanilla option.

Function	Purpose
optstockbycrr	Calculate the price of a European, Bermuda, or
	American stock option using a CRR tree.
optstockbyeqp	Calculate the price of a European, Bermuda, or American stock option using an EQP tree.
optstockbyfd	Calculate vanilla option prices using finite difference method.

Function	Purpose
optstocksensbyfd	Calculate vanilla option prices and sensitivities using finite difference method.
optstockbyitt	Calculate the price of a European, Bermuda, or American stock option using an ITT tree.
optstockbystt	Calculate the price of a European, Bermuda, or American stock option using an STT tree.
optstockbylr	Calculate the price of a European, Bermuda, or American stock option using the Leisen-Reimer (LR) binomial tree model.
optstocksensbylr	Calculate the price and sensitivities of a European, Bermuda, or American stock option using the LeisenReimer (LR) binomial tree model.
optstockbybls	Price options using the Black-Scholes option pricing model.
optstocksensbybls	Calculate option prices and sensitivities using the Black-Scholes option pricing model.
optstockbyrgw	Calculate American call option prices using the Roll-Geske-Whaley option pricing model.
optstocksensbyrgw	Calculate American call option prices and sensitivities using the Roll-Geske-Whaley option pricing model.
optstockbybjs	Price American options using the Bjerksund-Stensland 2002 option pricing model.
optstocksensbybjs	Calculate American option prices and sensitivities using the Bjerksund-Stensland 2002 option pricing model.
optstockbyls	Price vanilla options using the Longstaff-Schwartz model.
optstocksensbyls	Calculate vanilla option prices and sensitivities using the Longstaff-Schwartz model.
instoptstock	Specify a European or Bermuda option.

Bermuda Put and Call Schedule

A Bermuda option resembles a hybrid of American and European options. You exercise it on predetermined dates only, usually monthly. In Financial Instruments Toolbox software, you indicate the relevant information for a Bermuda option in two input matrices:

- Strike - Contains the strike price values for the option.
- ExerciseDates - Contains the schedule when you can exercise the option.

Spread Option

A spread option is an option written on the difference of two underlying assets. For example, a European call on the difference of two assets $X 1$ and $X 2$ would have the following pay off at maturity:

$$
\max (X 1-X 2-K, 0)
$$

where:
K is the strike price.
The following functions support spread options.

Function	Purpose
spreadbykirk	Price European spread options using the Kirk pricing model.
spreadsensbykirk	Calculate European spread option prices and sensitivities using the Kirk pricing model.
spreadbybjs	Price European spread options using the Bjerksund-Stensland pricing model.
spreadsensbybjs	Calculate European spread option prices and sensitivities using the Bjerksund-Stensland pricing model.
spreadbyfd	Price European or American spread options using the Alternate Direction Implicit (ADI) finite difference method.
spreadsensbyfd	Calculate price and sensitivities of European or American spread spread options using the Alternate Direction Implicit (ADI) finite difference method.

Function	Purpose
spreadbyls	Price European or American spread options using Monte Carlo simulations.
spreadsensbyls	Calculate price and sensitivities for European or American spread options using Monte Carlo simulations.

Forwards Option

A forward option is a non-standardized contract between two parties to buy or to sell an asset at a specified future time at a price agreed upon today. The buyer of a forward option contract has the right to hold a particular forward position at a specific price any time before the option expires. The forward option seller holds the opposite forward position when the buyer exercises the option. A call option is the right to enter into a long forward position and a put option is the right to enter into a short forward position. A closely related contract is a futures contract. A forward is like a futures in that it specifies the exchange of goods for a specified price at a specified future date. The table below displays some of the characteristics of forward and futures contracts.

Forwards	Futures
Customized contracts	Standardized contracts
Over the counter traded	Exchange traded
Exposed to default risk	Clearing house reduces default risk
Mostly used for hedging	Mostly used by hedgers and speculators
Settlement at the end of contract (no Margin required)	Daily changes are settled day by day (Margin required)
Delivery usually takes place	Delivery usually never happens

The payoff for a forward option, where the value of a forward position at maturity depends on the relationship between the delivery price (K) and the underlying price (S_{T}) at that time, is:

- For a long position: $f_{T}=S_{T}-K$
- For a short position: $f_{T}=K-S_{T}$

The following functions support pricing a forwards option.

Function	Purpose
optstockbyblk	Price options on forwards using the Black option pricing model.
optstocksensbyblk	Determine option prices and sensitivities on forwards using the Black pricing model.

Futures Option

A future option is a standardized contract between two parties to buy or sell a specified asset of standardized quantity and quality for a price agreed upon today (the futures price) with delivery and payment occurring at a specified future date, the delivery date. The contracts are negotiated at a futures exchange, which acts as an intermediary between the two parties. The party agreeing to buy the underlying asset in the future, the "buyer" of the contract, is said to be "long", and the party agreeing to sell the asset in the future, the "seller" of the contract, is said to be "short."

Forwards	Futures
Customized contracts	Standardized contracts
Over the counter traded	Exchange traded
Exposed to default risk	Clearing house reduces default risk
Mostly used for hedging	Mostly used by hedgers and speculators
Settlement at the end of contract (no Margin required)	Daily changes are settled day by day (Margin required)
Delivery usually takes place	Delivery usually never happens

A futures contract is the delivery of item J at time T and:

- There exists in the market a quoted price $F(t, T)$, which is known as the futures price at time t for delivery of J at time T.
- The price of entering a futures contract is equal to zero.
- During any time interval $[t, s]$, the holder receives the amount $F(s, T)-F(t, T)$ (this reflects instantaneous marking to market).
- At time T, the holder pays $F(T, T)$ and is entitled to receive J. Note that $F(T, T)$ should be the spot price of J at time T.

The following functions support pricing a futures option.

Function	Purpose
optstockbyblk	Price options on futures using the Black option pricing model.
optstocksensbyblk	Determine option prices and sensitivities on futures using the Black pricing model.

See Also

```
asianbycrr | asianbyeqp | asianbyitt | asianbykv | asianbylevy
| asianbyls | asiansensbykv | asiansensbylevy | asiansensbyls |
assetbybls | assetsensbybls | barrierbycrr | barrierbyeqp | barrierbyitt
| basketbyju | basketbyls | basketsensbyju | basketsensbyls |
basketstockspec | basketstockspec | cashbybls | cashsensbybls |
chooserbybls | compoundbycrr | compoundbyeqp | compoundbyitt |
crrprice | crrsens | crrtimespec | crrtree | eqpprice | eqpsens |
eqptimespec | eqptree | gapbybls | gapsensbybls | impvbybjs | impvbyblk
| impvbybls | impvbyrgw | instasian | instbarrier | instcompound |
instlookback| instoptstock | ittprice | ittsens | itttimespec | itttree
| lookbackbycrr | lookbackbycvgsg | lookbackbyeqp | lookbackbyitt |
lookbackbyls | lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls
| lookbacksensbyls | lrtimespec | lrtree | maxassetbystulz |
maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
optpricebysim|optstockbybjs | optstockbyblk| optstockbybls |
optstockbycrr | optstockbyeqp | optstockbyitt | optstockbylr |
optstockbyls | optstockbyrgw| optstocksensbybjs | optstocksensbyblk
| optstocksensbybls | optstocksensbylr | optstocksensbyls |
optstocksensbyrgw | spreadbybjs | spreadbykirk | spreadbyls |
spreadsensbybjs | spreadsensbykirk | spreadsensbyls | stockspec |
supersharebybls | supersharesensbybls | treepath | trintreepath
```


Related Examples

- "Understanding Equity Trees" on page 3-2
- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Creating Instruments or Properties" on page 1-19
- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Compute Option Prices on a Forward" on page 11-1162
- "Compute Forward Option Prices and Delta Sensitivities" on page 11-1227
- "Compute the Option Price on a Future" on page 11-1163
- "Pricing European Call Options Using Different Equity Models" on page 3-150
- "Pricing Asian Options" on page 3-105
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Bjerksund-Stensland Model" on page 3-146

More About

- "Basket Option" on page 3-27
- "Asian Option" on page 3-24
- "Spread Option" on page 3-36
- "Vanilla Option" on page 3-34
- "Rainbow Option" on page 3-33
- "Bjerksund-Stensland 2002 Model" on page 3-142
- "Roll-Geske-Whaley Model" on page 3-141
- "Black Model" on page 3-140
- "Digital Option" on page 3-32
- "Supported Energy Derivatives" on page 3-41
- "Supported Interest-Rate Instruments" on page 2-2

Supported Energy Derivatives

In this section...
"Asian Option" on page 3-41
"Vanilla Option" on page 3-42
"Spread Option" on page 3-43
"Lookback Option" on page 3-44
"Forwards Option" on page 3-46
"Futures Option" on page 3-47

Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying asset during the life (or some part of the life) of the option. They are similar to lookback options in that there are two types of Asian options: fixed (average price option) and floating (average strike option). Fixed Asian options have a specified strike, while floating Asian options have a strike equal to the average value of the underlying asset over the life of the option.

There are four Asian option types, each with its own characteristic payoff formula:

- Fixed call (average price option): $\max \left(0, S_{a v}-X\right)$
- Fixed put (average price option): $\max \left(0, X-S_{a v}\right.$)
- Floating call (average strike option): $\max \left(0, S-S_{a v}\right)$
- Floating put (average strike option): $\max \left(0, S_{a v}-S\right)$
where:
$S_{a v}$ is the average price of underlying asset.
S is the price of the underlying asset.
X is the strike price (applicable only to fixed Asian options).
$S_{a v}$ is defined using either a geometric or an arithmetic average.
The following functions support Asian options.

Function	Purpose
asianbyls	Price European or American Asian options using the Longstaff- Schwartz model.
asiansensbyls	Calculate prices and sensitivities of European or American Asian options using the Longstaff-Schwartz model.
asianbykv	Price European geometric Asian options using the Kemna Vorst model.
asiansensbykv	Calculate prices and sensitivities of European geometric Asian options using the Kemna Vorst model.
asianbylevy	Price European arithmetic Asian options using the Levy model.
asiansensbylevy	Calculate prices and sensitivities of European arithmetic Asian options using the Levy model.

Vanilla Option

A vanilla option is a category of options that includes only the most standard components. A vanilla option has an expiration date and straightforward strike price. American-style options and European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

- For a call: $\max (S t-K, 0)$
- For a put: $\max (K-S t, 0)$
where:
$S t$ is the price of the underlying asset at time t.
K is the strike price.
The following functions support specifying or pricing a vanilla option.

Function	Purpose
optstockbyls	Price European, Bermudan, or American vanilla options using the Longstaff-Schwartz model.
optstocksensbyls	Calculate European, Bermudan, or American vanilla option prices and sensitivities using the Longstaff-
optstockbyfd	Schwartz model. Calculate vanilla option prices using finite difference method.
optstocksensbyfd	Calculate vanilla option prices and sensitivities using finite difference method.

Spread Option

A spread option is an option written on the difference of two underlying assets. For example, a European call on the difference of two assets $X 1$ and $X 2$ would have the following pay off at maturity:

$$
\max (X 1-X 2-K, 0)
$$

where:
K is the strike price.
The following functions support spread options.

Function	Purpose
spreadbykirk	Price European spread options using the Kirk pricing model.
spreadsensbykirk	Calculate European spread option prices and sensitivities using the Kirk pricing model.
spreadbybjs	Price European spread options using the Bjerksund-Stensland pricing model.
spreadsensbybjs	Calculate European spread option prices and sensitivities using the Bjerksund-Stensland pricing model.
spreadbyfd	Price European or American spread options using the Alternate Direction Implicit (ADI) finite difference method.

Function	Purpose
spreadsensbyfd	Calculate price and sensitivities of European or American spread options using the Alternate Direction Implicit (ADI) finite difference method.
spreadbyls	Price European or American spread options using Monte Carlo simulations.
spreadsensbyls	Calculate price and sensitivities for European or American spread options using Monte Carlo simulations.

For more information on using spread options, see "Pricing European and American Spread Options" on page 3-49.

Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the underlying asset (e.g. electricity, stock) achieves during the entire life of the option. Basically the holder of the option can 'look back' over time to determine the payoff. This type of option provides price protection over a selected period, reduces uncertainties with the timing of market entry, moderates the need for the ongoing management, and therefore, is usually more expensive than vanilla options.

Lookback call options give the holder the right to buy the underlying asset at the lowest price. Lookback put options give the right to sell the underlying asset at the highest price.

Financial Instruments Toolbox software supports two types of lookback options: fixed and floating. The difference is related to how the strike price is set in the contract. Fixed lookback options have a specified strike price and the option pays out the maximum of the difference between the highest (lowest) observed price of the underlying during the life of the option and the strike. Floating lookback options have a strike price determined at maturity, and it is set at the lowest (highest) price of the underlying reached during the life of the option. This means that for a floating strike lookback call (put), the holder has the right to buy (sell) the underlying asset at its lowest (highest) price observed during the life of the option. So, there are a total of four lookback option types, each with its own characteristic payoff formula:

- Fixed call: $\max \left(0, S_{\max }-X\right)$
- Fixed put: $\max \left(0, X-S_{\min }\right)$
- Floating call: $\max \left(0, S-S_{\text {min }}\right)$
- Floating put: $\max \left(0, S_{\max }-S\right)$
where:
$S_{\max }$ is the maximum price of underlying asset.
$S_{\text {min }}$ is the minimum price of underlying asset.
S is the price of the underlying asset at maturity.
X is the strike price.
The following functions support lookback options.

Function	Purpose
lookbackbycvgsg	Calculate prices of European lookback fixed and floating strike options using the Conze-Viswanathan and Goldman-Sosin- Gatto models.
lookbacksensbycvgsg	Calculate prices and sensitivities of European fixed and floating strike lookback options using the Conze-Viswanathan and Goldman-Sosin-Gatto models.
lookbackbyls	Calculate prices of lookback fixed and floating strike options using the Longstaff-Schwartz model.
lookbacksensbyls	Calculate prices and sensitivities of lookback fixed and floating strike options using the Longstaff-Schwartz model.

Lookback options and Asian options are instruments used in the electricity market to manage purchase timing risk. Electricity purchasers cover part of their expected electricity consumption on the forward market to avoid the volatility and limited liquidity of the spot market. Using Asian options as a hedging tool is a passive approach to solving the purchase timing problem. An Asian option instrument diminishes the wrong timing risk but it also reduces any potential benefit to the buyer from falling prices. On the other hand, lookback options allow the purchasers to buy electricity at the lowest price, but as mentioned before, this instrument is more expensive than Asian and vanilla options.

Forwards Option

A forward option is a non-standardized contract between two parties to buy or to sell an asset at a specified future time at a price agreed upon today. The buyer of a forward option contract has the right to hold a particular forward position at a specific price any time before the option expires. The forward option seller holds the opposite forward position when the buyer exercises the option. A call option is the right to enter into a long forward position and a put option is the right to enter into a short forward position. A closely related contract is a futures contract. A forward is like a futures in that it specifies the exchange of goods for a specified price at a specified future date. The table below displays some of the characteristics of forward and futures contracts.

Forwards	Futures
Customized contracts	Standardized contracts
Over the counter traded	Exchange traded
Exposed to default risk	Clearing house reduces default risk
Mostly used for hedging	Mostly used by hedgers and speculators
Settlement at the end of contract (no Margin required)	Daily changes are settled day by day (Margin required)
Delivery usually takes place	Delivery usually never happens

The payoff for a forward option, where the value of a forward position at maturity depends on the relationship between the delivery price (K) and the underlying price (S_{T}) at that time, is:

- For a long position: $f_{T}=S_{T}-K$
- For a short position: $f_{T}=K-S_{T}$

The following functions support pricing a forwards option.

Function	Purpose
optstockbyblk	Price options on forwards using the Black option pricing model.
optstocksensbyblk	Determine option prices and sensitivities on forwards using the Black pricing model.

Futures Option

A future option is a standardized contract between two parties to buy or sell a specified asset of standardized quantity and quality for a price agreed upon today (the futures price) with delivery and payment occurring at a specified future date, the delivery date. The contracts are negotiated at a futures exchange, which acts as an intermediary between the two parties. The party agreeing to buy the underlying asset in the future, the "buyer" of the contract, is said to be "long", and the party agreeing to sell the asset in the future, the "seller" of the contract, is said to be "short."

Forwards	Futures
Customized contracts	Standardized contracts
Over the counter traded	Exchange traded
Exposed to default risk	Clearing house reduces default risk
Mostly used for hedging	Mostly used by hedgers and speculators
Settlement at the end of contract (no Margin required)	Daily changes are settled day by day (Margin required)
Delivery usually takes place	Delivery usually never happens

A futures contract is the delivery of item J at time T and:

- There exists in the market a quoted price $F(t, T)$, which is known as the futures price at time t for delivery of J at time T.
- The price of entering a futures contract is equal to zero.
- During any time interval $[t, s]$, the holder receives the amount $F(s, T)-F(t, T)$ (this reflects instantaneous marking to market).
- At time T, the holder pays $F(T, T)$ and is entitled to receive J. Note that $F(T, T)$ should be the spot price of J at time T.

The following functions support pricing a futures option.

Function	Purpose
optstockbyblk	Price options on futures using the Black option pricing model.
optstocksensbyblk	Determine option prices and sensitivities on futures using the Black pricing model.

See Also

asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy | asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls | optpricebysim | optstockbyblk | optstockbyls | optstocksensbyblk|optstocksensbyls | spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls | spreadsensbybjs | spreadsensbyfd| spreadsensbykirk | spreadsensbyls

Related Examples

- "Pricing European and American Spread Options" on page 3-49
- "Hedging Strategies Using Spread Options" on page 3-67
- "Pricing Swing Options using the Longstaff-Schwartz Method" on page 3-76
- "Compute Option Prices on a Forward" on page 11-1162
- "Compute Forward Option Prices and Delta Sensitivities" on page 11-1227
- "Compute the Option Price on a Future" on page 11-1163
- "Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion" on page 3-89
- "Pricing Asian Options" on page 3-105

More About

- "Forwards Option" on page 3-46
- "Futures Option" on page 3-47
- "Spread Option" on page 3-43
- "Asian Option" on page 3-41
- "Vanilla Option" on page 3-42
- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24
- "Supported Interest-Rate Instruments" on page 2-2

External Websites

- Energy Trading \& Risk Management with MATLAB (47 min 31 sec)

Pricing European and American Spread Options

This example shows how to price and calculate sensitivities for European and American spread options using various techniques. First, the price and sensitivities for a European spread option is calculated using closed form solutions. Then, price and sensitivities for an American spread option is calculated using finite difference and Monte Carlo simulations. Finally, further analysis is conducted on spread options with different range of inputs.

Spread options are options on the difference of two underlying asset prices. For example, a call option on the spread between two assets will have the following payoff at maturity:

$$
\max \left(X_{1}-X_{2}-K, 0\right)
$$

where X_{1} is the price of the first underlying asset, X_{2} is the price of the second underlying asset, and K is the strike price. At maturity, if the spread $X_{1}-X_{2}$ is greater than the strike price K, the option holder will exercise the option and gain the difference between the spread and the strike price. If the spread is less than 0 , the option holder will not exercise the option, and the payoff is 0 . Spread options are frequently traded in the energy market. Two examples are:

- Crack spreads: Options on the spread between refined petroleum products and crude oil. The spread represents the refinement margin made by the oil refinery by "cracking" the crude oil into a refined petroleum product.
- Spark spreads: Options on the spread between electricity and some type of fuel. The spread represents the margin of the power plant, which takes fuel to run its generator to produce electricity.

Overview of the Pricing Methods

There are several methods to price spread options, as discussed in [1]. This example uses the closed form, finite difference, and Monte Carlo simulations to price spread options. The advantages and disadvantages of each method are discussed below:

- Closed form solutions/approximations of partial differential equations (PDE) are advantageous because they are very fast, and extend well to computing sensitivities (Greeks). However, closed form solutions are not always available, for example for American spread options.
- The finite difference method is a numerical procedure to solve PDEs by discretizing the price and time variables into a grid. A detailed analysis of this method can be
found in [2]. It can handle cases where closed form solutions are not available. Also, finite difference extends well to calculating sensitivities because it outputs a grid of option prices for a range of underlying prices and times. However, it is slower than the closed form solutions.
- Monte Carlo simulation uses random sampling to simulate movements of the underlying asset prices. It handles cases where closed solutions do not exist. However, it usually takes a long time to run, especially if sensitivities need to be calculated.

Pricing a European Spread Option

The following example demonstrates the pricing of a crack spread option.
A refiner is concerned about its upcoming maintenance schedule and needs to protect against decreasing crude oil prices and increasing heating oil prices. During the maintenance the refiner needs to continue providing customers with heating oil to meet their demands. The refiner's strategy is to use spread options to manage its hedge.

On January 2013, the refiner buys a $1: 1$ crack spread option by purchasing heating oil futures and selling crude oil futures. CLF14 WTI crude oil futures is at $\$ 100$ per barrel and HOF14 heating oil futures contract is at $\$ 2.6190$ per gallon.

```
clear;
% Price, volatility, and dividend of heating oil
Price1gallon = 2.6190; % $/gallon
Price1 = Price1gallon*42; % $/barrel
Vol1 = 0.10;
Div1 = 0.03;
% Price, volatility, and dividend of WTI crude oil
Price2 = 100; % $/barrel
Vol2 = 0.15;
Div2 = 0.02;
% Correlation of underlying prices
Corr = 0.3;
% Option type
OptSpec = 'call';
% Strike
Strike = 5;
```

```
% Settlement date
Settle = '01-Jan-2013';
% Maturity
Maturity = '01-Jan-2014';
% Risk free rate
RiskFreeRate = 0.05;
```

The pricing functions take an interest rate term structure and stock structure as inputs. Also, we need to specify which outputs we are interested in.

```
% Define RateSpec
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', RiskFreeRate, 'Compounding', ...
    Compounding, 'Basis', Basis);
% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);
StockSpec2 = stockspec(Vol2, Price2, 'Continuous', Div2);
% Specify price and sensitivity outputs
OutSpec = {'Price', 'Delta', 'Gamma'};
```

The Financial Instruments Toolbox ${ }^{\mathrm{TM}}$ contains two types of closed form approximations for calculating price and sensitivities of European spread options: the Kirk's approximation (spreadbykirk, spreadsensbykirk) and the Bjerksund and Stensland model (spreadbybjs, spreadsensbybjs) [3].

The function spreadsensbykirk calculates prices and sensitivities for a European spread option using the Kirk's approximation.

```
% Kirk's approximation
[PriceKirk, DeltaKirk, GammaKirk] = ...
    spreadsensbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)
PriceKirk =
```

8.3636

```
DeltaKirk =
    0.6108 -0.5590
GammaKirk =
    0.0225 0.0249
```

The function spreadsensbybjs calculates the prices and sensitivities for a European spread option using the Bjerksund and Stensland model. In [3], Bjerksund and Stensland explains that the Kirk's approximation tends to underprice the spread option when the strike is close to zero, and overprice when the strike is further away from zero. In comparison, the model by Bjerksund and Stensland has higher precision.

```
% Bjerksund and Stensland model
[PriceBJS, DeltaBJS, GammaBJS] = ...
    spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)
PriceBJS =
    8.3662
DeltaBJS =
    0.6115 -0.5597
GammaBJS =
    0.0225 0.0248
```

A comparison of the calculated prices show that the two closed form models produce similar results for price and sensitivities. In addition to delta and gamma, the functions can also calculate theta, vega, lambda, and rho.

```
% Comparison of calculated prices
fprintf('Comparison of prices:\n\n');
```

```
fprintf('Kirk: %f\n', PriceKirk);
fprintf('BJS: %f\n\n', PriceBJS);
% Comparison of Delta
fprintf('Comparison of delta:\n\n');
fprintf('Kirk: %f %f\n', DeltaKirk(1), DeltaKirk(2));
fprintf('BJS: %f %f\n\n', DeltaBJS(1), DeltaBJS(2));
% Comparison of Gamma
fprintf('Comparison of gamma:\n\n');
fprintf('Kirk: %f %f\n',GammaKirk(1), GammaKirk(2));
fprintf('BJS: %f %f\n\n',GammaBJS(1), GammaBJS(2));
Comparison of prices:
Kirk: 8.363641
BJS: 8.366158
Comparison of delta:
Kirk: \(\quad 0.610790 \quad-0.558959\)
```

Comparison of gamma:

Kirk:	0.022533	0.024850
BJS:	0.022495	0.024819

Pricing an American Spread Option

Although the closed form approximations are fast and well suited for pricing European spread options, they cannot price American spread options. Using the finite difference method and the Monte Carlo method, an American spread option can be priced. In this example, an American spread option is priced with the same attributes as the above crack spread option.

The finite difference method numerically solves a PDE by discretizing the underlying price and time variables into a grid. The Financial Instrument Toolbox ${ }^{\text {TM }}$ contains the functions spreadbyfd and spreadsensbyfd, which calculate prices and sensitivities for European and American spread options using the finite difference method. For the finite difference method, the composition of the grid has a large impact on the quality of the output and the execution time. Generally, a finely discretized grid will result in outputs that are closer to the theoretical value, but it comes at the cost of longer
execution times. The composition of the grid is controlled using optional parameters PriceGridSize, TimeGridSize, AssetPriceMin and AssetPriceMax.

To indicate that we are pricing an American option, add an optional input of AmericanOpt with a value of 1 to the argument of the function.

```
% Finite difference method for American spread option
[PriceFD, DeltaFD, GammaFD, PriceGrid, AssetPrice1, ...
    AssetPrice2] = ...
    spreadsensbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec, ...
    'PriceGridSize', [500 500], 'TimeGridSize', 100, ...
    'AssetPriceMin', [0 0], 'AssetPriceMax', [2000 2000], ...
    'AmericanOpt', 1);
% Display price and sensitivities
PriceFD
DeltaFD
GammaFD
PriceFD =
    8.5463
DeltaFD =
    0.6306 -0.5777
GammaFD =
    0.0233 0.0259
```

The function spreadsensbyfd also returns a grid that contains the option prices for a range of underlying prices and times. The grid of option prices at time zero, which is the option prices at the settle date, can be plotted for a range of underlying prices.

```
% Plot option prices
figure;
mesh(AssetPrice1, AssetPrice2, PriceGrid(:, :, 1)');
title('American Spread Option Prices for Range of Underlying Prices');
xlabel('Price of underlying asset 1');
```

```
ylabel('Price of underlying asset 2');
zlabel('Price of spread option');
```


Price of underlying asset 2

An American style option can be priced by Monte Carlo methods using the least square method of Longstaff and Schwartz [4]. The Financial Instruments Toolbox ${ }^{\text {TM }}$ contains the functions spreadbyls and spreadsensbyls, which calculate prices and sensitivities of European and American options using simulations. The Monte Carlo simulation method in spreadsensbyls generates multiple paths of simulations according to a geometric Brownian motion (GBM) for the two underlying asset prices. Similar to the finite difference method where the granularity of the grid determined the quality of the output and the execution time, the quality of output and execution time of the Monte Carlo simulation depends on the number of paths (NumTrials) and the number of time periods per path (NumPeriods). Also, note that the results obtained by Monte Carlo
simulations are not deterministic. Each run will have different results depending on the simulation outcomes.

```
% To indicate that we are pricing an American option using the Longstaff
% and Schwartz method, add an optional input of |AmericanOpt| with a value
% of 1 to the argument of the function.
% Monte Carlo method for American spread option
[PriceMC, DeltaMC, GammaMC] = ...
    spreadsensbyls(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec, ...
    'NumTrials', 1000, 'Antithetic', true, 'AmericanOpt', 1)
PriceMC =
    8.4999
DeltaMC =
    0.6325 -0.5931
GammaMC =
    -0.0873 0.0391
```

The results of the two models are compared. The prices and sensitivities calculated by the Longstaff and Schwartz method will vary at each run, depending on the outcome of the simulations. It is important to note again that the quality of the results from the finite difference method and the Monte Carlo simulation depend on the optional input parameters. For example, increasing the number of paths (NumTrials) for the spreadsensbyls function will result in more precise results at the cost of longer execution times.

```
% Comparison of calculated prices
fprintf('Comparison of prices:\n\n');
fprintf('Finite Difference: %f\n', PriceFD);
fprintf('Monte Carlo: %f\n\n', PriceMC);
% Comparison of Delta
fprintf('Comparison of delta:\n\n');
```

```
fprintf('Finite Difference: %f %f\n', DeltaFD(1), DeltaFD(2));
fprintf('Monte Carlo : %f %f\n\n', DeltaMC(1), DeltaMC(2));
% Comparison of Gamma
fprintf('Comparison of gamma:\n\n');
fprintf('Finite Difference: %f %f\n', GammaFD(1), GammaFD(2));
fprintf('Monte Carlo : %f %f\n\n', GammaMC(1), GammaMC(2));
Comparison of prices:
Finite Difference: 8.546285
Monte Carlo: 8.499894
Comparison of delta:
Finite Difference: 0.630606 -0.577686
Monte Carlo : 0.632549 -0.593106
Comparison of gamma:
Finite Difference: 0.023273 0.025852
Monte Carlo : -0.087340 0.039120
```


Comparing Results for a Range of Strike Prices

As discussed earlier, the Kirk's approximation tends to overprice spread options when the strike is further away from zero. To confirm this, a spread option will be priced with the same attributes as before, but for a range of strike prices.

```
% Specify outputs
OutSpec = {'Price', 'Delta'};
% Range of strike prices
Strike = [-25; -15; -5; 0; 5; 15; 25];
```

The results from the Kirk's approximation and the Bjerksund and Stensland model will be compared against the numerical approximation from the finite difference method. Since spreadsensbyfd can only price one option at a time, it is called in a loop for each strike value. The Monte Carlo simulation (spreadsensbyls) with a large number of trial paths could also be used as a benchmark, but the finite difference will be used for this example.

```
% Kirk's approximation
```

```
[PriceKirk, DeltaKirk] = ...
    spreadsensbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);
% Bjerksund and Stensland model
[PriceBJS, DeltaBJS] = ...
    spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);
% Finite difference
PriceFD = zeros(numel(Strike), 1);
DeltaFD = zeros(numel(Strike), 2);
for i = 1:numel(Strike)
    [PriceFD(i), DeltaFD(i,:)] = ...
    spreadsensbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike(i), Corr, 'OutSpec', OutSpec, ...
    'PriceGridSize', [500 500], 'TimeGridSize', 100, ...
    'AssetPriceMin', [0 0], 'AssetPriceMax', [2000 2000]);
end
% Comparison of calculated prices
fprintf('Prices for range of strikes:\n\n');
fprintf('Kirk \tBJS \tFD \n');
for i = 1:numel(Strike)
    fprintf('%f\t%f\t%f\n', PriceKirk(i), PriceBJS(i), PriceFD(i));
end
Prices for range of strikes:
Kirk BJS FD
32.707787 32.672353 32.676040
23.605307 23.577099 23.580307
15.236908 15.228510 15.230919
11.560332 11.560332 11.562023
8.363641 8.366158 8.367212
3.689909 3.678862 3.680493
1.243753 1.219079 1.221866
```

The difference in prices between the closed form and finite difference method is plotted below. It is clear that as the strike moves further away from 0 , the difference between the Kirk's approximation and finite difference (red line) increases, while the difference between the Bjerksund and Stensland model and finite difference (blue line) stays at the same level. As stated in [3], the Kirk's approximation is overpricing the spread option when the strike is far away from 0 .

```
% Plot of difference in price against the benchmark
figure;
plot(PriceKirk-PriceFD, 'Color', 'red');
hold on;
plot(PriceBJS-PriceFD, 'Color', 'blue');
hold off;
title('Difference in Price Against Finite Difference');
legend('Kirk', 'BJS', 'Location', 'EastOutside');
xlabel('Strike');
ax = gca;
ax.XTickLabel = Strike;
ylabel('Difference in Price');
```


Next, the difference in delta between the closed form models and finite difference is plotted. The top plot shows the difference in delta for the first asset, and the bottom plot shows the difference in delta for the second asset. As seen from the small increments in the y-axis of order 10e-3, it can be seen that all three models (Kirk, BJS, finite difference) produce similar values for delta.

```
% Plot of difference in delta of first asset against the benchmark
figure;
subplot(2, 1, 1);
plot(DeltaKirk(:,1)-DeltaFD(:,1), 'Color', 'red');
hold on;
plot(DeltaBJS(:,1)-DeltaFD(:,1), 'Color', 'blue');
hold off;
title('Difference in Delta (Asset 1) Against FD');
legend('Kirk', 'BJS', 'Location', 'EastOutside');
xlabel('Strike');
ax = gca;
ax.XTickLabel = Strike;
ylabel('Difference in Delta');
% Plot of difference in delta of second asset against the benchmark
subplot(2, 1, 2);
plot(DeltaKirk(:,2)-DeltaFD(:,2), 'Color', 'red');
hold on;
plot(DeltaBJS(:,2)-DeltaFD(:,2), 'Color', 'blue');
hold off;
title('Difference in Delta (Asset 2) Against FD');
legend('Kirk', 'BJS', 'Location', 'EastOutside');
xlabel('Strike');
ax = gca;
ax.XTickLabel = Strike;
ylabel('Difference in Delta');
```


Analyzing Prices and Vega at Different Levels of Volatility

To further show the type of analysis that can be conducted using these models, the above spread option will now be priced at different levels of volatility for the first asset. The price and vega will be compared at three levels of volatility for the first asset: $0.1,0.3$, and 0.5 . The Bjerksund and Stensland model will be used for this analysis.

```
% Strike
Strike = 5;
% Specify output
OutSpec = {'Price', 'Vega'};
```

```
% Different levels of volatility for asset 1
Vol1 = [0.1, 0.3, 0.5];
StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);
% Bjerksund and Stensland model
[PriceBJS, VegaBJS] = ...
    spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);
% Display price
fprintf('\nPrices for different vol levels in asset 1:\n\n');
for i = 1:numel(Vol1)
    fprintf('%f\n', PriceBJS(i));
end
% Display vega for first asset
fprintf('\nAsset 1 vega for different vol levels in asset 1:\n\n');
for i = 1:numel(Vol1)
    fprintf('%f\n', VegaBJS(i,1));
end
fprintf('\n');
% Display vega for second asset
fprintf('\nAsset 2 vega for different vol levels in asset 1:\n\n');
for i = 1:numel(Vol1)
    fprintf('%f\n', VegaBJS(i,2));
end
fprintf('\n');
Prices for different vol levels in asset 1:
8.366158
14.209112
21.795746
Asset 1 vega for different vol levels in asset 1:
15.534849
36.212192
38.794348
Asset 2 vega for different vol levels in asset 1:
```

29.437036
7.133657
-0.557852

The change in the price and vega with respect to the volatility of the first asset is plotted below. It can be observed that as the volatility of the first asset increases, the price of the spread option also increases. Also, the changes in vega indicate that the price of the spread option becomes more sensitive to the volatility of the first asset and less sensitive to the volatility of the second asset.

```
figure;
```

```
% Plot price for BJS model
subplot(2, 1, 1);
plot(PriceBJS, 'Color', 'red');
title('Price (BJS)');
legend('Price', 'Location', 'EastOutside');
xlabel('Vol of Asset 1');
ax = gca;
ax.XTick = 1:3;
ax.XTickLabel = Vol1;
ylabel('Price');
% Plot of vega for BJS model
subplot(2, 1, 2);
plot(VegaBJS(:,1), 'Color', 'red');
hold on;
plot(VegaBJS(:,2), 'Color', 'blue');
hold off;
title('Vega (BJS)');
legend('Asset 1', 'Asset 2', 'Location', 'EastOutside');
xlabel('Vol of Asset 1');
ax = gca;
ax.XTick = 1:3;
ax.XTickLabel = Vol1;
ax.YLim = [-1 40];
ylabel('Vega');
```


Summary

In this example, European and American spread options were priced and analyzed using various techniques. The Financial Instruments Toolbox ${ }^{\text {TM }}$ provides functions for two types of closed form solutions (Kirk, BJS), the finite difference method, and the Monte Carlo simulation method. The closed form solutions are well suited for pricing and sensitivity calculation of European spread options because they are fast. However, they cannot price American spread options. The finite difference method and Monte Carlo method can price both European and American options. However, they are not as fast in pricing European spread options as compared to closed form solutions.

References

[1] Carmona, Rene, Durrleman, Valdo, Pricing and Hedging Spread Options, SIAM Review, Vol. 45, No. 4, pp. 627-685, Society for Industrial and Applied Mathematics, 2003.
[2] Wilmott, Paul, Dewynne, Jeff, Howison, Sam, Option Pricing, Oxford Financial Press, 1993.
[3] Bjerksund, Petter, Stensland, Gunnar, Closed form spread option valuation, Department of Finance, NHH, 2006.
[4] Longstaff, Francis A, Schwartz, Eduardo S, Valuing American Options by Simulation: A Simple Least-Squares Approach, Anderson Graduate School of Management, UC Los Angeles, 2001.

See Also

asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy | asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls | optpricebysim | optstockbyblk | optstockbyls | optstocksensbyblk | optstocksensbyls | spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls | spreadsensbybjs | spreadsensbyfd| spreadsensbykirk| spreadsensbyls

Related Examples

- "Hedging Strategies Using Spread Options" on page 3-67
- "Pricing Swing Options using the Longstaff-Schwartz Method" on page 3-76
- "Compute Option Prices on a Forward" on page 11-1162
- "Compute Forward Option Prices and Delta Sensitivities" on page 11-1227
- "Compute the Option Price on a Future" on page 11-1163
- "Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion" on page 3-89
- "Pricing Asian Options" on page 3-105

More About

- "Forwards Option" on page 3-46
- "Futures Option" on page 3-47
- "Spread Option" on page 3-43
- "Asian Option" on page 3-41
- "Vanilla Option" on page 3-42
- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24
- "Supported Interest-Rate Instruments" on page 2-2

External Websites

- Energy Trading \& Risk Management with MATLAB (47 min 31 sec)

Hedging Strategies Using Spread Options

This example shows different hedging strategies to minimize exposure in the Energy market using Crack Spread Options.

Understanding Crack Spread Options

In the petroleum industry, refiners are concerned about the difference between their input costs (crude oil) and output prices (refined products - gasoline, heating oil, diesel fuel, etc). The differential between these two underlying commodities is referred to as a Crack Spread. It represents the profit margin between crude oil and the refined products.

A Spread option is an option on the spread where the holder has the right, but not the obligation, to enter into a spot or forward spread contract. Crack Spread Options are often used to protect against declines in the crack spread or to monetise volatility or price expectations on the spread.

Example 1: Protecting Margins using a 1:1 Crack Spread Option

A marketer is interested in protecting his gasoline margin since current prices are strong. A crack spread option strategy will be used to mantain profits for the following season. In March the June WTI crude oil futures is at $\$ 91.10$ per barrel and RBOB gasoline futures contract is at $\$ 2.72$ per gallon. The marketer's strategy is a long crack call involving purchasing RBOB gasoline futures and selling crude oil futures.

```
OldFormat = get(0, 'format');
format bank
% Price and volatility of RBOB gasoline
Price1gallon = 2.72; % $/gallon
Price1 = Price1gallon * 42; % $/barrel
Vol1 = 0.39;
% Price and volatility of WTI crude oil
Price2 = 91.10; % $/barrel
Vol2 = 0.34;
% Assume the following data
% Spread Option
Strike = 20;
OptSpec = 'call';
Settle = '01-March-2013';
Maturity = '01-June-2013';
```

```
Corr = 0.45; % Correlation of underlying commodities
```

Define RateSpec and StockSpec

```
% Define RateSpec
Rate = 0.035;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', Rate, 'Compounding', ...
    Compounding, 'Basis', Basis);
% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1);
StockSpec2 = stockspec(Vol2, Price2);
```


Price the Crack Spread Option

\% Use the function 'spreadbybjs' in the Financial Instruments Toolbox(TM) to
\% price the spread option using the Bjerksund and Stensland model.

```
Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
```

 Maturity, OptSpec, Strike, Corr)
 Price =
9.91

The 1:1 implied current crack spread between these two underlyings is $\$ 23.14$ per barrel.

```
CrackSpread = Price1 - Price2 % $/barrel
```


CrackSpread =

23.14

Suppose that by expiration day, June crude oil prices decrease to $\$ 90.34$ per barrel and gasoline prices rise to $\$ 2.89$ per gallon.

```
% The price changes cause the marketer's profit margin (the new implied crack
% spread) to increase from $23.14/barrel to $31.04/barrel:
```

```
NewCrackSpread = (2.89 * 42) - 90.34
```

NewCrackSpread =
31.04

Since the marketer purchased a long crack call on the $\$ 20$ call, the option is now in the money by $\$ 11.04$

```
(NewCrackSpread - Strike)
```

ans $=$
11.04

The marketer paid $\$ 9.91$ from the long crack call, this protects the margin by $\$ 1.13$.

```
(NewCrackSpread - Strike - Price)
```

```
ans =
```

$$
1.13
$$

This strategy provides the marketer protection during spread increase scenarios.

Example 2: Creating a Floor with Crack Spread Options

A refiner is interested in covering its fixed and operating costs, but still profit from a favorable move in the market. In March the May WTI crude oil futures is at $\$ 99.43$ per barrel and RBOB gasoline futures contract is at $\$ 3.04$ per gallon. The refiner believes that the spread between those commodities of $\$ 28.25$ per barrel is favorable. Of this, $\$ 11$ corresponds to operating and fixed costs, and $\$ 17.25$ is the net refining margin. The refiner's strategy is to sell the crack spread by selling 10 RBOB gasoline futures and buying 10 crude oil futures.

```
% Price and volatility of RBOB gasoline
Price1gallon = 3.04; % $/gallon
Price1 = Price1gallon * 42; % $/barrel
Vol1 = 0.35;
```

```
Div1 = 0.0783;
% Price and volatility of WTI crude oil
Price2 = 99.43; % $/barrel
Vol2 = 0.38;
Div2 = 0.0571;
% The refiner purchases 10 May RBOB gasoline crack spread puts with a strike
% price of $25.
% Assume the following data
% Spread Option
Strike = 25;
OptSpec = 'put';
Settle = '01-March-2013';
Maturity = '01-May-2013';
Corr = 0.30; % Correlation of underlying commodities
Define RateSpec and StockSpec
% Define RateSpec
Rate = 0.035;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', Rate, 'Compounding', ...
    Compounding, 'Basis', Basis);
% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);
StockSpec2 = stockspec(Vol2, Price2, 'Continuous', Div2);
Price the Crack Spread Option
```

```
% Use the function 'spreadbyfd' in the Financial Instruments Toolbox(TM)
```

% Use the function 'spreadbyfd' in the Financial Instruments Toolbox(TM)
% to price the American spread option using the finite difference method.
Price = spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, 'AmericanOpt', 1)
Price =
6.61

```

By expiration, if option is exercised, the refiner would have hedged the cost of purchasing 10000 barrels of crude oil with the revenue of selling 10000 barrels of RBOB gasoline. The futures contract represents 1000 barrels of crude oil and 42000 gallons of gasoline.
```

CostOfHedge = Price * 10000 % Option premium
% The hedge cost \$66386 to implement and guarantees that neither a fall in
% RBOB gasoline prices or an increase in WTI crude oil prices will diminish
% the refining margin below $25.
ProfitMargin = 14 * 10000 %$
CrackingMargin = ProfitMargin - CostOfHedge
% This strategy allows a cracking margin of \$73613.
CostOfHedge =
66122.24
ProfitMargin =
140000.00
CrackingMargin =
73877.76
Another strategy for the refiner could be to buy the $\$ 22$ puts at a price of $\$ 5.38$.

```
```

StrikeNew = 22;

```
StrikeNew = 22;
PriceNew = spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
PriceNew = spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, StrikeNew, Corr, 'AmericanOpt', 1)
    Maturity, OptSpec, StrikeNew, Corr, 'AmericanOpt', 1)
% This time the hedge would have cost $53823, but it also guarantees a $11
% This time the hedge would have cost $53823, but it also guarantees a $11
% per barrel or $56176 cracking margin.
% per barrel or $56176 cracking margin.
NewCostOfHedge = PriceNew * 10000 % Option premium
```

NewCostOfHedge = PriceNew * 10000 % Option premium

```
```

NewProfitMargin = 11 * 10000
CrackingMargin = NewProfitMargin - NewCostOfHedge

```

\section*{PriceNew =}
5.36

\section*{NewCostOfHedge =}
53570.97

NewProfitMargin =
110000.00

\section*{CrackingMargin =}
56429.03

\section*{Example 3: Using Collars to Reduce the Cost of Hedging}

A refiner is concerned about its cost of hedging and decides to use a collar strategy. In April the crack spread is trading at \(\$ 4.23\) per barrel. The refiner is not convinced to lock in this margin, but also wants to protect against price changes causing the refinery margin to decrease less than \(\$ 4\) per barrel.
```

% Price and volatility of heating oil
Price1gallon = 2.52; % \$/gallon
Price1 = Price1gallon * 42; % \$/barrel
Vol1 = 0.38;
Div1 = 0.0762;
% Price and volatility of WTI crude oil
Price2 = 101.61; % \$/barrel
Vol2 = 0.34;
Div2 = 0.1169;
% To accomplish the collar strategy the refiner sells a call spread option
% with a strike of \$4.50 and uses the premium income to offset the cost of

```
```

% purchasing a put spread option with a strike of \$4. This allows the
% refiner to benefit if market prices move up and protects it if market
% prices move down.
% Assume the following data
Strike = [4.50;4];
OptSpec = {'call';'put'};
Settle = '01-April-2013';
Maturity = '01-June-2013';
Corr = 0.35; %Correlation of underlying commodities

```

Define RateSpec and StockSpec
```

% Define RateSpec
Rate = 0.035;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', ...
Compounding, 'Basis', Basis);
% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);
StockSpec2 = stockspec(Vol2, Price2, 'Continuous', Div2);

```

\section*{Price the Crack Spread Options}
```

% Use the function 'spreadbybjs' in the Financial Instruments Toolbox(TM) to

```
% Use the function 'spreadbybjs' in the Financial Instruments Toolbox(TM) to
% price the spread options using the Bjerksund and Stensland model.
% price the spread options using the Bjerksund and Stensland model.
Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr)
    Maturity, OptSpec, Strike, Corr)
% The collar strategy allows the refiner to reduced the cost of the hedge
% The collar strategy allows the refiner to reduced the cost of the hedge
% to $0.63:
% to $0.63:
% CostOfHedge = Premium of Call - Premium of Put
% CostOfHedge = Premium of Call - Premium of Put
CostOfHedge = Price(1) - Price(2)
```

CostOfHedge = Price(1) - Price(2)

```
Price =
7.06
6.43

The refiner is protected if the crack spread narrows to less than \(\$ 4\). If the crack spread widens to more than \(\$ 4.50\), the refiner will not benefit over this amount if he has hedged \(100 \%\) of all its market exposure.
```

set(0, 'format', OldFormat);

```

\section*{See Also}
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy | asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls | optpricebysim | optstockbyblk| optstockbyls | optstocksensbyblk| optstocksensbyls | spreadbybjs| spreadbyfd | spreadbykirk| spreadbyls | spreadsensbybjs | spreadsensbyfd| spreadsensbykirk| spreadsensbyls

\section*{Related Examples}
- "Pricing European and American Spread Options" on page 3-49
- "Pricing Swing Options using the Longstaff-Schwartz Method" on page 3-76
- "Compute Option Prices on a Forward" on page 11-1162
- "Compute Forward Option Prices and Delta Sensitivities" on page 11-1227
- "Compute the Option Price on a Future" on page 11-1163
- "Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion" on page 3-89
- "Pricing Asian Options" on page 3-105

\section*{More About}
- "Forwards Option" on page 3-46
- "Futures Option" on page 3-47
- "Spread Option" on page 3-43
- "Asian Option" on page 3-41
- "Vanilla Option" on page 3-42
- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24
- "Supported Interest-Rate Instruments" on page 2-2

\section*{External Websites}
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec )

\section*{Pricing Swing Options using the Longstaff-Schwartz Method}

This example shows how to price a swing option using a Monte Carlo simulation and the Longstaff-Schwartz method. A risk-neutral simulation of the underlying natural gas price is conducted using a mean-reverting model. The simulation results are used to price a swing option based on the Longstaff-Schwartz method [6]. This approach uses a regression technique to approximate the continuation value of the option. A comparison is made between a polynomial and spline basis to fit the regression. Finally, the resulting prices are analyzed against lower and upper price boundaries derived from standard European and American options.

\section*{Overview of Swing Options}

Swing options are popular financial instruments in the energy market, which provide flexibility in the volume of the delivered asset. In order for energy consumers to protect themselves against fluctuations in energy prices, they want to lock in a price by purchasing a forward contract, called the baseload forward contract. However, consumers do not know exactly how much energy will be used in the future, and energy commodities such as electricity and gas cannot easily be stored. Therefore, the consumer wants the flexibility to change the amount of energy that is delivered at each delivery date. Swing options provide this flexibility. Thus, the full contract is composed of two parts: the baseload forward contract, and the swing option component.

Swing options are generally over-the-counter (OTC) contracts that can be highly customized. Therefore, there are many different types of constraints and penalties (see [5] for more details). In this example, a swing option is priced where the only constraint is the daily volume, which is known as the Daily Contract Quantity (DCQ). When a swing right is exercised, the volume cannot go below the minimum DCQ (minDCQ), or go above the maximum DCQ (maxDCQ).

There are several methods to price swing options, such as finite differences, simulation, and dynamic programming based on trees [5]. This example uses the simulation based approach with the Longstaff-Schwartz method. The benefit of the simulation based approach is that the dynamics used to simulate the underlying asset price is separated from the pricing algorithm. In the finite difference and tree based methods, the pricing algorithm must be changed in order to consider pricing with a different underlying price dynamic.

\section*{Risk-Neutral Simulation of Natural Gas Price}

In this example, natural gas is used as the underlying asset with the following meanreverting dynamic [8]:
\[
d S_{t}=\kappa\left(\mu-\log \left(S_{t}\right)\right) S_{t} d t+\sigma S_{t} d W_{t}
\]
where \(W_{t}\) is a standard Brownian motion. Applying Ito's Lemma to the logarithm of the price leads to an Orstein-Uhlenbeck process:
\[
d X_{t}=\kappa\left(\theta-X_{t}\right) d t+\sigma d W_{t}
\]
where \(X_{t}=\log \left(S_{t}\right), \kappa>0\), and \(\theta\) is defined as:
\[
\theta=\mu-\frac{\sigma^{2}}{2 \kappa}
\]
\(\theta\) is the mean-reversion level that determines the value at which the simulated values will revert to in the long run. \(\kappa\) is the mean-reversion speed that determines how fast this reversion occurs. \(\sigma\) is the volatility of \(X\). We first proceed by simulating the logarithm of the price. Afterwards, the exponential of the simulated values are taken to obtain the prices.

The length of the simulation is for a one year period, with the initial price of 3.9 dollars per MMBtu. The Monte Carlo simulation is conducted for 1,000 trials, with daily periods. In practice, these parameters are calibrated against market data. In this example, \(\kappa=1.2, \theta=1.7\), and \(\sigma=59 \%\). The HWV object from the Financial Toolbox \({ }^{\mathrm{TM}}\) is used to simulate the mean-reverting dynamics of the natural gas price.
```

% Settlement date
Settle = '01-Jun-2014';
% Maturity Date
Maturity = '01-Jun-2015';
% Actual/Actual basis
Basis = 0;
% Initial log(price in \$/MMBtu)

```
```

XO = log(3.9);
% Volatility of log(price)
Sigma = 0.59;
% Number of trials in the Monte Carlo simulation
NumTrials =1000;
% Number of periods (daily)
NumPeriods = daysdif(Settle, Maturity, Basis);
% Daily time step
dt = 1/NumPeriods;
% Mean reversion speed of log(price)
Kappa = 1.2;
% Mean reversion level of log(price)
Theta = 1.7;
% Create HWV object
hwvobj = hwv(Kappa, Theta, Sigma, 'StartState', XO);
The simulation is run and plotted below.

```
```

% Set random number generator seed

```
% Set random number generator seed
savedState = rng(0, 'twister');
savedState = rng(0, 'twister');
% Simulate gas prices
% Simulate gas prices
[Paths, Times] = hwvobj.simBySolution(NumPeriods, 'NTRIALS', NumTrials, ...
[Paths, Times] = hwvobj.simBySolution(NumPeriods, 'NTRIALS', NumTrials, ...
    'DeltaTime', dt);
    'DeltaTime', dt);
Paths = squeeze(exp(Paths));
Paths = squeeze(exp(Paths));
% Restore random number generator state
% Restore random number generator state
rng(savedState);
rng(savedState);
% Plot paths
% Plot paths
figure;
figure;
plot(Times, Paths);
plot(Times, Paths);
title('Natural Gas Risk-Neutral Price Simulation');
title('Natural Gas Risk-Neutral Price Simulation');
xlabel('Time');
xlabel('Time');
ylabel('Price');
```

ylabel('Price');

```


In this example, natural gas is used as the underlying asset with a mean-reverting dynamic. However, the Longstaff-Schwartz algorithm can be used for other underlying assets, such as electricity, with any underlying price dynamic.

\section*{Pricing the Swing Option}

We consider a swing option with five swing rights at the strike of \(\$ 4.69 / \mathrm{MMBtu}\), which can be exercised daily between the day after the settlement date and the maturity date. The Daily Contract Quantity (DCQ) is 10,000 MMBtu, which is the average amount of natural gas that the consumer expects to purchase on a given day. The consumer has the flexibility to reduce the purchase amount (downswing) in one day to the minimum DCQ of \(2,500 \mathrm{MMBtu}\), or increase the purchase (upswing) to \(15,000 \mathrm{MMBtu}\). The continuously compounded annual risk-free rate is \(1 \%\).

RATESPEC is used to represent the interest-rate term structure. For the sake of simplicity, we consider a flat interest-rate term structure in this example. The values of RATESPEC can be modified to accomodate any interest-rate curve. The function HSWINGBYLS in this example assumes a daily exercise if the ExerciseDates input is empty.
```

% Define RateSpec
rfrate = 0.01;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rfrate, ...
'Compounding', Compounding, 'Basis', Basis);
% Daily exercise
% hswingbyls assumes daily exercise for empty ExerciseDates
ExerciseDates = [];
% Number of swings
NumSwings = 5;
% Daily Contract Quantity in MmBtu
DCQ = 10000;
% Minimum DCQ constraint in MMBtu
minDCQ = 2500;
% Maximum DCQ constraint in MMBtu
maxDCQ = 15000;
% Strike
Strike = 4.69;

```

The Longstaff-Schwartz method is a backward iteration algorithm, which steps backward in time from the maturity date. At each exercise date, the algorithm approximates the continuation value, which is the value of the option if it is not exercised. This is done by fitting a regression against the values of the simulated prices and the discounted future value of the option at the next exercise date. The future value of the option is known as the algorithm moves backward in time. The continuation value is compared to the sum of the payoff from immediate exercise (a downswing or upswing) and the continuation value of a swing option with one less swing right. If this sum is smaller, the option holder's optimal strategy is to not exercise on that date. The function HSWINGBYLS in this example uses this method to determine the optimal exercise strategy and the price for swing options [1,2,7].

As discussed earlier, the only constraint considered in this example is the minimum and maximum DCQ. In this case, the optimal early exercise strategy is of a bang-bang type. This means that when it is optimal to upswing or downswing at a certain exercise date, the option holder should always exercise at the maximum or minimum DCQ to maximize profit. The bang-bang exercise would not be the optimal strategy if, for example, there is a terminal penalty based on volume. The pricing algorithm would then need to additionally keep track of all possible volume levels, which significantly adds to the runtime performance cost.

First, the swing option is priced using a 3rd order polynomial to fit the regression of the Longstaff-Schwartz method. The function HSWINGBYLS also generates a plot of the regression between the underlying price and the continuation value at the exercise date before maturity.
```

% Price swing option using 3rd order polynomial to fit Longstaff-Schwartz
% regression
tic;
useSpline = false;
SwingPrice = hswingbyls(Paths, Times, RateSpec, Settle, Maturity, ...
Strike, ExerciseDates, NumSwings, DCQ, minDCQ, maxDCQ, useSpline, ...
[], true)
lsPolyTime = toc;
SwingPrice =
5.6943e+04

```


The above plot of the regression fit shows that the 3rd order polynomial does not fit the continuation value perfectly, especially near the hinge and at the extreme points. We now use the CSAPS function to fit the regression using a cubic smoothing spline with a smoothing parameter of 0.7. The Curve Fitting Toolbox \({ }^{\mathrm{TM}}\) is required to run the remainder of the example.
```

% Price swing option using smoothed splines to fit Longstaff-Schwartz
% regression
tic;
useSpline = true;
smoothingParam = 0.7;
SwingPriceSpline = hswingbyls(Paths, Times, RateSpec, Settle, Maturity, ...
Strike, ExerciseDates, NumSwings, DCQ, minDCQ, maxDCQ, useSpline, ...
smoothingParam, true)

```
```

lsSplineTime = toc;

```

SwingPriceSpline =
\(6.0729 \mathrm{e}+04\)


The plot of the regression shows that the cubic smoothing spline has a better fit against the data, thus obtaining a more accurate value for the continuation values. However, the below comparison shows that using a cubic smoothing spline takes longer than a 3rd order polynomial.
\% Print comparison of running times
```

fprintf('Comparison of running times:\n\n');
fprintf('3rd order polynomial: %.2f sec\n', lsPolyTime);
fprintf('Spline : %.2f sec\n\n', lsSplineTime);
Comparison of running times:
3rd order polynomial: 5.13 sec
Spline : 15.87 sec

```

Also, it is important to note that the price represents solely the optionality component. Hence, the price of the baseload forward contract is not included in the above calculated price. Because we used a fixed strike price, the baseload contract has a non-zero value, which can be calculated by:
\[
\text { BaseLoadPrice }=\sum_{i=1}^{N} e^{-r t_{i}} E\left(S_{t_{i}}-K\right)
\]
where \(t_{i}, i=1, \ldots, N\), are the exercise dates (see [3] for more details). The full price of the contract including the baseload and the swing option is calculated below using the swing option price from the smoothed cubic spline.
```

% Obtain discount factors
RS2 = intenvset(RateSpec, 'StartTimes', 0, 'EndTimes', Times(2:end));
D = intenvget(RS2,'Disc');
% Calculate baseload price
BaseLoadPrice = DCQ.*mean(Paths(2:end,:)-Strike,2)'*D;
% Calculate full contract price, based on results from cubic spline LS
FullContractPrice = BaseLoadPrice + SwingPriceSpline
FullContractPrice =
1.2479e+05

```

\section*{Price Bounds}

A lower bound for the swing option is a strip of European options, and the upper bound is a strip of American options [4]. Compared to European options, swing options have an early exercise premium at each exercise date, thus the price should be higher. The
price is lower than the American option strips, because only a single swing right can be exercised at each exercise date. More than one strip can be exercised in a single day using American options.

The prices for the strips of the lower and upper bounds are calculated below to check that the swing option prices are within these bounds. The European strip prices are calculated against the last five excercise dates.
```

% Obtain discount factor for the last NumSwings exercise dates
D = D(end-NumSwings+1:end);
% European lower bound
idx = size(Paths, 1):-1:(size(Paths, 1) - NumSwings + 1);
putEuro = D'*mean(max(Strike - Paths(idx,:), 0),2);
callEuro = D'*mean(max(Paths(idx,:) - Strike, 0),2);
lowerBound = ((DCQ-minDCQ).*putEuro+(maxDCQ-DCQ).*callEuro);
% American upper bound
[putAmer, callAmer] = hamericanPrice(Paths, Times, RateSpec, Strike);
upperBound = NumSwings.*((DCQ-minDCQ).*putAmer+(maxDCQ-DCQ).*callAmer);
% Print price and lower/upper bounds
fprintf('Comparison to lower and upper bounds:\n\n');
fprintf('Lower bound (European) : %.2f\n', lowerBound);
fprintf('Swing Option Price : %.2f\n', SwingPriceSpline);
fprintf('Upper bound (American) : %.2f\n\n', upperBound);
Comparison to lower and upper bounds:
Lower bound (European) : 44412.14
Swing Option Price : 60729.00
Upper bound (American) : 68181.42

```

The prices calculated using the Longstaff-Schwartz algorithm are within the lower and upper bounds. The below plot shows a comparison between the swing option and the upper and lower bounds as the number of swings increases, ceteris paribus. When the number of swings is one, the swing option is equivalent to an American option. In the case of daily exericse opportunity (NumSwings \(=365\) ), the swing option is equivalent to the strip of European options with daily maturity.


\section*{Conclusion}

The example shows the use of the Longstaff-Schwartz method to price a swing option where the underlying asset follows a mean-reverting dynamic. A 3rd order polynomial and a smoothed cubic spline are used to fit the regression in the Longstaff-Schwartz algorithm to approximate the continuation value. It was shown that the smoothed cubic spline fits the data better at the cost of slower performance. Finally, the resulting swing option prices were checked against the lower bound of a strip of European options and an upper bound of a strip of American options.

\section*{References}
[1] Boogert, A., de Jong, C., Gas storage valuation using a Monte Carlo method. Journal of Derivatives, 15(3):81-98, 2008.
[2] Dorr, Uwe, Valuation of Swing Options and Estimation of Exercise strategies by Monte Carlo Techniques, Oxford, 2002.
[3] Hull, John C., Options, Futures, and Other Derivatives, Sixth Edition, Pearson Education, Inc., 2006.
[4] Jaillet, P., Ronn, E. I., Tompaidis, S., Valuation of commodity-based swing options, Management Science, 50(7):909-921, 2004.
[5] Loland, Ambers, Lindqvist, Ola, Valuation of Commodity-Based Swing Options: A Survey, Norsk, Regnesentral, 2008.
[6] Longstaff, Francis A., Schwartz, Eduardo S, Valuing American Options by Simulation: A Simple Least-Squares Approach, The Review of Financial Studies, 14(1):113-147, 2001.
[7] Meinshausen, N., Hambly, B.M., Monte Carlo methods for the valuation of multiple exercise options, Mathematical Science, 14:557-583, 2004.
[8] Schwartz, Eduardo S, The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging, The Journal of Finance, 52(3):923-973, 1997.

\section*{See Also}
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy | asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls | optpricebysim | optstockbyblk|optstockbyls | optstocksensbyblk| optstocksensbyls | spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls | spreadsensbybjs | spreadsensbyfd | spreadsensbykirk | spreadsensbyls

\section*{Related Examples}
- "Pricing European and American Spread Options" on page 3-49
- "Hedging Strategies Using Spread Options" on page 3-67
- "Compute Option Prices on a Forward" on page 11-1162
- "Compute Forward Option Prices and Delta Sensitivities" on page 11-1227
- "Compute the Option Price on a Future" on page 11-1163
- "Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion" on page 3-89
- "Pricing Asian Options" on page 3-105

\section*{More About}
- "Forwards Option" on page 3-46
- "Futures Option" on page 3-47
- "Spread Option" on page 3-43
- "Asian Option" on page 3-41
- "Vanilla Option" on page 3-42
- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24
- "Supported Interest-Rate Instruments" on page 2-2

\section*{External Websites}
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec )

\section*{Simulating Electricity Prices with Mean-Reversion and JumpDiffusion}

This example shows how to simulate electricity prices using a mean-reverting model with seasonality and a jump component. The model is calibrated under the real-world probability using historical electricity prices. The market price of risk is obtained from futures prices. A risk-neutral Monte Carlo simulation is conducted using the calibrated model and the market price of risk. The simulation results are used to price a Bermudan option with electricity prices as the underlying.

\section*{Overview of the Model}

Electricity prices exhibit jumps in prices at periods of high demand when additional, less efficient electricity generation methods are brought on-line to provide a sufficient supply of electricity. In addition, they have a prominent seasonal component, along with reversion to mean levels. Therefore, these characteristics should be incorporated into a model of electricity prices [2].

In this example, electricity price is modeled as:
\[
\log \left(P_{t}\right)=f(t)+X_{t}
\]
where \(P_{t}\) is the spot price of electricity. The logarithm of electricity price is modeled with two components: \(f(t)\) and \(X_{t}\). The component \(f(t)\) is the deterministic seasonal part of the model, and \(X_{t}\) is the stochastic part of the model. Trigonometric functions are used to model \(f(t)\) as follows [3]:
\[
f(t)=s_{1} \sin (2 \pi t)+s_{2} \cos (2 \pi t)+s_{3} \sin (4 \pi t)+s_{4} \cos (4 \pi t)+s_{5}
\]
where \(s_{i}, i=1, \ldots, 5\) are constant parameters, and \(t\) is the annualized time factors. The stochastic component \(X_{t}\) is modeled as an Ornstein-Uhlenbeck process (mean-reverting) with jumps:
\[
d X_{t}=\left(\alpha-\kappa X_{t}\right) d t+\sigma d W_{t}+J\left(\mu_{J}, \sigma_{J}\right) d \Pi(\lambda)
\]

The parameters \(\alpha\) and \(\kappa\) are the mean-reversion parameters. Parameter \(\sigma\) is the volatility, and \(W_{t}\) is a standard Brownian motion. The jump size is \(J\left(\mu_{J}, \sigma_{J}\right)\), with
normally distributed mean \(\mu_{J}\) and standard deviation \(\sigma_{J}\). The Poisson process \(\Pi(\lambda)\) has a jump intensity of \(\lambda\).

\section*{Electricity Prices}

Sample electricity prices from January 1, 2010 to November 11, 2013 are loaded and plotted below. Prices contain the electricity prices, and PriceDates contain the dates associated with the prices. The logarithm of the prices and annual time factors are calculated.
```

% Load electricity prices and futures prices
load('electricity_prices.mat');
% Plot electricity prices
figure;
plot(PriceDates, Prices);
datetick();
title('Electricity Prices');
xlabel('Date');
ylabel('Price (\$)');
% Obtain log of prices
logPrices = log(Prices);
% Obtain annual time factors from dates
PriceTimes = yearfrac(PriceDates(1), PriceDates);

```


\section*{Calibration}

First, the deterministic seasonality part is calibrated using the least squares method. Since the seasonality function is linear with respect to the parameters \(s_{i}\), the backslash operator (mldivide) is used. After the calibration, the seasonality is removed from the logarithm of price. The logarithm of price and seasonality trends are plotted below. Also, the de-seasonalized logarithm of price is plotted.
```

% Calibrate parameters for the seasonality model
seasonMatrix = @(t) [sin(2.*pi.*t) cos(2.*pi.*t) sin(4.*pi.*t) ...
cos(4.*pi.*t) t ones(size(t, 1), 1)];
C = seasonMatrix(PriceTimes);
seasonParam = C\logPrices;

```
```

% Plot log price and seasonality line
figure;
subplot(2, 1, 1);
plot(PriceDates, logPrices);
datetick();
title('log(price) and Seasonality');
xlabel('Date');
ylabel('log(Prices)');
hold on;
plot(PriceDates, C*seasonParam, 'r');
hold off;
legend('log(Price)', 'seasonality');
% Plot de-seasonalized log price
X = logPrices-C*seasonParam;
subplot(2, 1, 2);
plot(PriceDates, X);
datetick();
title('log(price) with Seasonality Removed');
xlabel('Date');
ylabel('log(Prices)');

```


The second stage is to calibrate the stochastic part. The model for \(X_{t}\) needs to be discretized in order to conduct the calibration. To discretize, we assume a Bernoulli process for the jump events. That is, there is at most one jump per day since we are calibrating against daily electricity prices. The discretized equation is:
\[
X_{t}=\alpha \Delta t+\phi X_{t-1}+\sigma \xi
\]
with probability \((1-\lambda \Delta t)\) and,
\[
X_{t}=\alpha \Delta t+\phi X_{t-1}+\sigma \xi+\mu_{J}+\sigma_{J} \xi_{J}
\]
with probability \(\lambda \Delta t\), where \(\xi_{\text {and }} \xi_{J}\) are independent standard normal random variables, and \(\phi=1-\kappa \Delta t\). The density function of \(X_{t}\) given \(X_{t-1}\) is [1,4]:
\[
\begin{aligned}
& f\left(X_{t} \mid X_{t-1}\right)=(\lambda \Delta t) N_{1}\left(X_{t} \mid X_{t-1}\right)+(1-\lambda \Delta t) N_{2}\left(X_{t} \mid X_{t-1}\right) \\
& N_{1}\left(X_{t} \mid X_{t-1}\right)=\left(2 \pi\left(\sigma^{2}+\sigma_{J}^{2}\right)\right)^{-\frac{1}{2}} \exp \left(\frac{-\left(X_{t}-\alpha \Delta t-\phi X_{t-1}-\mu_{J}\right)^{2}}{2\left(\sigma^{2}+\sigma_{j}^{2}\right)}\right) \\
& N_{2}\left(X_{t} \mid X_{t-1}\right)=\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} \exp \left(\frac{-\left(X_{t}-\alpha \Delta t-\phi X_{t-1}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
\]

The parameters \(\theta=\left\{\alpha, \phi, \mu_{J}, \sigma^{2}, \sigma_{J}^{2}, \lambda\right\}\) can be calibrated by minimizing the negative \(\log\) likelihood function:
\[
\begin{aligned}
& \min _{\theta}-\sum_{t=1}^{T} \log \left(f\left(X_{t} \mid X_{t-1}\right)\right) \\
& \text { subject to } \phi<1, \sigma^{2}>0, \sigma_{J}^{2}>0,0 \leq \lambda \Delta t \leq 1
\end{aligned}
\]

The first inequality constraint, \(\phi<1\), is equivalent to \(\kappa>0\). The volatilities \(\sigma\) and \(\sigma_{J}\) must be positive. In the last inequality, \(\lambda \Delta t\) is between 0 and 1 , because it represents the probability of a jump occurring in \(\Delta t\) time. In this example, we take \(\Delta t\) to be one day. Consequently, there is at most 365 jumps in one year. The function mle from the Statistics and Machine Learning Toolbox \({ }^{\mathrm{TM}}\) is well suited to solve the above maximum likelihood problem.
```

% Prices at t, X(t)
Pt = X(2:end);
% Prices at t-1, X(t-1)
Pt_1 = X(1:end-1);
% Discretization for daily prices
dt = 1/365;
% PDF for discretized model
mrjpdf = @(Pt, a, phi, mu_J, sigmaSq, sigmaSq_J, lambda) ...
lambda.*exp((-(Pt-a-phi.*Pt_1-mu_J).^2)./ ...
(2.*(sigmaSq+sigmaSq_J))).* (1/sqrt(2.*pi.*(sigmaSq+sigmaSq_J))) + ...
(1-lambda).*exp((-(Pt-a-phi.*Pt_1).^2)/(2.*sigmaSq)).* ...
(1/sqrt(2.*pi.*sigmaSq));
% Constraints:
% phi < 1 (k > 0)
% sigmaSq > 0
% sigmaSq_J > 0
% 0 <= lambda <= 1

```
```

lb = [-Inf -Inf -Inf 0 0 0];
ub = [Inf 1 Inf Inf Inf 1];
% Initial values
x0 = [0 0 0 var(X) var(X) 0.5];
% Solve maximum likelihood
params = mle(Pt,'pdf',mrjpdf,'start',x0,'lowerbound',lb,'upperbound',ub,...
'optimfun','fmincon');
% Obtain calibrated parameters
alpha = params(1)/dt
kappa = params(2)/dt
mu J = params(3)
sigma = sqrt(params(4)/dt)
sigma_J = sqrt(params(5))
lambda = params(6)/dt
alpha =
-20.1060
kappa =
176.7465
mu_J =
0.2044
sigma =
3.0930
sigma_J =
0.2659
lambda =

```

\section*{Monte Carlo Simulation}

The calibrated parameters and the discretized model allow us to simulate electricity prices under the real-world probability. The simulation is conducted for approximately 2 years with 10,000 trials. It exceeds 2 years to include all the dates in the last month of simulation. This is because the expected simulation prices for the futures contract expiry date is required in the next section to calculate the market price of risk. The seasonality is added back on the simulated paths. A plot for a single simulation path is plotted below.
```

rng default;
% Simulate for about 2 years
nPeriods = 365*2+20;
nTrials = 10000;
n1 = randn(nPeriods,nTrials);
n2 = randn(nPeriods, nTrials);
j = binornd(1, lambda*dt, nPeriods, nTrials);
SimPrices = zeros(nPeriods, nTrials);
SimPrices(1,:) = X(end);
for i=2:nPeriods
SimPrices(i,:) = alpha*dt + (1-kappa*dt)*SimPrices(i-1,:) + ...
sigma*sqrt(dt)*n1(i,:) + j(i,:).*(mu_J+sigma_J*n2(i,:));
end
% Add back seasonality
SimPriceDates = daysadd(PriceDates(end),0:nPeriods-1);
SimPriceTimes = yearfrac(PriceDates(1), SimPriceDates);
CSim = seasonMatrix(SimPriceTimes);
logSimPrices = SimPrices + repmat(CSim*seasonParam,1,nTrials);
% Plot logarithm of Prices and simulated logarithm of Prices
figure;
subplot(2, 1, 1);
plot(PriceDates, logPrices);
hold on;
plot(SimPriceDates(2:end), logSimPrices(2:end,1), 'red');
seasonLine = seasonMatrix([PriceTimes; SimPriceTimes(2:end)])*seasonParam;
plot([PriceDates; SimPriceDates(2:end)], seasonLine, 'green');
hold off;
datetick();

```
```

title('Actual log(price) and Simulated log(price)');
xlabel('Date');
ylabel('log(price)');
legend('market', 'simulation');
% Plot prices and simulated prices
PricesSim = exp(logSimPrices);
subplot(2, 1, 2);
plot(PriceDates, Prices);
hold on;
plot(SimPriceDates, PricesSim(:,1), 'red');
hold off;
datetick();
title('Actual Prices and Simulated Prices');
xlabel('Date');
ylabel('Price (\$)');
legend('market', 'simulation');

```


\section*{Calibration of the Market Price of Risk}

Up to this point, the parameters were calibrated under the real-world probability. However, in order to price options, we need the simulation under the risk-neutral probability. To obtain this, we calculate the market price of risk from futures prices to derive the risk-neutral parameters. Suppose that there are monthly futures contracts available on the market, which are settled daily during the contract month. For example, such futures for the PJM electricity market is listed on the Chicago Mercantile Exchange [5].

The futures are settled daily during the contract month. Therefore, we obtain daily futures values by assuming the futures value is constant for the contract month. The expected futures prices from the real-world measure are also needed to calculate the
market price of risk. This can be obtained from the simulation conducted in the previous section.
```

% Obtain daily futures prices
FutPricesDaily = zeros(size(SimPriceDates));
for i=1:nPeriods
idx = find(year(SimPriceDates(i)) == year(FutExpiry) \& ...
month(SimPriceDates(i)) == month(FutExpiry));
FutPricesDaily(i) = FutPrices(idx);
end
% Calculate expected futures price under real-world measure
SimPricesExp = mean(PricesSim, 2);

```

To calibrate the market price of risk against market futures values, we use the following equation:
\[
\log \left(\frac{F_{t}}{E_{t}}\right)=-\sigma e^{-k t} \int_{0}^{t} e^{k s} m_{s} d s
\]
where \(F_{t}\) is the observed futures value at time \(t\), and \(E_{t}\) is the expected value under the real-world measure at time \(t\). The equation was obtained using the same methodology as described in [3]. We assume that the market price of risk is fully driven by the Brownian motion. The market price of risk, \(m_{t}\), can be solved by discretizing the above equation and solving a system of linear equations.
```

% Setup system of equations
t0 = yearfrac(PriceDates(1), FutValuationDate);
tz = SimPriceTimes-t0;
b = -log(FutPricesDaily(2:end) ./ SimPricesExp(2:end)) ./ ...
(sigma.*exp(-kappa.*tz(2:end)));
A = (1/kappa).*(exp(kappa.*tz(2:end)) - exp(kappa.*tz(1:end-1)));
A = tril(repmat(A', size(A,1), 1));
% Precondition to stabilize numerical inversion
P = diag(1./diag(A));
b = P*b;
A = P*A;
% Solve for market price of risk
riskPremium = A\b;

```

\section*{Simulation of Risk-neutral Prices}

Once \(m_{t}\) is obtained, risk-neutral simulation can be conducted using the following dynamics:
\[
X_{t}=\alpha \Delta t+\phi X_{t-1}-\sigma m_{t-1} \Delta t+\sigma \xi
\]
with probability \((1-\lambda \Delta t)\) and
\[
X_{t}=\alpha \Delta t+\phi X_{t-1}-\sigma m_{t-1} \Delta t+\sigma \xi+\mu_{J}+\sigma_{J} \xi_{J}
\]
with probability \(\lambda \Delta t\).
```

nTrials = 10000;
n1 = randn(nPeriods, nTrials);
n2 = randn(nPeriods, nTrials);
j = binornd(1, lambda*dt, nPeriods, nTrials);
SimPrices = zeros(nPeriods, nTrials);
SimPrices(1,:) = X(end);
for i=2:nPeriods
SimPrices(i,:) = alpha*dt + (1-kappa*dt)*SimPrices(i-1,:) + ...
sigma*sqrt(dt)*n1(i,:) - sigma*dt*riskPremium(i-1) + ...
j(i,:).*(mu_J+sigma_J*n2(i,:));
end
% Add back seasonality
CSim = seasonMatrix(SimPriceTimes);
logSimPrices = SimPrices + repmat(CSim*seasonParam,1,nTrials);
% Convert log(Price) to Price
PricesSim = exp(logSimPrices);

```

The expected values from the risk-neutral simulation are plotted against the market futures values. This confirms that the risk-neutral simulation closely reproduces the market futures values.
```

% Obtain expected values from the risk-neutral simulation
SimPricesExp = mean(PricesSim,2);
fexp = zeros(size(FutExpiry));
for i = 1:size(FutExpiry,1)
idx = SimPriceDates == FutExpiry(i);
if sum(idx)==1
fexp(i) = SimPricesExp(idx);
end

```
end
```

% Plot expected values from the simulation against market futures prices
figure;
subplot(2,1,1);
plot(FutExpiry, FutPrices(1:size(FutExpiry,1)),'-*');
hold on;
plot(FutExpiry, fexp, '*r');
datetick();
hold off;
title('Market Futures Prices and Simulated Futures Prices');
xlabel('Date');
ylabel('Price');
legend('market', 'simulation', 'Location', 'NorthWest');
subplot(2,1,2);
plot(SimPriceDates(2:end), riskPremium);
datetick();
title('Market Price of Risk');
xlabel('Date');
ylabel('Market Price of Risk');

```


\section*{Pricing a Bermudan Option}

The risk-neutral simulated values can be used as input into the function optpricebysim in the Financial Instruments Toolbox \({ }^{\mathrm{TM}}\) to price an European, Bermudan, or American option on electricity prices. Below, we price a two year Bermudan call option with two exercise opportunities. The first excercise is after one year, and the second is at the maturity of the option.
```

% Settle, maturity of option
Settle = FutValuationDate;
Maturity = addtodate(FutValuationDate, 2, 'year');
% Create interest rate term structure

```
```

riskFreeRate = 0.01;
Basis = 0;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rate', riskFreeRate, 'Compounding', ...
Compounding, 'Basis', Basis);
% Cutoff simulation at maturity
endIdx = find(SimPriceDates == Maturity);
SimPrices = PricesSim(1:endIdx,:);
Times = SimPriceTimes(1:endIdx) - SimPriceTimes(1);
% Bermudan call option with strike 60, two exercise opportunities, after
% one year and at maturity.
OptSpec = 'call';
Strike = 60;
ExerciseTimes = [Times(366) Times(end)];
Price = optpricebysim(RateSpec, SimPrices, Times, OptSpec, Strike, ...
ExerciseTimes)
Price =
1.1588

```

\section*{References}
[1] Escribano, Alvaro, Pena, Juan Ignacio, Villaplana, Pablo, Modeling Electricity Prices: International Evidence, Universidad Carloes III de Madrid, Working Paper 02-27, 2002.
[2] Lucia, Julio J., Schwartz, Eduaro, Electricity Prices and Power Derivatives: Evidence from the Nordic Power Exchange, Review of Derivatives Research, Vol. 5, Issue 1, pp 5-50, 2002.
[3] Seifert, Jan, Uhrig-Homburg, Marliese, Modelling Jumps in Electricity Prices: Theory and Empirical Evidence, Review of Derivatives Research, Vol. 10, pp 59-85, 2007.
[4] Villaplana, Pablo, Pricing Power Derivatives: A Two-Factor Jump-Diffusion Approach, Universidad Carloes III de Madrid, Working Paper 03-18, 2003.
[5] http://www.cmegroup.com

\section*{See Also}
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy | asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg
| lookbacksensbyls | optpricebysim | optstockbyblk | optstockbyls
| optstocksensbyblk| optstocksensbyls | spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls | spreadsensbybjs | spreadsensbyfd| spreadsensbykirk | spreadsensbyls

\section*{Related Examples}
- "Pricing European and American Spread Options" on page 3-49
- "Hedging Strategies Using Spread Options" on page 3-67
- "Pricing Swing Options using the Longstaff-Schwartz Method" on page 3-76
- "Compute Option Prices on a Forward" on page 11-1162
- "Compute Forward Option Prices and Delta Sensitivities" on page 11-1227
- "Compute the Option Price on a Future" on page 11-1163
- "Pricing Asian Options" on page 3-105

\section*{More About}
- "Forwards Option" on page 3-46
- "Futures Option" on page 3-47
- "Spread Option" on page 3-43
- "Asian Option" on page 3-41
- "Vanilla Option" on page 3-42
- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24
- "Supported Interest-Rate Instruments" on page 2-2

\section*{External Websites}
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec )

\section*{Pricing Asian Options}

This example shows how to price a European Asian option using four methods in the Financial Instruments Toolbox \({ }^{\text {TM }}\). This example demonstrates two closed form approximations (Levy and Kemna-Vorst), a lattice model (Cox-Ross-Rubinstein), and Monte Carlo simulation. All these methods involve some tradeoffs between numerical accuracy and computational efficiency. This example also demonstrates how variations in spot prices, volatility, and strike prices affect option prices on European Vanilla and Asian options.

\section*{Overview of Asian Options}

Asian options are securities with payoffs that depend on the average value of an underlying asset over a specific period of time. Underlying assets can be stocks, commodities, or financial indices.

Two types of Asian options are found in the market: average price options and average strike options. Average price options have a fixed strike value and the average used is the asset price. Average strike options have a strike equal to the average value of the underlying asset.

The payoff at maturity of an average price European Asian option is:
\[
\begin{aligned}
& \max (0, \text { Savg }-K) \text { for a call } \\
& \max (0, K-\text { Savg }) \text { for a put }
\end{aligned}
\]

The payoff at maturity of an average strike European Asian option is:
\[
\begin{aligned}
& \max (0, S t-S a v g) \text { for a call } \\
& \max (0, S a v g-S t) \text { for a put }
\end{aligned}
\]
where Savg is the average price of underlying asset, \(S t\) is the price at maturity of underlying asset, and \(K\) is the strike price.

The average can be arithmetic or geometric.

\section*{Pricing Asian Options Using Closed Form Approximations}

The Financial Instruments Toolbox \({ }^{\mathrm{TM}}\) supports two closed form approximations for European Average Price options. The Levy model is based on the arithmetic mean of
the price of the underlying during the life of the option [1]. The Kemna-Vorst method provides a closed form pricing solution to geometric averaging options [2].

The pricing functions asianbylevy and asianbykv take an interest rate term structure and stock structure as inputs.

Consider the following example:
```

% Create RateSpec from the interest rate term structure
StartDates = '12-March-2014';
EndDates = '12-March-2020';
Rates = 0.035;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', ...
Compounding, 'Basis', Basis);
% Define StockSpec with the underlying asset information
Sigma = 0.20;
AssetPrice = 100;
StockSpec = stockspec(Sigma, AssetPrice);
% Define the Asian option
Settle = '12-March-2014';
ExerciseDates = '12-March-2015';
Strike = 90;
OptSpec = 'call';
% Levy model approximation
PriceLevy = asianbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates);
% Kemna-Vorst closed form model
PriceKV = asianbykv(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates);
% Comparison of calculated prices for the geometric and arithmetic options
% using different closed form algorithms.
fprintf('Comparison of Asian Arithmetic and Geometric Prices:\n\n');
fprintf('Levy: %f\n', PriceLevy);
fprintf('Kemna-Vorst: %f\n', PriceKV);

```

Comparison of Asian Arithmetic and Geometric Prices:
Levy: \(\quad 12.164734\)
Kemna-Vorst: 11.862580

\section*{Computing Asian Options Prices Using the Cox-Ross-Rubinstein Model}

In addition to closed form approximations, the Financial Instruments Toolbox \({ }^{\mathrm{TM}}\) supports pricing European Average Price options using CRR trees via the function asianbycrr.

The lattice pricing function asianbycrr takes an interest rate tree (CRRTree) and stock structure as inputs. We can price the previous options by building a CRRTree using the interest rate term structure and stock specification from the example above.
```

% Create the time specification of the tree
NPeriods = 20;
TreeValuationDate = '12-March-2014';
TreeMaturity = '12-March-2024';
TimeSpec = crrtimespec(TreeValuationDate, TreeMaturity, NPeriods);
% Build the tree
CRRTree = crrtree(StockSpec, RateSpec, TimeSpec);
% Price the European Asian option using the CRR lattice model.
% The function 'asianbycrr' computes prices of arithmetic and geometric
% Asian options.
AvgType = {'arithmetic';'geometric'};
AmericanOpt = 0;
PriceCRR20 = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates,...
AmericanOpt, AvgType);
% Increase the numbers of periods in the tree and compare results
NPeriods = 40;
TimeSpec = crrtimespec(TreeValuationDate, TreeMaturity, NPeriods);
CRRTree = crrtree(StockSpec, RateSpec, TimeSpec);
PriceCRR40 = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates,...
AmericanOpt, AvgType);
% Display prices
fprintf('Asian Prices using the CRR lattice model:\n\n');
fprintf('PriceArithmetic(CRR20): %f\n', PriceCRR20(1));
fprintf('PriceArithmetic(CRR40): %f\n', PriceCRR40(1));
fprintf('PriceGeometric (CRR20): %f\n', PriceCRR20(2));
fprintf('PriceGeometric (CRR40): %f\n', PriceCRR40(2));

```
```

Asian Prices using the CRR lattice model:
PriceArithmetic(CRR20): 11.934380
PriceArithmetic(CRR40): 12.047243
PriceGeometric (CRR20): 11.620899
PriceGeometric (CRR40): 11.732037

```

The results above compare the findings from calculating both geometric and arithmetic Asian options, using CRR trees with 20 and 40 levels. It can be seen that as the number of levels increases, the results approach the closed form solutions.

\section*{Calculating Prices of Asian Options Using Monte Carlo Simulation}

Another method to price European Average Price options with the Financial Instruments Toolbox \({ }^{\text {TM }}\) is via Monte Carlo simulations.

The pricing function asianbyls takes an interest rate term structure and stock structure as inputs. The output and execution time of the Monte Carlo simulation depends on the number of paths (NumTrials) and the number of time periods per path ( NumPeriods).

We can price the same options of previous examples using Monte Carlo.
```

% Simulation Parameters
NumTrials = 500;
NumPeriods = 200;
% Price the arithmetic option
PriceAMC = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates,'NumTrials', NumTrials, ...
'NumPeriods', NumPeriods);
% Price the geometric option
PriceGMC = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates,'NumTrials', NumTrials, ...
'NumPeriods', NumPeriods, 'AvgType', AvgType(2));
% Use the antithetic variates method to value the options
Antithetic = true;
PriceAMCAntithetic = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates,'NumTrials', NumTrials, 'NumPeriods',...
NumPeriods, 'Antithetic', Antithetic);
PriceGMCAntithetic = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...

```
```

ExerciseDates,'NumTrials', NumTrials, 'NumPeriods',...
NumPeriods, 'Antithetic', Antithetic,'AvgType', AvgType(2));

```
```

% Display prices
fprintf('Asian Prices using Monte Carlo Method:\n\n');
fprintf('Arithmetic Asian\n');
fprintf('Standard Monte Carlo: %f\n', PriceAMC);
fprintf('Geometric Asian\n');
fprintf('Standard Monte Carlo: %f\n', PriceGMC);
Asian Prices using Monte Carlo Method:

```

\section*{Arithmetic Asian}
```

Standard Monte Carlo: 11.674673
Variate Antithetic Monte Carlo: 12.511805
Geometric Asian
Standard Monte Carlo: 11.758960
Variate Antithetic Monte Carlo: 12.069869

```
fprintf('Variate Antithetic Monte Carlo: \%f\n\n', PriceAMCAntithetic);
fprintf('Variate Antithetic Monte Carlo: \%f\n', PriceGMCAntithetic);

The use of variate antithetic accelerates the conversion process by reducing the variance.
We can create a plot to display the difference between the geometric Asian price using the Kemna-Vorst model, standard Monte Carlo and antithetic Monte Carlo.
```

nTrials = [50:5:100 110:10:250 300:50:500 600:100:2500]';
PriceKVVector = PriceKV * ones(size(nTrials));
PriceGMCVector = nan(size(nTrials));
PriceGMCAntitheticVector = nan(size(nTrials));
TimeGMCAntitheticVector = nan(length(nTrials),1);
TimeGMCVector = nan(length(nTrials),1);
idx = 1;
for iNumTrials = nTrials'
PriceGMCVector(idx) = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates,'NumTrials', iNumTrials, 'NumPeriods',...
NumPeriods,'AvgType', AvgType(2));
PriceGMCAntitheticVector(idx) = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Se
ExerciseDates,'NumTrials', iNumTrials, 'NumPeriods',...
NumPeriods, 'Antithetic', Antithetic,'AvgType', AvgType(2));
idx = idx+1;
end

```
```

figure('menubar', 'none', 'numbertitle', 'off')
plot(nTrials, [PriceKVVector PriceGMCVector PriceGMCAntitheticVector]);
title 'Variance Reduction by Antithetic'
xlabel 'Number of Simulations'
ylabel 'Asian Option Price'
legend('Kemna-Vorst', 'Standard Monte Carlo', 'Variate Antithetic Monte Carlo ', 'loca

```


The graph above shows how oscillation in simulated price is reduced through the use of variate antithetic.

\section*{Compare Pricing Model Results}

Prices calculated by the Monte Carlo method will vary depending on the outcome of the simulations. Increase NumTrials and analyze the results.
```

NumTrials = 2000;
PriceAMCAntithetic2000 = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Exerc:
NumTrials', NumTrials, 'NumPeriods', NumPeriods, 'Antithetic', Antithetic);
PriceGMCAntithetic2000 = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates,'NumTrials', NumTrials, 'NumPeriods',...
NumPeriods, 'Antithetic', Antithetic,'AvgType', AvgType(2));
% Comparison of calculated Asian call prices
fprintf('Comparison of Asian call prices:\n\n');
fprintf('Arithmetic Asian\n');
fprintf('Levy: %f\n', PriceLevy);
fprintf('Cox-Ross-Rubinstein: %f\n', PriceCRR40(1));
fprintf('Monte Carlo(500 trials): %f\n', PriceAMCAntithetic);
fprintf('Monte Carlo(2000 trials): %f\n\n', PriceAMCAntithetic2000);
fprintf('Geometric Asian\n');
fprintf('Kemna-Vorst: %f\n', PriceKV);
fprintf('Cox-Ross-Rubinstein: %f\n', PriceCRR40(2));
fprintf('Monte Carlo(500 trials): %f\n', PriceGMCAntithetic);
fprintf('Monte Carlo(2000 trials): %f\n', PriceGMCAntithetic2000);
Comparison of Asian call prices:
Arithmetic Asian
Levy: 12.164734
Cox-Ross-Rubinstein: 12.047243
Monte Carlo(500 trials): 12.511805
Monte Carlo(2000 trials): 11.998253
Geometric Asian
Kemna-Vorst: 11.862580
Cox-Ross-Rubinstein: 11.732037
Monte Carlo(500 trials): 12.069869
Monte Carlo(2000 trials): 11.864606

```

The table above contrasts the results from closed approximation models against price simulations implemented via CRR trees and Monte Carlo.

\section*{Asian and Vanilla Call Options}

Asian options are popular instruments since they tend to be less expensive than comparable Vanilla calls and puts. This is because the volatility in the average value of an underlier tends to be lower than the volatility of the value of the underlier itself.

The Financial Instruments Toolbox \({ }^{\text {TM }}\) supports several algorithms for pricing vanilla options. Let's compare the price of Asian options against their Vanilla counterpart.

First, we compute the price of a European Vanilla Option using the Black Scholes model.
```

PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, ExerciseDates,...
OptSpec, Strike);
% Comparison of calculated call prices.
fprintf('Comparison of Vanilla and Asian Prices:\n\n');
fprintf('Vanilla BLS: %f\n', PriceBLS);
fprintf('Asian Levy: %f\n', PriceLevy);
fprintf('Asian Kemna-Vorst: %f\n', PriceKV);
Comparison of Vanilla and Asian Prices:

```
```

Vanilla BLS: 15.743809
Asian Levy: 12.164734
Asian Kemna-Vorst: 11.862580

```

Both geometric and arithmetic Asians price lower than their Vanilla counterpart.
We can analyze options prices at different levels of the underlying asset. Using the Financial Instruments Toolbox \({ }^{\text {TM }}\), it is possible to observe the effect of different parameters on the price of the options. Consider for example, the effect of variations in the price of the underlying asset.
```

StockPrices = (50:5:150)';
PriceBLS = nan(size(StockPrices));
PriceLevy = nan(size(StockPrices));
PriceKV = nan(size(StockPrices));
idx = 1;
for So = StockPrices';
SP = stockspec(Sigma, So);
PriceBLS(idx) = optstockbybls(RateSpec, SP, Settle, ExerciseDates,...
OptSpec, Strike);
PriceLevy(idx) = asianbylevy(RateSpec, SP, OptSpec, Strike, Settle,...
ExerciseDates);
PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, Strike, Settle,...
ExerciseDates);
idx = idx+1;
end

```
```

figure('menubar', 'none', 'numbertitle', 'off')
plot(StockPrices, [PriceBLS PriceLevy PriceKV]);
xlabel 'Spot Price ($)'
ylabel 'Option Price ($)'
title 'Call Price Comparison'
legend('Vanilla', 'Arithmetic Asian', 'Geometric Asian', 'location', 'northwest');

```


It can be observed that the price of the Asian option is cheaper than the price of the Vanilla option.

Additionally, it is possible to observe the effect of changes in the volatility of the underlying asset. The table below shows what happens to Asian and Vanilla option prices when the constant volatility changes.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{-} & \multicolumn{2}{|l|}{Option (ITM)} \\
\hline Stri & 90 & AssetPrice = & \\
\hline Volatility & Levy & Kemna-Vorst & BLS \\
\hline 10\% & 11.3987 & 11.3121 & 13.4343 \\
\hline 20\% & 12.1647 & 11.8626 & 15.7438 \\
\hline 30\% & 13.6512 & 13.0338 & 18.8770 \\
\hline 40\% & 15.4464 & 14.4086 & 22.2507 \\
\hline
\end{tabular}

A comparison of the calculated prices show that Asian options are less sensitive to volatility changes, since averaging reduces the volatility of the value of the underlying asset. Also, Asian options that use arithmetic average are more expensive than those that use geometric average.

Now, examine the effect of strike on option prices.
```

Strikes = (90:5:120)';
NStrike = length(Strikes);
PriceBLS = nan(size(Strikes));
PriceLevy = nan(size(Strikes));
PriceKV = nan(size(Strikes));
idx = 1;
for ST = Strikes';
SP = stockspec(Sigma, AssetPrice);
PriceBLS(idx) = optstockbybls(RateSpec, SP, Settle, ExerciseDates,...
OptSpec, ST);
PriceLevy(idx) = asianbylevy(RateSpec, SP, OptSpec, ST, Settle,...
ExerciseDates);
PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, ST, Settle,...
ExerciseDates);
idx = idx+1;
end
figure('menubar', 'none', 'numbertitle', 'off')
plot(Strikes, [PriceBLS PriceLevy PriceKV]);
xlabel 'Strike Price ($)'
ylabel 'Option Price ($)'
title 'Effect of Strike on Option Prices'
legend('Vanilla', 'Arithmetic Asian', 'Geometric Asian', 'location', 'northeast');

```


The figure above displays the option price with respect to strike price. Since call option value decreases as strike price increases, the Asian call curve is under the Vanilla call curve. It can be observed that the Asian call option is less expensive than the Vanilla call.

\section*{Hedging}

Hedging is an insurance to minimize exposure to market movements on the value of a position or portfolio. As the underlying changes, the proportions of the instruments forming the portfolio may need to be adjusted to keep the sensitivities within the desired range. Delta measures the option price sensitivity to changes in the price of the underlying.

Assume that we have a portfolio of two options with the same strike and maturity. We can use the Financial Instruments Toolbox \({ }^{\text {TM }}\) to compute Delta for the Vanilla and Average Price options.
```

OutSpec = 'Delta';
% Vanilla option using Black Scholes
DeltaBLS = optstocksensbybls(RateSpec, StockSpec, Settle, ExerciseDates,...
OptSpec, Strike, 'OutSpec', OutSpec);
% Asian option using Levy model
DeltaLevy = asiansensbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates, 'OutSpec', OutSpec);
% Asian option using Kemna-Vorst method
DeltaLKV= asiansensbykv(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates, 'OutSpec', OutSpec);
% Delta Comparison
fprintf('Comparison of Vanilla and Asian Delta:\n\n');
fprintf('Vanilla BLS: %f\n', DeltaBLS);
fprintf('Asian Levy: %f\n', DeltaLevy);
fprintf('Asian Kemna-Vorst: %f\n', DeltaLKV);
Comparison of Vanilla and Asian Delta:
Vanilla BLS: 0.788666
Asian Levy: 0.852806
Asian Kemna-Vorst: 0.844986

```

The following graph demonstrates the behavior of Delta for the Vanilla and Asian options as a function of the underlying price.
```

StockPrices = (40:5:120)';
NStockPrices = length(StockPrices);
DeltaBLS = nan(size(StockPrices));
DeltaLevy = nan(size(StockPrices));
DeltaKV = nan(size(StockPrices));
idx = 1;
for SPrices = StockPrices'
SP = stockspec(Sigma, SPrices);
DeltaBLS(idx) = optstocksensbybls(RateSpec, SP, Settle, ...
ExerciseDates, OptSpec, Strike, 'OutSpec', OutSpec);

```
```

 DeltaLevy(idx) = asiansensbylevy(RateSpec, SP, OptSpec, Strike,...
 Settle, ExerciseDates, 'OutSpec', OutSpec);
 DeltaKV(idx) = asiansensbykv(RateSpec, SP, OptSpec, Strike, ...
 Settle, ExerciseDates,'OutSpec', OutSpec);
 idx = idx+1;
 end
figure('menubar', 'none', 'numbertitle', 'off')
plot(StockPrices, [DeltaBLS DeltaLevy DeltaKV]);
xlabel 'Spot Price (\$)'
ylabel 'Call Delta'
title 'Delta Comparison (Strike Price = \$90)
legend('Vanilla', 'Arithmetic Asian', 'Geometric Asian', 'location', 'northwest');

```


A Vanilla, or Asian, in the money (ITM) call option is more sensitive to price movements than an out of the money (OTM) option. If the asset price is deep in the money, then it is more likely to be exercised. The opposite occurs for an out of the money option. Asian delta is lower for out of the money options and is higher for in the money options than its Vanilla European counterpart. The geometric Asian delta is lower than the arithmetic Asian delta.

\section*{References}
[1] Levy, E.,"Pricing European Average Rate Currency Options", Journal of International Money and Finance, 14,474-491,(1992).
[2] Kemna, A. \& Vorst, A.,"A Pricing Method for Options Based on Average Asset Values", Journal of Banking and Finance,14,113-129,(1990).

\section*{Pricing Equity Derivatives Using Trees}
```

In this section...
"Computing Instrument Prices" on page 3-119
"Computing Prices Using CRR" on page 3-120
"Computing Prices Using EQP" on page 3-122
"Computing Prices Using ITT" on page 3-124
"Computing Prices Using STT" on page 3-126
"Examining Output from the Pricing Functions" on page 3-128
"Graphical Representation of Equity Derivative Trees" on page 3-131

```

\section*{Computing Instrument Prices}

The portfolio pricing functions crrprice, eqpprice, and ittprice calculate the price of any set of supported instruments based on a binary equity price tree, an implied trinomial price tree, or a standard trinomial tree. These functions are capable of pricing the following instrument types:
- Vanilla stock options
- American and European puts and calls
- Exotic options
- Asian
- Barrier
- Compound
- Lookback
- Stock options (Bermuda put and call schedules)

The syntax for calling the function crrprice is:
```

[Price, PriceTree] = crrprice(CRRTree, InstSet, Options)

```

The syntax for eqpprice is:
[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)
The syntax for ittprice is:
```

Price = ittprice(ITTTree, ITTInstSet, Options)

```

The syntax for sttprice is:
```

[Price, PriceTree] = sttprice(STTTree, InstSet, Name, Value)

```

These functions require two input arguments: the equity price tree and the set of instruments, InstSet, and allow a third optional argument.

\section*{Required Arguments}

CRRTree is a CRR equity price tree created using crrtree. EQPTree is an equal probability equity price tree created using eqptree. ITTTree is an ITT equity price tree created using itttree. STTTree is a standard trinomial equity price tree created using stttree. See "Building Equity Binary Trees" on page 3-3 and "Building Implied Trinomial Trees" on page 3-8 to learn how to create these structures.

InstSet is a structure that represents the set of instruments to be priced independently using the model.

\section*{Optional Argument}

You can enter a third optional argument, Options, used when pricing barrier options. For more specific information, see Appendix B.

These pricing functions internally classify the instruments and call the appropriate individual instrument pricing function for each of the instrument types. The CRR pricing functions are asianbycrr, barrierbycrr, compoundbycrr, lookbackbycrr, and optstockbycrr. A similar set of functions exists for EQP, ITT, and STT pricing. You can also use these functions directly to calculate the price of sets of instruments of the same type. See the reference pages for these individual functions for further information.

\section*{Computing Prices Using CRR}

Consider the following example, which uses the portfolio and stock price data in the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.
```

load deriv.mat

```

Use the MATLAB whos command to display a list of the variables loaded from the MATfile.
\begin{tabular}{lcrll} 
Name & Size & Bytes & Class & Attributes \\
& & & & \\
BDTInstSet & \(1 \times 1\) & 27344 & struct & \\
BDTTree & \(1 \times 1\) & 7322 & struct & \\
BKInstSet & \(1 \times 1\) & 27334 & struct & \\
BKTree & \(1 \times 1\) & 8532 & struct & \\
CRRInstSet & \(1 \times 1\) & 7066 & struct \\
CRRTree & \(1 \times 1\) & 21086 & struct \\
EQPInstSet & \(1 \times 1\) & struct \\
EQPTree & \(1 \times 1\) & 7086 & struct \\
HJMInstSet & \(1 \times 1\) & 27336 & struct \\
HJMTree & \(1 \times 1\) & 8334 & struct \\
HWInstSet & \(1 \times 1\) & 8534 & struct \\
HWTree & \(1 \times 1\) & struct \\
ITTInstSet & \(1 \times 1\) & 12670 & struct \\
ITTTree & \(1 \times 1\) & 21070 & struct \\
STTInstSet & \(1 \times 1\) & 7782 & struct \\
STTTree & \(1 \times 1\) & 17458 & struct \\
ZeroInstSet & \(1 \times 1\) & 2152 & struct
\end{tabular}

CRRTree and CRRInstSet are the required input arguments to call the function crrprice.

Use instdisp to examine the set of instruments contained in the variable CRRInstSet.

\section*{instdisp(CRRInstSet)}


Note Because of space considerations, the compound option above (Index 4) has been condensed to fit the page. The instdisp command displays all compound option fields on your computer screen.

The instrument set contains eight instruments:
- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options (Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by crrprice.

Now use crrprice to calculate the price of each instrument in the instrument set.
```

Price = crrprice(CRRTree, CRRInstSet)

```
Price =
8.2863
2.5016
12.1272
3.3241
7.6015
11.7772
4.1797
3.4219

\section*{Computing Prices Using EQP}

Load the data into the MATLAB workspace.
```

load deriv.mat

```

Use the MATLAB whos command to display a list of the variables loaded from the MATfile.
\begin{tabular}{lrrl} 
Name & Size & Bytes \begin{tabular}{l} 
Class
\end{tabular} Attributes \\
& & & \\
BDTInstSet & \(1 \times 1\) & 27344 & struct \\
BDTTree & \(1 \times 1\) & 7322 & struct \\
BKInstSet & \(1 \times 1\) & 27334 & struct \\
BKTree & \(1 \times 1\) & 8532 & struct \\
CRRInstSet & \(1 \times 1\) & 21066 & struct \\
CRRTree & \(1 \times 1\) & 7086 & struct \\
EQPInstSet & \(1 \times 1\) & 21066 & struct \\
EQPTree & \(1 \times 1\) & 7086 & struct \\
HJMInstSet & \(1 \times 1\) & 27336 & struct \\
HJMTree & \(1 \times 1\) & 8334 & struct \\
HWInstSet & \(1 \times 1\) & 27334 & struct \\
HWTree & \(1 \times 1\) & 8532 & struct
\end{tabular}
\begin{tabular}{llrl} 
ITTInstSet & \(1 \times 1\) & 21070 & struct \\
ITTTree & \(1 \times 1\) & 12660 & struct \\
STTInstSet & \(1 \times 1\) & 21070 & struct \\
STTTree & \(1 \times 1\) & 7782 & struct \\
ZeroInstSet & \(1 \times 1\) & 17458 & struct \\
ZeroRateSpec & \(1 \times 1\) & 2152 & struct
\end{tabular}

EQPTree and EQPInstSet are the input arguments required to call the function eqpprice.

Use the command instdisp to examine the set of instruments contained in the variable EQPInstSet.
instdisp(EQPInstSet)


Note Because of space considerations, the compound option above (Index 4) has been condensed to fit the page. The instdisp command displays all compound option fields on your computer screen.

The instrument set contains eight instruments:
- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options (Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by eqpprice.

Now use eqpprice to calculate the price of each instrument in the instrument set.
```

Price = eqpprice(EQPTree, EQPInstSet)

```

Price =
8.4791
2.6375
12.2632
3.5091
8.7941
12.9577
4.7444
3.9178

\section*{Computing Prices Using ITT}

Consider the following example, which uses the portfolio and stock price data in the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.
```

load deriv.mat

```

Use the MATLAB whos command to display a list of the variables loaded from the MATfile.
\begin{tabular}{lrrl} 
Name & Size & Bytes Class Attributes \\
& & & \\
BDTInstSet & \(1 \times 1\) & 27344 & struct \\
BDTTree & \(1 \times 1\) & 7322 & struct \\
BKInstSet & \(1 \times 1\) & 27334 & struct \\
BKTree & \(1 \times 1\) & 8532 & struct \\
CRRInstSet & \(1 \times 1\) & 21066 & struct
\end{tabular}
\begin{tabular}{llrl} 
CRRTree & \(1 \times 1\) & 7086 & struct \\
EQPInstSet & \(1 \times 1\) & 21066 & struct \\
EQPTree & \(1 \times 1\) & 7086 & struct \\
HJMInstSet & \(1 \times 1\) & 27336 & struct \\
HJMTree & \(1 \times 1\) & 8334 & struct \\
HWInstSet & \(1 \times 1\) & 27334 & struct \\
HWTree & \(1 \times 1\) & 8532 & struct \\
ITTInstSet & \(1 \times 1\) & 21070 & struct \\
ITTTree & \(1 \times 1\) & 12660 & struct \\
STTInstSet & \(1 \times 1\) & 21070 & struct \\
STTTree & \(1 \times 1\) & 7782 & struct \\
ZeroInstSet & \(1 \times 1\) & 17458 & struct \\
ZeroRateSpec & \(1 \times 1\) & 2152 & struct
\end{tabular}

ITTTree and ITTInstSet are the input arguments required to call the function ittprice. Use the command instdisp to examine the set of instruments contained in the variable ITTInstSet.

\section*{instdisp(ITTInstSet)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Index & Type & OptSpec & Strike & & ettle & & ExerciseDates & \multicolumn{7}{|c|}{AmericanOpt Name Quantity} \\
\hline 1 & OptStock & call & 95 & & 1-Jan-2006 & & 31-Dec-2008 & & 1 - & Call1 10 & & & & \\
\hline 2 & OptStock & put & 80 & & 1 -Jan-2006 & & 01-Jan-2010 & & 0 & Put1 & & & & \\
\hline Index & Type 0 & OptSpec & Strike & \multicolumn{3}{|l|}{Settle} & ExerciseDates & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{American0pt
\[
1
\]}} & BarrierSpec & \multirow[t]{2}{*}{C Barrier} & \multirow[t]{2}{*}{\begin{tabular}{l}
Rebate \\
0
\end{tabular}} & \multirow[t]{2}{*}{Name Barrier1} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Quantity } \\
& 1
\end{aligned}
\]} \\
\hline 3 & Barrier & call 8 & 85 & & -Jan-2006 & & 31-Dec-2008 & & & ui & & & & \\
\hline Index & Type & \multicolumn{3}{|l|}{UOptSpec UStrike} & USettle & & \multicolumn{2}{|l|}{UExerciseDates} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{UAmericanOpt COptSpec 1 put}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CStrike } \\
& 5
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { re CSettle } \\
& 01-J a n-2006
\end{aligned}
\]}} & \multirow[t]{2}{*}{CExerciseDates 01-Jan-2010} \\
\hline 4 & Compound & call & 99 & & 01-Jan-2006 & & 01-Jan-2010 & & & & & & & \\
\hline Index & Type & OptSpec & Strike & & ettle & & ExerciseDates & & American0pt & Name Q & Quantity & & & \\
\hline 5 & Lookback & call & 85 & & 1-Jan-2006 & & 01 -Jan-2008 & & 0 & Lookback1 7 & & & & \\
\hline 6 & Lookback & call & 85 & & 1 -Jan-2006 & & 01-Jan-2010 & & 0 & Lookback2 9 & & & & \\
\hline Index & Type Opt & tSpec Str & rike Set & ttl & & & erciseDates A & Amer & ricanOpt Av & gType Avg & gPrice Av & AvgDate & Name Qua & antity \\
\hline 7 & Asian cal & 1155 & 01 & -Ja & an-2006 & & -Jan-2008 0 & 0 & ar & ithmetic NaN & & NaN & Asian1 5 & \\
\hline 8 & Asian cal & 1155 & & -Ja & an-2006 & & -Jan-2010 0 & & & ithmetic NaN & & NaN & Asian2 7 & \\
\hline
\end{tabular}

The instrument set contains eight instruments:
- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options (Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by ittprice.

Now use ittprice to calculate the price of each instrument in the instrument set.
```

Price = ittprice(ITTTree, ITTInstSet)
Price =
1.6506
10.6832
2.4074
3.2294
0.5426
6.1845
3.2052
6.6074

```

\section*{Computing Prices Using STT}

Consider the following example, which uses the portfolio and stock price data in the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.
load deriv.mat
Use the MATLAB whos command to display a list of the variables loaded from the MATfile.
\begin{tabular}{lrrl} 
Name & Size & Bytes & Class \\
& & & Attributes \\
BDTInstSet & \(1 \times 1\) & 27344 & struct \\
BDTTree & \(1 \times 1\) & 7322 & struct \\
BKInstSet & \(1 \times 1\) & 27334 & struct \\
BKTree & \(1 \times 1\) & 8532 & struct \\
CRRInstSet & \(1 \times 1\) & 21066 & struct \\
CRRTree & \(1 \times 1\) & 7086 & struct \\
EQPInstSet & \(1 \times 1\) & 21066 & struct \\
EQPTree & \(1 \times 1\) & 7086 & struct \\
HJMInstSet & \(1 \times 1\) & 27336 & struct \\
HJMTree & \(1 \times 1\) & 8334 & struct \\
HWInstSet & \(1 \times 1\) & 27334 & struct \\
HWTree & \(1 \times 1\) & 8532 & struct \\
ITTInstSet & \(1 \times 1\) & 21070 & struct \\
ITTTree & \(1 \times 1\) & 12660 & struct \\
STTInstSet & \(1 \times 1\) & 21070 & struct \\
STTTree & \(1 \times 1\) & 7782 & struct \\
ZeroInstSet & \(1 \times 1\) & 17458 & struct \\
ZeroRateSpec & \(1 \times 1\) & 2152 & struct
\end{tabular}

STTTree and STTInstSet are the input arguments required to call the function sttprice. Use the command instdisp to examine the set of instruments contained in the variable STTInstSet.


The instrument set contains eight instruments:
- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options (Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by sttprice.

Now use sttprice to calculate the price of each instrument in the instrument set.
```

Price = sttprice(STTTree, STTInstSet)

```

Price =
4.5025
3.0603
3.7977
1.7090
11.7296
12.9120
1.6905
2.6203

\section*{Examining Output from the Pricing Functions}

The prices in the output vector Price correspond to the prices at observation time zero (tObs \(=0\) ), which is defined as the valuation date of the equity tree. The instrument indexing within Price is the same as the indexing within InstSet.

In the CRR example, the prices in the Price vector correspond to the instruments in this order.
```

InstNames = instget(CRRInstSet, 'FieldName','Name')
InstNames =
Call1
Put1
Barrier1
Compound1
Lookback1
Lookback2
Asian1
Asian2

```

So, in the Price vector, the fourth element, 3.3241, represents the price of the fourth instrument (Compound1), and the sixth element, 11.7772, represents the price of the sixth instrument (Lookback2).

In the ITT example, the prices in the Price vector correspond to the instruments in this order.
```

InstNames = instget(ITTInstSet, 'FieldName','Name')
InstNames =
Call1
Put1
Barrier1
Compound1
Lookback1
Lookback2
Asian1
Asian2

```

So, in the Price vector, the first element, 1.650, represents the price of the first instrument (Call1), and the eighth elements, 6.607, represents the price of the eighth instrument (Asian2).

\section*{Price Tree Output for CRR}

If you call a pricing function with two output arguments, for example:
```

[Price, PriceTree] = crrprice(CRRTree, CRRInstSet)

```
you generate a price tree structure along with the price information.
This price tree structure PriceTree holds all pricing information.
```

PriceTree =
FinObj: 'BinPriceTree'
PTree: {[8x1 double] [8x2 double] [8x3 double] [8x4 double] [8x5 double]}
tObs: [0 1 2 3 4]
dObs: [llllll

```

The first field of this structure, FinObj, indicates that this structure represents a price tree. The second field, PTree, is the tree holding the prices of the instruments in each node of the tree. Finally, the third and fourth fields, tObs and dObs, represent the observation time and date of each level of PTree, with tObs using units in terms of compounding periods.

Using the command-line interface, you can directly examine PriceTree.PTree, the field within the PriceTree structure that contains the price tree with the price vectors at every state. The first node represents tObs \(=0\), corresponding to the valuation date.
```

PriceTree.PTree{1}

```
ans =
8.2863
2.5016
12.1272
3.3241
7.6015
11.7772
4.1797
3.4219

With this interface, you can observe the prices for all instruments in the portfolio at a specific time.

The function eqpprice also returns a price tree that you can examine in the same way.

\section*{Price Tree Output for ITT}

If you call a pricing function with two output arguments, for example:
```

[Price, PriceTree] = ittprice(ITTTree, ITTInstSet)

```
you generate a price tree structure along with the price information.
This price tree structure PriceTree holds all pricing information.
```

PriceTree =
FinObj: 'TrinPriceTree'
PTree: {[8x1 double] [8x3 double] [8x5 double] [8x7 double] [8x9 double]}
tObs: [[0}10122)3\mp@code{4]
dObs: [l732678}733043 733408 733773 734139]

```

The first field of this structure, FinObj, indicates that this structure represents a trinomial price tree. The second field, PTree is the tree holding the prices of the instruments in each node of the tree. Finally, the third and fourth fields, tObs and dObs, represent the observation time and date of each level of PTree, with tObs using units in terms of compounding periods.

Using the command-line interface, you can directly examine PriceTree. PTree, the field within the PriceTree structure that contains the price tree with the price vectors at every state. The first node represents tObs \(=0\), corresponding to the valuation date.
```

PriceTree.PTree{1}

```
ans =
1.6506
10.6832
2.4074
3.2294
0.5426
6.1845
3.2052
6.6074

With this interface, you can observe the prices for all instruments in the portfolio at a specific time.

\section*{Prices for Lookback and Asian Options for Equity Trees}

Lookback options and Asian options are path-dependent, and, as such, there are no unique prices for any node except the root node. So, the corresponding values for lookback and Asian options in the price tree are set to NaN, the only exception being the root node. This becomes apparent if you examine the prices in the second node (tobs = 1) of the CRR price tree:
```

PriceTree.PTree{2}
ans =

11.9176	0
0.9508	7.1914
16.4600	2.6672
2.5896	5.0000
NaN	NaN

```

Examining the prices in the second node (tobs \(=1\) ) of the ITT price tree displays:
PriceTree.PTree\{2\}
ans =
\begin{tabular}{rrr}
3.9022 & 0 & 0 \\
6.3736 & 13.3743 & 22.1915 \\
5.6914 & 0 & 0 \\
2.7663 & 3.8594 & 5.000 O \\
NaN & NaN & NaN \\
NaN & NaN & NaN \\
NaN & NaN & NaN \\
NaN & NaN & NaN
\end{tabular}

\section*{Graphical Representation of Equity Derivative Trees}

You can use the function treeviewer to display a graphical representation of a tree, allowing you to examine interactively the prices and rates on the nodes of the tree until maturity. The graphical representations of CRR, EQP, and LR trees are equivalent to Black-Derman-Toy (BDT) trees, given that they are all binary recombining trees. The graphical representations of ITT and STT trees are equivalent to Hull-White (HW) trees, given that they are all trinomial recombining trees. See "Graphical Representation of Trees" on page 2-142 for an overview on the use of treeviewer with CRR trees, EQP trees, LR trees, ITT trees, and STT trees and their corresponding option price trees. Follow the instructions for BDT trees.

\section*{See Also}
asianbycrr | asianbyeqp | asianbyitt | asianbystt | barrierbycrr | barrierbyeqp | barrierbyitt | barrierbystt | compoundbycrr |
```

compoundbyeqp | compoundbyitt | compoundbystt | crrprice | crrsens |
crrtimespec | crrtree | eqpprice | eqpsens | eqptimespec | eqptree |
instasian | instbarrier | instcompound | instlookback| instoptstock |
ittprice | ittsens | itttimespec | itttree | lookbackbycrr | lookbackbyeqp
| lookbackbyitt | lookbackbystt | lrtimespec | lrtree | optstockbycrr
| optstockbyeqp | optstockbyitt | optstockbylr | optstockbystt
| optstocksensbylr | stockspec | sttprice | sttsens | treepath |
trintreepath

```

\section*{Related Examples}
- "Understanding Equity Trees" on page 3-2
- "Computing Equity Instrument Sensitivities" on page 3-133
- "Creating Instruments or Properties" on page 1-19
- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Pricing European Call Options Using Different Equity Models" on page 3-150
- "Pricing Asian Options" on page 3-105

\section*{More About}
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Computing Equity Instrument Sensitivities}

Sensitivities can be reported either as dollar price changes or percentage price changes. The delta, gamma, and vega sensitivities that the toolbox computes are dollar sensitivities.

The functions crrsens, eqpsens, ittsens, and sttsens compute the delta, gamma, and vega sensitivities of instruments using a stock tree. They also optionally return the calculated price for each instrument. The sensitivity functions require the same two input arguments used by the pricing functions (CRRTree and CRRInstSet for CRR, EQPTree and EQPInstSet for EQP, ITTTree and ITTInstSet for ITT, and STTTree and STTInstSet for STT).

As with the instrument pricing functions, the optional input argument Options is also allowed. You would include this argument if you want a sensitivity function to generate a price for a barrier option as one of its outputs and want to control the method that the toolbox uses to perform the pricing operation. See Appendix B or the derivset function for more information.

For path-dependent options (lookback and Asian), delta and gamma are computed by finite differences in calls to crrprice, eqpprice, ittprice, and sttprice. For the other options (stock option, barrier, and compound), delta and gamma are computed from the CRR, EQP, ITT, and STT trees and the corresponding option price tree. (See Chriss, Neil, Black-Scholes and Beyond, pp. 308-312.)

\section*{CRR Sensitivities Example}

The calling syntax for the sensitivity function is:
```

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)

```

Using the example data in deriv.mat, calculate the sensitivity of the instruments.
```

load deriv.mat
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);

```

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

\section*{format bank}
```

All = [Delta, Gamma, Vega, Price]

```
\begin{tabular}{rrrr}
0.59 & 0.04 & 53.45 & 8.29 \\
-0.31 & 0.03 & 67.00 & 2.50 \\
0.69 & 0.03 & 67.00 & 12.13 \\
-0.12 & -0.01 & -98.08 & 3.32 \\
-0.40 & -45926.32 & 88.18 & 7.60 \\
-0.42 & -112143.15 & 119.19 & 11.78 \\
0.60 & 45926.32 & 49.21 & 4.18 \\
0.82 & 112143.15 & 41.71 & 3.42
\end{tabular}

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument in CRRInstSet. To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument price.
```

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

```

All =
\begin{tabular}{rrrr}
0.07 & 0.00 & 6.45 & 8.29 \\
-0.12 & 0.01 & 26.78 & 2.50 \\
0.06 & 0.00 & 5.53 & 12.13 \\
-0.04 & -0.00 & -29.51 & 3.32 \\
-0.05 & -6041.77 & 11.60 & 7.60 \\
-0.04 & -9522.02 & 10.12 & 11.78 \\
0.14 & 10987.98 & 11.77 & 4.18 \\
0.24 & 32771.92 & 12.19 & 3.42
\end{tabular}

\section*{ITT Sensitivities Example}

The calling syntax for the sensitivity function is:
```

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet, Options)

```

Using the example data in deriv.mat, calculate the sensitivity of the instruments.
```

load deriv.mat

```
```

warning('off', 'fininst:itttree:Extrapolation');
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet);

```

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.
```

format bank

```
```

All = [Delta, Gamma, Vega, Price]

```

All =
\begin{tabular}{rrrr}
0.24 & 0.03 & 19.35 & 1.65 \\
-0.43 & 0.02 & 49.69 & 10.68 \\
0.35 & 0.04 & 12.29 & 2.41 \\
-0.07 & 0.00 & 6.73 & 3.23 \\
0.63 & 142945.66 & 38.90 & 0.54 \\
0.60 & 22703.21 & 68.92 & 6.18 \\
0.32 & -142945.66 & 18.48 & 3.21 \\
0.67 & -22703.21 & 17.75 & 6.61
\end{tabular}

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument in ITTInstSet.

Note: In this example, the extrapolation warnings are turned off before calculating the sensitivities to avoid displaying many warnings on the Command Window as the sensitivities are calculated.

If the extrapolation warnings are turned on
```

warning('on', 'fininst:itttree:Extrapolation');

```
and ittsens is rerun, the extrapolation warnings scroll as the command executes:
```

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet)

```
Warning: The option set specified in StockOptSpec was too narrow for the
generated tree.
This made extrapolation necessary. Below is a list of the options that were
outside of the
range of those specified in StockOptSpec.
Option Type: 'call' Maturity: 01-Jan-2007 Strike=67.2897
Option Type: 'put' Maturity: 01-Jan-2007 Strike=37.1528
Option Type: 'put' Maturity: 01-Jan-2008 Strike=27.6066
Option Type: 'put' Maturity: 31-Dec-2008 Strike=20.5132
Option Type: 'call' Maturity: 01-Jan-2010 Strike=164.0157
Option Type: 'put' Maturity: 01-Jan-2010 Strike=15.2424
> In itttree>InterpOptPrices (line 680)
    In itttree (line 285)
    In stocktreesens>stocktreevega (line 193)
    In stocktreesens (line 94)
    In ittsens (line 79)
Delta \(=\)
        0.24
        \(-0.43\)
```

 0.35
 -0.07
 0.63
 0.60
 0.32
 0.67
 Gamma =
0.03
0.02
0.04
0.00
142945.66
22703.21
142945.66
-22703.21
Vega =
19.35
49.69
12.29
6.73
38.90
68.92
18.48
17.75
Price =
1.65
10.68
2.41
3.23
0.54
6.18
3.21
6.61

```

These warnings are a consequence of having to extrapolate to find the option price of the tree nodes. In this example, the set of inputs options was too narrow for the shift in the tree nodes introduced by the disturbance used to calculate the sensitivities. As a consequence extrapolation for some of the nodes was needed. Since the input data is quite close the extrapolated data, the error introduced by extrapolation is fairly low.

\section*{STT Sensitivities Example}

The calling syntax for the sensitivity function is:
[Delta, Gamma, Vega, Price] = sttsens(STTTree, InstSet, Name, Value)
Using the example data in deriv.mat, calculate the sensitivity of the instruments.
load deriv.mat
[Delta, Gamma, Vega, Price] = sttsens(STTTree, STTInstSet);
You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

\section*{format bank}

All = [Delta, Gamma, Vega, Price]
All =
\begin{tabular}{rrrr}
0.53 & 0.02 & 52.90 & 4.50 \\
-0.09 & 0.00 & 42.44 & 3.06 \\
0.47 & 0.03 & 25.98 & 3.80 \\
-0.06 & 0.00 & -9.53 & 1.71 \\
0.23 & -186495.25 & 70.38 & 11.73 \\
0.33 & -191186.43 & 92.92 & 12.91 \\
0.57 & 186495.25 & 25.81 & 1.69 \\
0.66 & 191186.43 & 37.88 & 2.62
\end{tabular}

\section*{See Also}
asianbycrr | asianbyeqp | asianbyitt | asianbystt | barrierbycrr | barrierbyeqp | barrierbyitt | barrierbystt | compoundbycrr | compoundbyeqp | compoundbyitt | compoundbystt | crrprice | crrsens | crrtimespec | crrtree | eqpprice | eqpsens | eqptimespec | eqptree | instasian | instbarrier | instcompound | instlookback | instoptstock | ittprice | ittsens | itttimespec | itttree | lookbackbycrr | lookbackbyeqp | lookbackbyitt | lookbackbystt | lrtimespec| lrtree | optstockbycrr | optstockbyeqp | optstockbyitt | optstockbylr|optstockbystt | optstocksensbylr | stockspec | sttprice | sttsens | treepath | trintreepath

\section*{Related Examples}
- "Understanding Equity Trees" on page 3-2
- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Creating Instruments or Properties" on page 1-19
- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Pricing European Call Options Using Different Equity Models" on page 3-150
- "Pricing Asian Options" on page 3-105

\section*{More About}
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Equity Derivatives Using Closed-Form Solutions}
```

In this section...
"Introduction" on page 3-139
"Black-Scholes Model" on page 3-139
"Black Model" on page 3-140
"Roll-Geske-Whaley Model" on page 3-141
"Bjerksund-Stensland 2002 Model" on page 3-142
"Pricing Using the Black-Scholes Model" on page 3-142
"Pricing Using the Black Model" on page 3-144
"Pricing Using the Roll-Geske-Whaley Model" on page 3-145
"Pricing Using the Bjerksund-Stensland Model" on page 3-146

```

\section*{Introduction}

Financial Instruments Toolbox supports four types of closed-form solutions and analytical approximations to calculate price and sensitivities (greeks) of vanilla options:
- Black-Scholes model
- Black model
- Roll-Geske-Whaley model
- Bjerksund-Stensland 2002 model

\section*{Black-Scholes Model}

The Black-Scholes model is one of the most commonly used models to price European calls and puts. It serves as a basis for many closed-form solutions used for pricing options. The standard Black-Scholes model is based on the following assumptions:
- There are no dividends paid during the life of the option.
- The option can only be exercised at maturity.
- The markets operate under a Markov process in continuous time.
- No commissions are paid.
- The risk-free interest rate is known and constant.
- Returns on the underlying stocks are log-normally distributed.

Note: The Black-Scholes model implemented in Financial Instruments Toolbox software allows dividends. The following three dividend methods are supported:
- Cash dividend
- Continuous dividend yield
- Constant dividend yield

However, not all Black-Scholes closed-form pricing functions support all three dividend methods. For more information on specifying the dividend methods, see stockspec.

Closed-form solutions based on a Black-Scholes model support the following tasks.
\begin{tabular}{|l|l|}
\hline Task & Function \\
\hline \begin{tabular}{l} 
Price European options with different dividends \\
using the Black-Scholes option pricing model.
\end{tabular} & optstockbybls \\
\hline \begin{tabular}{l} 
Calculate European option prices and sensitivities \\
using the Black-Scholes option pricing model.
\end{tabular} & optstocksensbybls \\
\hline \begin{tabular}{l} 
Calculate implied volatility on European options \\
using the Black-Scholes option pricing model.
\end{tabular} & impvbybls \\
\hline \begin{tabular}{l} 
Price European simple chooser options using Black- \\
Scholes model.
\end{tabular} & chooserbybls \\
\hline
\end{tabular}

For an example using the Black-Scholes model, see "Pricing Using the Black-Scholes Model" on page 3-142.

\section*{Black Model}

Use the Black model for pricing European options on physical commodities, forwards or futures. The Black model supported by Financial Instruments Toolbox software is a special case of the Black-Scholes model. The Black model uses a forward price as an underlier in place of a spot price. The assumption is that the forward price at maturity of the option is log-normally distributed.

Closed-form solutions for a Black model support the following tasks.
\begin{tabular}{|l|l|}
\hline Task & Function \\
\hline \begin{tabular}{l} 
Price European options on futures using the Black \\
option pricing model.
\end{tabular} & optstockbyblk \\
\hline \begin{tabular}{l} 
Calculate European option prices and sensitivities \\
on futures using the Black option pricing model.
\end{tabular} & optstocksensbyblk \\
\hline \begin{tabular}{l} 
Calculate implied volatility for European options \\
using the Black option pricing model.
\end{tabular} & impvbyblk \\
\hline
\end{tabular}

For an example using the Black model, see "Pricing Using the Black Model" on page 3-144.

\section*{Roll-Geske-Whaley Model}

Use the Roll-Geske-Whaley approximation method to price American call options paying a single cash dividend. This model is based on the modification of the observed stock price for the present value of the dividend and also supports a compound option to account for the possibility of early exercise. The Roll-Geske-Whaley model has drawbacks due to an escrowed dividend price approach which may lead to arbitrage. For further explanation, see Options, Futures, and Other Derivatives by John Hull.

Closed-form solutions for a Roll-Geske-Whaley model support the following tasks.
\begin{tabular}{|l|l|}
\hline Task & Function \\
\hline \begin{tabular}{l} 
Price American call options with a single cash \\
dividend using the Roll-Geske-Whaley option \\
pricing model.
\end{tabular} & optstockbyrgw \\
\hline \begin{tabular}{l} 
Calculate American call prices and sensitivities \\
using the Roll-Geske-Whaley option pricing model.
\end{tabular} & optstocksensbyrgw \\
\hline \begin{tabular}{l} 
Calculate implied volatility for American call \\
options using the Roll-Geske-Whaley option pricing \\
model.
\end{tabular} & impvbyrgw \\
\hline
\end{tabular}

For an example using the Roll-Geske-Whaley model, see "Pricing Using the Roll-GeskeWhaley Model" on page 3-145.

\section*{Bjerksund-Stensland 2002 Model}

Use the Bjerksund-Stensland 2002 model for pricing American puts and calls with continuous dividend yield. This model works by dividing the time to maturity of the option in two separate parts, each with its own flat exercise boundary (trigger price). The Bjerksund-Stensland 2002 method is a generalization of the Bjerksund and Stensland 1993 method and is considered to be computationally efficient. For further explanation, see Closed Form Valuation of American Options by Bjerksund and Stensland.

Closed-form solutions for a Bjerksund-Stensland 2002 model support the following tasks.
\begin{tabular}{|l|l|}
\hline Task & Function \\
\hline \begin{tabular}{l} 
Price American options with continuous dividend \\
yield using the Bjerksund-Stensland 2002 option \\
pricing model.
\end{tabular} & optstockbybjs \\
\hline \begin{tabular}{l} 
Calculate American options prices and sensitivities \\
using the Bjerksund-Stensland 2002 option pricing \\
model.
\end{tabular} & optstocksensbybjs \\
\hline \begin{tabular}{l} 
Calculate implied volatility for American options \\
using the Bjerksund-Stensland 2002 option pricing \\
model.
\end{tabular} & impvbybjs \\
\hline
\end{tabular}

For an example using the Bjerksund-Stensland 2002 model, see "Pricing Using the Bjerksund-Stensland Model" on page 3-146.

\section*{Pricing Using the Black-Scholes Model}

Consider a European stock option with an exercise price of \(\$ 40\) on January 1, 2008 that expires on July 1, 2008. Assume that the underlying stock pays dividends of \(\$ 0.50\) on March 1 and June 1. The stock is trading at \(\$ 40\) and has a volatility of \(30 \%\) per annum. The risk-free rate is \(4 \%\) per annum. Using this data, calculate the price of a call and a put option on the stock using the Black-Scholes option pricing model:
```

Strike = 40;
AssetPrice = 40;
Sigma = .3;
Rates = 0.04;
Settle = 'Jan-01-08';
Maturity = 'Jul-01-08';

```
```

Div1 = 'March-01-2008';
Div2 = 'Jun-01-2008';

```

\section*{Create RateSpec and StockSpec:}
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1);
StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, 0.50,{Div1,Div2});

```

Define two options, one call and one put:
```

OptSpec = {'call'; 'put'};

```

Calculate the price of the European options:
```

Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Price =

```
    3.2063
    3.4027

The first element of the Price vector represents the price of the call (\$3.21); the second is the price of the put (\$3.40). Use the function optstocksensbybls to compute six sensitivities for the Black-Scholes model: delta, gamma, vega, lambda, rho, and theta and the price of the option.

The selection of output parameters and their order is determined by the optional input parameter OutSpec. This parameter is a cell array of character vectors, each one specifying a desired output parameter. The order in which these output parameters are returned by the function is the same as the order of the character vectors contained in OutSpec.

As an example, consider the same options as the previous example. To calculate their Delta, Rho, Price, and Gamma, build the cell array OutSpec as follows:
```

OutSpec = {'delta', 'rho', 'price', 'gamma'};
[Delta, Rho, Price, Gamma] =optstocksensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)
Delta =

```
```

Rho =
8.7902
10.8138
Price =
3.2063
3.4027
Gamma =
0.0480
0.0480

```

\section*{Pricing Using the Black Model}

Consider two European call options on a futures contract with exercise prices of \(\$ 20\) and \(\$ 25\) that expire on September 1, 2008. Assume that on May 1, 2008 the contract is trading at \(\$ 20\) and has a volatility of \(35 \%\) per annum. The risk-free rate is \(4 \%\) per annum. Using this data, calculate the price of the call futures options using the Black model:
```

Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';
Create RateSpec and StockSpec:

```
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

```
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
    'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);
    'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);
StockSpec = stockspec(Sigma, AssetPrice);
```

StockSpec = stockspec(Sigma, AssetPrice);

```

Define the call option:
OptSpec = \{'call'\};
Calculate price and all sensitivities of the European futures options:
```

OutSpec = {'All'}
[Delta, Gamma, Vega, Lambda, Rho, Theta, Price] = optstocksensbyblk(RateSpec,...
StockSpec, Settle, Maturity, OptSpec, Strike, 'OutSpec', OutSpec);
Price =
1.5903
0.3037

```

The first element of the Price vector represents the price of the call with an exercise price of \(\$ 20\) ( \(\$ 1.59\) ); the second is the price of the call with an exercise price of \(\$ 25\) (\$2.89).

The function impvbyblk is used to compute the implied volatility using the Black option pricing model. Assuming that the previous European call futures are trading at \(\$ 1.5903\) and \(\$ 0.3037\), you can calculate their implied volatility:
```

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, Price);

```

As expected, you get volatilities of \(35 \%\). If the call futures were trading at \(\$ 1.50\) and \(\$ 0.50\) in the market, the implied volatility would be \(33 \%\) and \(42 \%\) :
```

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, [1.50;0.5])
Volatility =

```
0.3301
0.4148

\section*{Pricing Using the Roll-Geske-Whaley Model}

Consider two American call options, with exercise prices of \(\$ 110\) and \(\$ 100\) on June 1, 2008, that expire on June 1, 2009. Assume that the underlying stock pays dividends of \(\$ 0.001\) on December 1, 2008. The stock is trading at \(\$ 80\) and has a volatility of \(20 \%\) per annum. The risk-free rate is \(6 \%\) per annum. Using this data, calculate the price of the American calls using the Roll-Geske-Whaley option pricing model:
```

AssetPrice = 80;
Settle = 'Jun-01-2008';
Maturity = 'Jun-01-2009';
Strike = [110; 100];

```
```

Rate = 0.06;
Sigma = 0.2;

```
DivAmount = 0.001;
DivDate = 'Dec-01-2008';

Create RateSpec and StockSpec:
```

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

```

Calculate the call prices:
```

Price = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike)

```
Price =
    0.8398
    2.0236

The first element of the Price vector represents the price of the call with an exercise price of \(\$ 110\) ( \(\$ 0.84\) ); the second is the price of the call with an exercise price of \(\$ 100\) (\$2.02).

\section*{Pricing Using the Bjerksund-Stensland Model}

Consider four American stock options (two calls and two puts) with an exercise price of \(\$ 100\) that expire on July 1, 2008. Assume that the underlying stock pays a continuous dividend yield of \(4 \%\) as of January 1, 2008. The stock has a volatility of \(20 \%\) per annum and the risk-free rate is \(8 \%\) per annum. Using this data, calculate the price of the American calls and puts assuming the following current prices of the stock: \(\$ 80, \$ 90\) (for the calls) and \(\$ 100\) and \(\$ 110\) (for the puts):
```

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Strike = 100;
AssetPrice = [80; 90; 100; 110];
DivYield = 0.04;
Rate = 0.08;
Sigma = 0.20;

```

\section*{Create RateSpec and StockSpec:}
```

StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

```

Define the option type:
```

OptSpec = {'call'; 'call'; 'put'; 'put'};

```

Compute the option prices:
```

Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Price =

```
    0.4144
    2.1804
    4.7253
    1.7164

The first two elements of the Price vector represent the price of the calls (\$0.41 and \(\$ 2.18\) ), the last two elements represent the price of the put options (\$4.72 and \$1.72). Use the function optstocksensbybjs to compute six sensitivities for the BjerksundStensland model: delta, gamma, vega, lambda, rho, and theta and the price of the option. The selection of output parameters and their order is determined by the optional input parameter OutSpec. This parameter is a cell array of character vectors, each one specifying a desired output parameter. The order in which these output parameters are returned by the function is the same as the order of the character vectors contained in OutSpec. As an example, consider the same options as the previous example. To calculate their delta, gamma, and price, build the cell array OutSpec as follows:
```

OutSpec = {'delta', 'gamma', 'price'};

```

The outputs of optstocksensbybjs will be in the same order as in OutSpec.
```

[Delta, Gamma, Price]= optstocksensbybjs(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)
Delta =
0.0843
0.2912
0.4803
0.2261

```
```

Gamma =
0.0136
0.0267
0.0304
0.0217
Price =
0.4144
2.1804
4.7253
1.7164

```

For more information on the Bjerksund-Stensland model, see "Closed-Form Solutions Modeling" on page C-9.

\section*{See Also}
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy | asiansensbyls | assetbybls | assetsensbybls | basketbyju | basketbyls | basketsensbyju| basketsensbyls | basketstockspec | basketstockspec | cashbybls | cashsensbybls | chooserbybls | gapbybls | gapsensbybls | impvbybjs | impvbyblk | impvbybls | impvbyrgw | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg| lookbacksensbyls | maxassetbystulz | maxassetsensbystulz | minassetbystulz | minassetsensbystulz | optpricebysim| optstockbybjs | optstockbyblk|optstockbybls | optstockbyls| optstockbyrgw| optstocksensbybjs | optstocksensbyblk | optstocksensbybls | optstocksensbyls | optstocksensbyrgw | spreadbybjs | spreadbykirk| spreadbyls | spreadsensbybjs | spreadsensbykirk | spreadsensbyls | supersharebybls | supersharesensbybls

\section*{Related Examples}
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing European Call Options Using Different Equity Models" on page 3-150
- "Pricing Using the Black-Scholes Model" on page 3-142
- "Pricing Using the Roll-Geske-Whaley Model" on page 3-145
- "Pricing Using the Bjerksund-Stensland Model" on page 3-146
- "Pricing Asian Options" on page 3-105

\section*{More About}
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Pricing European Call Options Using Different Equity Models}

This example illustrates how the Financial Instruments Toolbox \({ }^{\text {TM }}\) is used to price European vanilla call options using different equity models.

The example compares call option prices using the Cox-Ross-Rubinstein model, the Leisen-Reimer model and the Black-Scholes closed formula.

\section*{Define the Call Instrument}

Consider a European call option, with an exercise price of \(\$ 30\) on January 1, 2010. The option expires on Sep 1, 2010. Assume that the underlying stock provides no dividends. The stock is trading at \(\$ 25\) and has a volatility of \(35 \%\) per annum. The annualized continuously compounded risk-free rate is \(1.11 \%\) per annum.
```

% Option
Settle = 'Jan-01-2010';
Maturity = 'Sep-01-2010';
Strike = 30;
OptSpec = 'call';
% Stock
AssetPrice = 25;
Sigma = .35;

```

Create the Interest Rate Term Structure
```

StartDates = '01 Jan 2010';
EndDates = '01 Jan 2013';
Rates = 0.0111;
ValuationDate = '01 Jan 2010';
Compounding = -1;
RateSpec = intenvset('Compounding',Compounding,'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'ValuationDate', ValuationDa

```

\section*{Create the Stock Structure}

Suppose we wish to create two scenarios. The first one assumes that AssetPrice is currently \(\$ 25\), the option is out of the money (OTM). The second scenario assumes that the option is at the money (ATM), and therefore AssetPriceATM \(=30\).
```

AssetPriceATM = 30;

```
```

StockSpec = stockspec(Sigma, AssetPrice);
StockSpecATM = stockspec(Sigma, AssetPriceATM);

```

\section*{Price the Options Using the Black-Scholes Closed Formula}

Use the function 'optstockbybls' in the Financial Instruments Toolbox to compute the price of the European call options.
```

% Price the option with AssetPrice = 25
PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike);
% Price the option with AssetPrice = 30
PriceBLSATM = optstockbybls(RateSpec, StockSpecATM, Settle, Maturity, OptSpec, Strike)

```

\section*{Build the Cox-Ross-Rubinstein Tree}
```

% Create the time specification of the tree
NumPeriods = 15;

```
CRRTimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods);
\% Build the tree
CRRTree \(=\) crrtree(StockSpec, RateSpec, CRRTimeSpec);
CRRTreeATM = crrtree(StockSpecATM, RateSpec, CRRTimeSpec);

\section*{Build the Leisen-Reimer Tree}
```

% Create the time specification of the tree
LRTimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods);
% Use the default method 'PP1' (Peizer-Pratt method 1 inversion)to build
% the tree
LRTree = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike);
LRTreeATM = lrtree(StockSpecATM, RateSpec, LRTimeSpec, Strike);

```

\section*{Price the Options Using the Cox-Ross-Rubinstein (CRR) Model}

PriceCRR = optstockbycrr(CRRTree, OptSpec, Strike, Settle, Maturity); PriceCRRATM = optstockbycrr(CRRTreeATM, OptSpec, Strike, Settle, Maturity);

Price the Options Using the Leisen-Reimer (LR) Model
PriceLR = optstockbylr(LRTree, OptSpec, Strike, Settle, Maturity);
PriceLRATM = optstockbylr(LRTreeATM, OptSpec, Strike, Settle, Maturity);

\section*{Compare BLS, CRR and LR Results}
```

sprintf('PriceBLS: \t%f\nPriceCRR: \t%f\nPriceLR:\t%f\n', PriceBLS, ...
PriceCRR, PriceLR)
sprintf('\t== ATM ==\nPriceBLS ATM: \t%f\nPriceCRR ATM: \t%f\nPriceLR ATM:\t%f\n', Pri`
PriceCRRATM, PriceLRATM)
ans =
PriceBLS: 1.275075
PriceCRR: 1.294979
PriceLR: 1.275838
ans =
== ATM ==
PriceBLS ATM: 3.497891
PriceCRR ATM: 3.553938
PriceLR ATM: 3.498571

```

\section*{Convergence of CRR and LR Models to a BLS Solution}

The following tables compare call option prices using the CRR and LR models against the results obtained with the Black-Scholes formula.

While the CRR binomial model and the Black-Scholes model converge as the number of time steps gets large and the length of each step gets small, this convergence, except for at the money options, is anything but smooth or uniform.

The tables below show that the Leisen-Reimer model reduces the size of the error with even as few steps of 45 .
\begin{tabular}{|c|c|c|}
\hline Strike & \multicolumn{2}{|l|}{Asset Price \(=30\)} \\
\hline \#Steps & LR & CRR \\
\hline 15 & 3.4986 & 3.5539 \\
\hline 25 & 3.4981 & 3.5314 \\
\hline 45 & 3.4980 & 3.5165 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 65 & 3.4979 & 3.5108 \\
\hline 85 & 3.4979 & 3.5077 \\
\hline 105 & 3.4979 & 3.5058 \\
\hline 201 & 3.4979 & 3.5020 \\
\hline 501 & 3.4979 & 3.4996 \\
\hline 999 & 3.4979 & 3.4987 \\
\hline Strike & \multicolumn{2}{|l|}{Asset Price \(=25\)} \\
\hline \#Steps & LR & CRR \\
\hline 15 & 1.2758 & 1.2950 \\
\hline 25 & 1.2754 & 1.2627 \\
\hline 45 & 1.2751 & 1.2851 \\
\hline 65 & 1.2751 & 1.2692 \\
\hline 85 & 1.2751 & 1.2812 \\
\hline 105 & 1.2751 & 1.2766 \\
\hline 201 & 1.2751 & 1.2723 \\
\hline 501 & 1.2751 & 1.2759 \\
\hline 999 & 1.2751 & 1.2756 \\
\hline
\end{tabular}

\section*{Analyze the Effect of the Number of Periods on the Price of the Options}

The following graphs show how convergence changes as the number of steps in the binomial calculation increases, as well as the impact on convergence to changes to the stock price. Observe that the Leisen-Reimer model removes the oscillation and produces estimates close to the Black-Scholes model using only a small number of steps.
```

NPoints = 300;
% Cox-Ross-Rubinstein
NumPeriodCRR = 5 : 1 : NPoints;
NbStepCRR = length(NumPeriodCRR);
PriceCRR = nan(NbStepCRR, 1);
PriceCRRATM = PriceCRR;
for i = 1 : NbStepCRR
CRRTimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriodCRR(i));
CRRT = crrtree(StockSpec, RateSpec, CRRTimeSpec);
PriceCRR(i) = optstockbycrr(CRRT, OptSpec, Strike,ValuationDate, Maturity) ;
CRRTATM = crrtree(StockSpecATM, RateSpec, CRRTimeSpec);
PriceCRRATM(i) = optstockbycrr(CRRTATM, OptSpec, Strike,ValuationDate, Maturity)
end;

```
```

% Now with Leisen-Reimer
NumPeriodLR = 5 : 2 : NPoints;
NbStepLR = length(NumPeriodLR);
PriceLR = nan(NbStepLR, 1);
PriceLRATM = PriceLR;
for i = 1 : NbStepLR
LRTimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriodLR(i));
LRT = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike);
PriceLR(i) = optstockbylr(LRT, OptSpec, Strike,ValuationDate, Maturity) ;
LRTATM = lrtree(StockSpecATM, RateSpec, LRTimeSpec, Strike);
PriceLRATM(i) = optstockbylr(LRTATM, OptSpec, Strike,ValuationDate, Maturity) ;
end;

```

First scenario: Out of the Money call option
```

% For Cox-Ross-Rubinstein
plot(NumPeriodCRR, PriceCRR);
hold on;
plot(NumPeriodCRR, PriceBLS*ones(NbStepCRR,1),'Color',[0 0.9 0], 'linewidth', 1.5);
% For Leisen-Reimer
plot(NumPeriodLR, PriceLR, 'Color',[0.9 0 0], 'linewidth', 1.5);
% Concentrate in the area of interest by clipping on the Y axis at 5x the
% LR Price:
YLimDelta = 5*abs(PriceLR(1) - PriceBLS);
ax = gca;
ax.YLim = [PriceBLS-YLimDelta PriceBLS+YLimDelta];
% Annotate Plot
titleString = sprintf('\nConvergence of CRR and LR models to a BLS Solution (OTM)\nStr)
title(titleString)
ylabel('Option Price')
xlabel('Number of Steps')
legend('CRR', 'BLS', 'LR', 'Location', 'NorthEast')

```


Second scenario: At the Money call option
```

% For Cox-Ross-Rubinstein
figure;
plot(NumPeriodCRR, PriceCRRATM);
hold on;
plot(NumPeriodCRR, PriceBLSATM*ones(NbStepCRR,1),'Color',[0 0.9 0], 'linewidth', 1.5);
% For Leisen-Reimer
plot(NumPeriodLR, PriceLRATM, 'Color',[0.9 0 0], 'linewidth', 1.5);
% Concentrate in the area of interest by clipping on the Y axis at 5x the
% LR Price:
YLimDelta = 5*abs(PriceLRATM(1) - PriceBLSATM);

```
```

ax = gca;
ax.YLim = [PriceBLSATM-YLimDelta PriceBLSATM+YLimDelta];
% Annotate Plot
titleString = sprintf('\nConvergence of CRR and LR models to a BLS Solution (ATM)\nStr
title(titleString)
ylabel('Option Price')
xlabel('Number of Steps')
legend('CRR', 'BLS', 'LR', 'Location', 'NorthEast')

```

Convergence of CRR and LR models to a BLS Solution (ATM) Strike \(=30\), Asset Price \(=30\)


\section*{See Also}
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy | asiansensbyls | assetbybls | assetsensbybls | basketbyju | basketbyls | basketsensbyju| basketsensbyls | basketstockspec | basketstockspec
```

| cashbybls | cashsensbybls | chooserbybls | gapbybls | gapsensbybls
| impvbybjs | impvbyblk | impvbybls | impvbyrgw | lookbackbycvgsg
lookbackbyls | lookbacksensbycvgsg| lookbacksensbyls | maxassetbystulz
| maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
optpricebysim | optstockbybjs | optstockbyblk| optstockbybls |
optstockbyls | optstockbyrgw | optstocksensbybjs | optstocksensbyblk |
optstocksensbybls | optstocksensbyls | optstocksensbyrgw | spreadbybjs
| spreadbykirk| spreadbyls | spreadsensbybjs | spreadsensbykirk |
spreadsensbyls | supersharebybls | supersharesensbybls

```

\section*{Related Examples}
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Black-Scholes Model" on page 3-142
- "Pricing Using the Roll-Geske-Whaley Model" on page 3-145
- "Pricing Using the Bjerksund-Stensland Model" on page 3-146
- "Pricing Asian Options" on page 3-105

\section*{More About}
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Compute the Option Price on a Future}

Consider a call European option on the Crude Oil Brent futures. The option expires on December 1, 2014 with an exercise price of \(\$ 120\). Assume that on April 1, 2014 futures price is at \(\$ 105\), the annualized continuously compounded risk-free rate is \(3.5 \%\) per annum and volatility is \(22 \%\) per annum. Using this data, compute the price of the option.

Define the RateSpec.
```

ValuationDate = 'January-1-2014';
EndDates = 'January-1-2015';
Rates = 0.035;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis')
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9656
Rates: 0.0350
EndTimes: 1
StartTimes: 0
EndDates: 735965
StartDates: 735600
ValuationDate: 735600
Basis: 1
EndMonthRule: 1

```

Define the StockSpec.
```

AssetPrice = 105;

```
Sigma = 0.22;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
```

struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2200
AssetPrice: 105
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the option.
```

Settle = 'April-1-2014';
Maturity = 'Dec-1-2014';
Strike = 120;
OptSpec = {'call'};

```

Price the futures call option.
Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =
2.5847

\section*{Hedging Portfolios}
- "Hedging" on page 4-2
- "Hedging Functions" on page 4-3
- "Pricing and Hedging a Portfolio Using the Black-Karasinski Model" on page 4-16
- "Specifying Constraints with ConSet" on page 4-31
- "Hedging with Constrained Portfolios" on page 4-36

\section*{Hedging}

Hedging is an important consideration in modern finance. Whether or not to hedge, how much portfolio insurance is adequate, and how often to rebalance a portfolio are important considerations for traders, portfolio managers, and financial institutions alike.

If there were no transaction costs, financial professionals would prefer to rebalance portfolios continually, thereby minimizing exposure to market movements. However, in practice, the transaction costs associated with frequent portfolio rebalancing may be expensive. Therefore, traders and portfolio managers must carefully assess the cost required to achieve a particular portfolio sensitivity (for example, maintaining delta, gamma, and vega neutrality). Thus, the hedging problem involves the fundamental tradeoff between portfolio insurance and the cost of such insurance coverage.

\section*{See Also}
hedgeopt | hedgeslf

\section*{Related Examples}
- "Portfolio Creation" on page 1-7
- "Adding Instruments to an Existing Portfolio" on page 1-9
- "Instrument Constructors" on page 1-18
- "Creating Instruments or Properties" on page 1-19
- "Searching or Subsetting a Portfolio" on page 1-21
- "Hedging Functions" on page 4-3
- "Hedging with hedgeopt" on page 4-4
- "Self-Financing Hedges with hedgeslf" on page 4-11
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11
- "Pricing and Hedging a Portfolio Using the Black-Karasinski Model" on page 4-16
- "Specifying Constraints with ConSet" on page 4-31
- "Portfolio Rebalancing" on page 4-33
- "Hedging with Constrained Portfolios" on page 4-36

\section*{More About}
- "Instrument Constructors" on page 1-18

\section*{Hedging Functions}

Hedging is an investment to reduce the risk of adverse price movements in an asset.
```

In this section...
"Introduction" on page 4-3
"Hedging with hedgeopt" on page 4-4
"Self-Financing Hedges with hedgeslf" on page 4-11

```

\section*{Introduction}

Financial Instruments Toolbox offers two functions for assessing the fundamental hedging tradeoff, hedgeopt and hedgeslf.

The first function, hedgeopt, addresses the most general hedging problem. It allocates an optimal hedge to satisfy either of two goals:
- Minimize the cost of hedging a portfolio given a set of target sensitivities.
- Minimize portfolio sensitivities for a given set of maximum target costs.
hedgeopt allows investors to modify portfolio allocations among instruments according to either of the goals. The problem is cast as a constrained linear least-squares problem. For additional information about hedgeopt, see "Hedging with hedgeopt" on page 4-4.

The second function, hedgeslf, attempts to allocate a self-financing hedge among a portfolio of instruments. In particular, hedgeslf attempts to maintain a constant portfolio value consistent with reduced portfolio sensitivities (that is, the rebalanced portfolio is hedged against market moves and is closest to being self-financing). If hedgeslf cannot find a self-financing hedge, it rebalances the portfolio to minimize overall portfolio sensitivities. For additional information on hedgeslf, see "SelfFinancing Hedges with hedgeslf" on page 4-11.

The examples in this section consider the delta, gamma, and vega sensitivity measures. In this toolbox, when you work with interest-rate derivatives, delta is the price sensitivity measure of shifts in the forward yield curve, gamma is the delta sensitivity measure of shifts in the forward yield curve, and vega is the price sensitivity measure of shifts in the
volatility process. See bdtsens or hjmsens for details on the computation of sensitivities for interest-rate derivatives.

For equity exotic options, the underlying instrument is the stock price instead of the forward yield curve. So, delta now represents the price sensitivity measure of shifts in the stock price, gamma is the delta sensitivity measure of shifts in the stock price, and vega is the price sensitivity measure of shifts in the volatility of the stock. See crrsens, eqpsens, ittsens, or sttsens for details on the computation of sensitivities for equity derivatives.

For examples showing the computation of sensitivities for interest-rate based derivatives, see "Computing Instrument Sensitivities" on page 2-59. Likewise, for examples showing the computation of sensitivities for equity exotic options, see "Computing Equity Instrument Sensitivities" on page 3-133.

Note The delta, gamma, and vega sensitivities that the toolbox calculates are dollar sensitivities.

\section*{Hedging with hedgeopt}

Note The numerical results in this section are displayed in the MATLAB bank format. Although the calculations are performed in floating-point double precision, only two decimal places are displayed.

To illustrate the hedging facility, consider the portfolio HJMInstSet obtained from the example file deriv.mat. The portfolio consists of eight instruments: two bonds, one bond option, one fixed-rate note, one floating-rate note, one cap, one floor, and one swap.

Both hedging functions require some common inputs, including the current portfolio holdings (allocations), and a matrix of instrument sensitivities. To create these inputs, load the example portfolio into memory
load deriv.mat;
compute price and sensitivities
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
and extract the current portfolio holdings.
```

Holdings = instget(HJMInstSet, 'FieldName', 'Quantity');

```

For convenience place the delta, gamma, and vega sensitivity measures into a matrix of sensitivities.
```

Sensitivities = [Delta Gamma Vega];

```

Each row of the Sensitivities matrix is associated with a different instrument in the portfolio, and each column with a different sensitivity measure.

To summarize the portfolio information
\begin{tabular}{rrrrr} 
disp([Price & Holdings & \multicolumn{3}{c}{ Sensitivities]) } \\
98.72 & 100.00 & -272.65 & 1029.90 & 0.00 \\
97.53 & 50.00 & -347.43 & 1622.69 & -0.04 \\
0.05 & -50.00 & -8.08 & 643.40 & 34.07 \\
98.72 & 80.00 & -272.65 & 1029.90 & 0.00 \\
100.55 & 8.00 & -1.04 & 3.31 & 0 \\
6.28 & 30.00 & 294.97 & 6852.56 & 93.69 \\
0.05 & 40.00 & -47.16 & 8459.99 & 93.69 \\
3.69 & 10.00 & -282.05 & 1059.68 & 0.00
\end{tabular}

The first column above is the dollar unit price of each instrument, the second is the holdings of each instrument (the quantity held or the number of contracts), and the third, fourth, and fifth columns are the dollar delta, gamma, and vega sensitivities, respectively.

The current portfolio sensitivities are a weighted average of the instruments in the portfolio.

TargetSens = Holdings' * Sensitivities
TargetSens =
\(\begin{array}{lll}-61910.22 & 788946.21 & 4852.91\end{array}\)

\section*{Maintaining Existing Allocations}

To illustrate using hedgeopt, suppose that you want to maintain your existing portfolio. The first form of hedgeopt minimizes the cost of hedging a portfolio given a set of target
sensitivities. If you want to maintain your existing portfolio composition and exposure, you should be able to do so without spending any money. To verify this, set the target sensitivities to the current sensitivities.
```

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [], [], [], TargetSens)
Sens =
-61910.22 788946.21 4852.91
Cost =
0
Quantity' =
100.00
50.00
-50.00
80.00
8.00
30.00
40.00
10.00

```

Portfolio composition and sensitivities are unchanged, and the cost associated with doing nothing is zero. The cost is defined as the change in portfolio value. This number cannot be less than zero because the rebalancing cost is defined as a nonnegative number.

If Value0 and Value1 represent the portfolio value before and after rebalancing, respectively, the zero cost can also be verified by comparing the portfolio values.
```

Value0 = Holdings' * Price
Value0 =
23674.62
Value1 = Quantity * Price
Value1 =

```
    23674.62

\section*{Partially Hedged Portfolio}

Building on the example in "Maintaining Existing Allocations" on page 4-5, suppose you want to know the cost to achieve an overall portfolio dollar sensitivity of [-23000 -3300 3000], while allowing trading only in instruments 2 , 3 , and 6 (holding the positions of instruments \(1,4,5,7\), and 8 fixed). To find the cost, first set the target portfolio dollar sensitivity.
```

TargetSens = [-23000 -3300 3000];

```

Then, specify the instruments to be fixed.
```

FixedInd = [1 4 5 7 8];

```

Finally, call hedgeopt
```

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...

```
Holdings, FixedInd, [], [], TargetSens);
and again examine the results.
```

Sens =
Cost =
19174.02
Quantity' =
100.00
-141.03
137.26
80.00
8.00
-57.96
40.00
10.00

```
    \(\begin{array}{lll}-23000.00 & -3300.00 & 3000.00\end{array}\)

Recompute Value1, the portfolio value after rebalancing.
```

Value1 = Quantity * Price
Value1 =

```

As expected, the cost, \(\$ 19174.02\), is the difference between Value0 and Value1, \(\$ 23674.62\) - \(\$ 4500.60\). Only the positions in instruments 2, 3, and 6 have been changed.

\section*{Fully Hedged Porifolio}

The example in "Partially Hedged Portfolio" on page 4-7 illustrates a partial hedge, but perhaps the most interesting case involves the cost associated with a fully hedged portfolio (simultaneous delta, gamma, and vega neutrality). In this case, set the target sensitivity to a row vector of 0 s and call hedgeopt again. The following example uses data from "Hedging with hedgeopt" on page 4-4.

TargetSens = [0 0 0 ] ;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ... Holdings, FixedInd, [], [], TargetSens);

Examining the outputs reveals that you have obtained a fully hedged portfolio
Sens =
\(-0.00\)
\(-0.00\)
\(-0.00\)
but at an expense of over \(\$ 20,000\).
Cost =
23055.90

The positions required to achieve a fully hedged portfolio
Quantity' =
100.00
-182. 36
- 19.55
80.00
8.00
-32.97
40.00
10.00
result in the new portfolio value
```

Value1 = Quantity * Price
Value1 =

```
618.72

\section*{Minimizing Portfolio Sensitivities}

The examples in "Fully Hedged Portfolio" on page 4-8 illustrate how to use hedgeopt to determine the minimum cost of hedging a portfolio given a set of target sensitivities. In these examples, portfolio target sensitivities are treated as equality constraints during the optimization process. You tell hedgeopt what sensitivities you want, and it tells you what it will cost to get those sensitivities.

A related problem involves minimizing portfolio sensitivities for a given set of maximum target costs. For this goal, the target costs are treated as inequality constraints during the optimization process. You tell hedgeopt the most you are willing spend to insulate your portfolio, and it tells you the smallest portfolio sensitivities you can get for your money.

To illustrate this use of hedgeopt, compute the portfolio dollar sensitivities along the entire cost frontier. From the previous examples, you know that spending nothing replicates the existing portfolio, while spending \(\$ 23,055.90\) completely hedges the portfolio.

Assume, for example, you are willing to spend as much as \(\$ 50,000\), and want to see what portfolio sensitivities will result along the cost frontier. Assume that the same instruments are held fixed, and that the cost frontier is evaluated from \(\$ 0\) to \(\$ 50,000\) at increments of \(\$ 1000\).

MaxCost \(=\) [0:1000:50000];
Now, call hedgeopt.
```

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ...

```
Holdings, FixedInd, [], MaxCost);

With this data, you can plot the required hedging cost versus the funds available (the amount you are willing to spend)
```

plot(MaxCost/1000, Cost/1000, 'red'), grid
xlabel('Funds Available for Rebalancing (\$1000''s)')
ylabel('Actual Rebalancing Cost (\$1000''s)')
title ('Rebalancing Cost Profile')

```


\section*{Rebalancing Cost Profile}
and the portfolio dollar sensitivities versus the funds available.
```

figure
plot(MaxCost/1000, Sens(:,1), '-red')
hold('on')
plot(MaxCost/1000, Sens(:,2), '-.black')
plot(MaxCost/1000, Sens(:,3), '--blue')
grid
xlabel('Funds Available for Rebalancing (\$1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)

```


\section*{Funds Available for Rebalancing}

\section*{Self-Financing Hedges with hedgeslf}

The figures Rebalancing Cost Profile and Funds Available for Rebalancing indicate that there is no benefit because the funds available for hedging exceed \(\$ 23,055.90\), the point of maximum expense required to obtain simultaneous delta, gamma, and vega neutrality. You can also find this point of delta, gamma, and vega neutrality using hedgeslf.
[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,... Holdings, FixedInd);

Sens =
\[
\begin{aligned}
& -0.00 \\
& -0.00 \\
& -0.00
\end{aligned}
\]

Value1 =
618.72
```

Quantity =
100.00
-182.36
-19.55
80.00
8.00
-32.97
40.00
10.00

```

Similar to hedgeopt, hedgeslf returns the portfolio dollar sensitivities and instrument quantities (the rebalanced holdings). However, in contrast, the second output parameter of hedgeslf is the value of the rebalanced portfolio, from which you can calculate the rebalancing cost by subtraction.
```

Value0 - Value1
ans =
23055.90

```

In this example, the portfolio is clearly not self-financing, so hedgeslf finds the best possible solution required to obtain zero sensitivities.

There is, in fact, a third calling syntax available for hedgeopt directly related to the results shown above for hedgeslf. Suppose, instead of directly specifying the funds available for rebalancing (the most money you are willing to spend), you want to simply specify the number of points along the cost frontier. This call to hedgeopt samples the cost frontier at 10 equally spaced points between the point of minimum cost (and potentially maximum exposure) and the point of minimum exposure (and maximum cost).
```

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, 10)

```
```

Sens =

-32784.46	2231.83	-49694.33
-29141.74	1983.85	-44172.74
-25499.02	1735.87	-38651.14
-21856.30	1487.89	-33129.55
-18213.59	1239.91	-27607.96

```
```

-14570.87	991.93	-22086.37
-10928.15	743.94	-16564.78
-7285.43	495.96	-11043.18
-3642.72	247.98	-5521.59
0.00	-0.00	0.00

Cost =
0.00
2561.77
5123.53
7685.30
10247.07
12808.83
15370.60
17932.37
20494.14
23055.90

```

Now plot this data.
```

figure
plot(Cost/1000, Sens(:,1), '-red')
hold('on')
plot(Cost/1000, Sens(:,2), '-.black')
plot(Cost/1000, Sens(:,3), '--blue')
grid
xlabel('Rebalancing Cost (\$1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)

```


\section*{Rebalancing Cost}

In this calling form, hedgeopt calls hedgeslf internally to determine the maximum cost needed to minimize the portfolio sensitivities ( \(\$ 23,055.90\) ), and evenly samples the cost frontier between \(\$ 0\) and \(\$ 23,055.90\).

Both hedgeopt and hedgeslf cast the optimization problem as a constrained linear least squares problem. Depending on the instruments and constraints, neither function is guaranteed to converge to a solution. In some cases, the problem space may be unbounded, and additional instrument equality constraints, or user-specified constraints, may be necessary for convergence. See "Hedging with Constrained Portfolios" on page 4-36 for additional information.

\section*{See Also}
hedgeopt | hedgeslf

\section*{Related Examples}
- "Portfolio Creation" on page 1-7
- "Adding Instruments to an Existing Portfolio" on page 1-9
- "Instrument Constructors" on page 1-18
- "Creating Instruments or Properties" on page 1-19
- "Searching or Subsetting a Portfolio" on page 1-21
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11
- "Pricing and Hedging a Portfolio Using the Black-Karasinski Model" on page 4-16
- "Specifying Constraints with ConSet" on page 4-31
- "Portfolio Rebalancing" on page 4-33
- "Hedging with Constrained Portfolios" on page 4-36

\section*{More About}
- "Instrument Constructors" on page 1-18
- "Hedging" on page 4-2

\section*{Pricing and Hedging a Portfolio Using the Black-Karasinski Model}

This example illustrates how MATLAB® can be used to create a portfolio of interest rate derivatives securities, and price it using the Black-Karasinski interest rate model. The example also shows some hedging strategies to minimize exposure to market movements.

\section*{Create the Interest Rate Term Structure Based on Reported Data}

The structure RateSpec is an interest rate term structure that defines the initial rate specification from which the tree rates are derived. Use the information of annualized zero coupon rates in the table below to populate the RateSpec structure.
\begin{tabular}{|c|c|c|c|c|}
\hline & From & & To & Rate \\
\hline 27 & 7 Feb 2007 & 27 & Feb 2008 & 0.0493 \\
\hline 27 & 7 Feb 2007 & 27 & Feb 2009 & 0.0459 \\
\hline 27 & 7 Feb 2007 & 27 & Feb 2010 & 0.0450 \\
\hline 27 & 7 Feb 2007 & 27 & Feb 2012 & 0.0446 \\
\hline 7 & 7 Feb 2007 & 27 & Feb 2014 & 0.0445 \\
\hline 27 & 7 Feb 2007 & 27 & Feb 2017 & 0.0450 \\
\hline 27 & 7 Feb 2007 & 27 & Feb 2027 & 0.0473 \\
\hline
\end{tabular}

This data could be retrieved from the Federal Reserve Statistical Release page by using the Datafeed Toolbox \({ }^{\text {TM }}\). In this case, the Datafeed Toolbox \({ }^{\text {TM }}\) will connect to FRED® and pull back the rates of the following treasury notes.
\begin{tabular}{cll}
\begin{tabular}{c} 
Terms \\
\(======\)
\end{tabular} & \begin{tabular}{l} 
Symbol \\
\(======\)
\end{tabular} \\
1 & \(=\) & DGS1 \\
2 & \(=\) & DGS2 \\
3 & \(=\) & DGS3 \\
5 & \(=\) & DGS5 \\
7 & \(=\) & DGS7 \\
10 & \(=\) & DGS10 \\
20 & \(=\) & DGS20
\end{tabular}

Create connection object:
\[
c=\text { fred; }
\]

Create symbol fetch list:
```

FredNames = { ...
'DGS1'; ... % Year

```
```

'DGS2'; ... % 2 Year
'DGS3'; ... % 3 Year
'DGS5'; ... % 5 Year
'DGS7'; ... % Y Year
'DGS10'; ... % 10 Year
'DGS20'}; % 20 Year

```

Define Terms:
```

Terms = [1; ... % 1 Year
2; ... % 2 Year
3; ... % 3 Year
5; ... % 5 Year
7; ... % 7 Year
10; ... % 10 Year
20]; %20 Year

```

Set StartDate to Feb 27, 2007:
StartDate \(=\) datenum('Feb-27-2007');
FredRet \(=\) fetch(c,FredNames,StartDate);
Set ValuationDate based on StartDate:
```

ValuationDate = StartDate;
EndDates = [];

```
Rates =[];

Create EndDates:
```

for idx = 1:length(FredRet)
%Pull the rates associated with Feb 27, 2007. All the Fred Rates come
%back as percents
Rates = [Rates; ...
FredRet(idx).Data(1,2) / 100];
%Determine the EndDates by adding the Term to the year of the
%StartDate
EndDates = [EndDates; ...
round(datenum(...

```
```

year(StartDate)+ Terms(idx,1), ...
month(StartDate),...
day(StartDate)))];

```
end
Use the function 'intenvset' to create the RateSpec with the following data:
```

Compounding = 1;
StartDate = '27-Feb-2007';
ValuationDate = StartDate;
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [7\times1 double]
Rates: [7\times1 double]
EndTimes: [7\times1 double]
StartTimes: [7\times1 double]
EndDates: [7\times1 double]
StartDates: 733100
ValuationDate: 733100
Basis: 0
EndMonthRule: 1

```
Rates \(=\) [0.0493; 0.0459; 0.0450; 0.0446; 0.0446; 0.0450; 0.0473];
EndDates \(=\) \{'27-Feb-2008'; '27-Feb-2009';'27-Feb-2010'; '27-Feb-2012'; ...
    27-Feb-2014' ; '27-Feb-2017'; '27-Feb-2027' \};
RateSpec = intenvset('Compounding',Compounding,'StartDates', StartDate,...
                                    EndDates', EndDates, 'Rates', Rates,'ValuationDate', ValuationDa1

\section*{Specify the Volatility Model}

Create the structure VolSpec that specifies the volatility process with the following data.
```

Volatility = [0.011892; 0.01563; 0.02021; 0.02125; 0.02165; 0.02065; 0.01803];
Alpha = [0.0001];
VolSpec = bkvolspec(ValuationDate, EndDates, Volatility, EndDates(end), Alpha)

```
```

VolSpec =
struct with fields:
FinObj: 'BKVolSpec'
ValuationDate: 733100
VolDates: [7\times1 double]
VolCurve: [7\times1 double]
AlphaCurve: 1.0000e-04
AlphaDates: 740405
VolInterpMethod: 'linear'

```

\section*{Specify the Time Structure of the Tree}

The structure TimeSpec specifies the time structure for an interest rate tree. This structure defines the mapping between the observation times at each level of the tree and the corresponding dates.
```

TimeSpec = bktimespec(ValuationDate, EndDates)
TimeSpec =
struct with fields:
FinObj: 'BKTimeSpec'
ValuationDate: 733100
Maturity: [7\times1 double]
Compounding: -1
Basis: 0
EndMonthRule: 1

```

\section*{Create the BK Tree}

Use the previously computed values for RateSpec, VolSpec and TimeSpec to create the BK tree.
```

BKTree = bktree(VolSpec, RateSpec, TimeSpec)

```
```

struct with fields:
FinObj: 'BKFwdTree
VolSpec: [1×1 struct]
TimeSpec: [1×1 struct]
RateSpec: [1×1 struct]
tObs: [[0 1 2 2 3 5 7 10]
dObs: [733100 733465 733831 734196 734926 735657 736753]
CFlowT: {1\times7 cell}
Probs: {1\times6 cell}
Connect: {1\times6 cell}
FwdTree: {1\times7 cell}

```

Observe the Interest Rate Tree
Visualize the interest rate evolution along the tree by looking at the output structure BKTree. The function 'bktree' returns an inverse discount tree, which you can convert into an interest rate tree with the 'cvtree' function.
```

BKTreeR = cvtree(BKTree)
BKTreeR =
struct with fields:
FinObj: 'BKRateTree'
VolSpec: [1\times1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1×1 struct]
tObs: [[0 1 1 2 3 5 7 10]
dObs: [733100 733465 733831 734196 734926 735657 736753]
CFlowT: {1\times7 cell}
Probs: {1\times6 cell}
Connect: {1\times6 cell}
RateTree: {1×7 cell}

```

Look at the upper, middle and lower branch paths of the tree:
```

OldFormat = get(0, 'format');
format short

```
```

%Rate at root node:
RateRoot = trintreepath(BKTreeR, 0)
%Rates along upper branch:
RatePathUp = trintreepath(BKTreeR, [[1 1 1 1 1 1 1 1 1])
%Rates along middle branch:
RatePathMiddle = trintreepath(BKTreeR, [2 2 2 2 2 2])
%Rates along lower branch:
RatePathDown = trintreepath(BKTreeR, [[$$
\begin{array}{llllll}{3}&{3}&{3}&{3}&{3}&{3}\end{array}
$$])
RateRoot =
0.0481
RatePathUp =
0.0481
0.0425
0.0446
0.0478
0.0510
0.0555
0.0620
RatePathMiddle =
0.0481
0.0416
0.0423
0.0430
0.0436
0.0449
0.0484
RatePathDown =
0.0481
0.0408
0.0401

```
0.0388
0.0373
0.0363
0.0378

You can also display a graphical representation of the tree to examine interactively the rates on the nodes of the tree until maturity. The function treeviewer displays the structure of the rate tree in the left window. The tree visualization in the right window is blank, but by selecting Table/Diagram and clicking on the nodes you can examine the rates along the paths.
```

treeviewer(BKTreeR);

```

\(\left[\begin{array}{ll}\text { Tree Visualization } & \text { Visualization } \\ \text { Selection } & \text { O Table } \\ \text { O Path } & \text { Diagram } \\ & \text { Plot } \\ \hline\end{array}\right.\)


\section*{Create an Instrument Portfolio}

Create a portfolio consisting of two bonds instruments and an option on the \(5 \%\) Bond.
```

% Two Bonds
CouponRate = [0.04;0.05];
Settle = '27 Feb 2007';
Maturity = {'27 Feb 2009';'27 Feb 2010'};
Period = 1;
% American Option on the 5% Bond
OptSpec = {'call'};
Strike = 98;
ExerciseDates = '27 Feb 2010';
AmericanOpt = 1;
InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period);
InstSet = instadd(InstSet,'OptBond', 2, OptSpec, Strike, ExerciseDates, AmericanOpt);
% Assign Names and Holdings
Holdings = [10; 15;3];
Names = {'4% Bond'; '5% Bond'; 'Option 98'};
InstSet = instsetfield(InstSet, 'Index',1:3, 'FieldName', {'Quantity'}, 'Data', Holdins
InstSet = instsetfield(InstSet, 'Index',1:3, 'FieldName', {'Name'}, 'Data', Names);

```

Examine the set of instruments contained in the variable InstSet.
```

instdisp(InstSet)

```
\begin{tabular}{llllllll} 
Index & Type CouponRate Settle & Maturity & Period & Basis EndMonthRule & IssueDat \\
1 & Bond 0.04 & \(27-\) Feb-2007 & \(27-\) Feb-2009 & 1 & 0 & 1 & NaN \\
2 & Bond 0.05 & \(27-\) Feb-2007 & \(27-\) Feb-2010 & 1 & 0 & 1 & NaN
\end{tabular}
\begin{tabular}{llllllll} 
Index & Type & UnderInd & OptSpec & Strike & ExerciseDates & AmericanOpt Quantity & Name \\
3 & OptBond 2 & call & 98 & \(27-\) Feb-2010 & 1 & 3 & Option 98
\end{tabular}

\section*{Price the Porffolio Using the BK Model}

Calculate the price of each instrument in the portfolio.
```

[Price, PTree] = bkprice(BKTree, InstSet)

```
```

Price =
98.8841
101.3470
3.3470
PTree =
struct with fields:
FinObj: 'BKPriceTree'
PTree: {1\times8 cell}
AITree: {1\times8 cell}
tObs: [[0 1 2 3 5 7 10 20]
Connect: {1\times6 cell}
Probs: {1\times6 cell}

```

The prices in the output vector Price correspond to the prices at observation time zero (tObs \(=0\) ), which is defined as the Valuation Date of the interest-rate tree.

In the Price vector, the first element, 98.884, represents the price of the first instrument ( \(4 \%\) Bond); the second element, 101.347, represents the price of the second instrument ( \(5 \%\) Bond), and 3.347 represents the price of the American call option.

You can also display a graphical representation of the price tree to examine the prices on the nodes of the tree until maturity.
treeviewer(PTree,InstSet);


\section*{Add More Instruments to the Existing Portfolio}

Add instruments to the existing portfolio: cap, floor, floating rate note, vanilla swap and a puttable and callable bond.
```

% Cap
StrikeC =0.035;
InstSet = instadd(InstSet,'Cap', StrikeC, Settle, '27 Feb 2010');
% Floor
StrikeF =0.05;
InstSet = instadd(InstSet,'Floor', StrikeF, Settle, '27 Feb 2009');

```
```

% Floating Rate Note
InstSet = instadd(InstSet,'Float', 30, Settle, '27 Feb 2009');
% Vanilla Swap
LegRate =[0.04 5];
InstSet = instadd(InstSet,'Swap', LegRate, Settle, '27 Feb 2010');
% Puttable and Callable Bonds
InstSet = instadd(InstSet,'OptEmBond', CouponRate, Settle, '27 Feb 2010', {'put';'call
Strike, '27 Feb 2010','AmericanOpt', 1, 'Period', 1);
% Process Names and Holdings
Holdings = [15 ;5 ;8; 7; 9; 4];
Names = {'3.5% Cap';'5% Floor';'30BP Float';'4%/5BP Swap'; 'PuttBond'; 'CallBond' };
InstSet = instsetfield(InstSet, 'Index',4:9, 'FieldName', {'Quantity'}, 'Data', Holdins
InstSet = instsetfield(InstSet, 'Index',4:9, 'FieldName', {'Name'}, 'Data', Names);
Examine the set of instruments contained in the variable InstSet.

```
```

instdisp(InstSet)

```
```

instdisp(InstSet)

```


Index Type CouponRate Settle Maturity OptSpec Strike ExerciseDates
8 OptEmBond 0.04 27-Feb-2007
9 OptEmBond 0.05 27-Feb-2007
\begin{tabular}{llll} 
Maturity & OptSpec & Strike & ExerciseDates \\
\(27-\) Feb-2010 & put & 98 & \(27-\) Feb-2007 \\
\(27-\) Feb-2010 & call & 98 & \(27-\) Feb-2007
\end{tabular}

\section*{Hedging}

The idea behind hedging is to minimize exposure to market movements. As the underlying changes, the proportions of the instruments forming the portfolio may need to be adjusted to keep the sensitivities within the desired range.

Calculate sensitivities using the BK model
[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet);
Get the current portfolio holdings.
```

Holdings = instget(InstSet, 'FieldName', 'Quantity');

```

Create a matrix of sensitivities
Sensitivities = [Delta Gamma Vega];
Each row of the Sensitivities matrix is associated with a different instrument in the portfolio, and each column with a different sensitivity measure.

Display the information
```

format bank
disp([Price Holdings Sensitivities])

```
\begin{tabular}{rrrrr}
98.88 & 10.00 & -185.47 & 528.47 & 0 \\
101.35 & 15.00 & -277.51 & 1045.05 & -0.00 \\
3.35 & 3.00 & -223.52 & 11843.32 & -0.00 \\
2.77 & 15.00 & 250.04 & 2921.11 & -0.00 \\
0.75 & 5.00 & -132.97 & 11566.69 & 0 \\
100.56 & 8.00 & -0.80 & 2.02 & 0 \\
-1.53 & 7.00 & -272.08 & 1027.85 & 0 \\
98.60 & 9.00 & -168.92 & 21712.82 & -0.00 \\
98.00 & 4.00 & -53.99 & -10798.27 & 0
\end{tabular}

The first column above is the dollar unit price of each instrument, the second is the number of contracts of each instrument, and the third, fourth, and fifth columns are the dollar delta, gamma, and vega sensitivities.

The current portfolio sensitivities are a weighted average of the instruments in the portfolio.

TargetSens \(=\) Holdings' * Sensitivities

\section*{Obtain a Neutral Sensitivity Porffolio}

Suppose you want to obtain a delta, gamma and vega neutral portfolio. The function hedgeslf finds the reallocation in a portfolio of financial instruments closest to being selffinancing (maintaining constant portfolio value).
```

[Sens, Value1, Quantity]= hedgeslf(Sensitivities, Price,Holdings)

```

Sens =

> 0
> -0.00
> 0

\section*{Value1 =}
4637.54
```

Quantity =
10.00
-14.95
1584.42
-3253.50
-778.02
40.63
-3949.95
114.56
-122.33

```

The function hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the rebalanced portfolio (Value1) and the new allocation for each instrument (Quantity). If Value 0 and Value 1 represent the portfolio value before and after rebalancing, you can verify the cost by comparing the portfolio values.
```

ValueO = Holdings' * Price
Value0 =
4637.54

```

In this example, the portfolio is fully hedged (simultaneous delta, gamma, and vega neutrality) and self-financing (the values of the portfolio before and after balancing (Value0 and Value1) are the same.

\section*{Adding Constraints to Hedge a Portfolio}

Suppose that you want to place upper and lower bounds on the individual instruments in the portfolio. Let's say that you want to bound the position of all instruments to within +/- 11 contracts.

Applying these constraints disallows the current positions in the fifth and eighth instruments. All other instruments are currently within the upper/lower bounds.
```

% Specify the lower and upper bounds
LowerBounds = [-11 -11 -11 -11 -11 -11 -11 -11 -11];
UpperBounds = [[11 11 11 11 11 11 11
% Use the function portcons to build the constraints
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);
% Apply the constraints to the portfolio
[Sens, Value, Quantity1] = hedgeslf(Sensitivities, Price, Holdings, [], ConSet)
Sens =
-0.00
0.00
-0.00
Value =
296.93
Quantity1 =

```
0.53
0.18
0.19
1.49
0.41
1.00
0.20
0.04
1.20

Observe that hedgeslf enforces the bounds on the fifth and eighth instruments, and the portfolio continues to be fully hedged and self-financing.
```

set(0, 'format', OldFormat);

```

\section*{See Also}
hedgeopt | hedgeslf

\section*{Related Examples}
- "Portfolio Creation" on page 1-7
- "Adding Instruments to an Existing Portfolio" on page 1-9
- "Instrument Constructors" on page 1-18
- "Creating Instruments or Properties" on page 1-19
- "Searching or Subsetting a Portfolio" on page 1-21
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11
- "Specifying Constraints with ConSet" on page 4-31
- "Portfolio Rebalancing" on page 4-33
- "Hedging with Constrained Portfolios" on page 4-36

\section*{More About}
- "Instrument Constructors" on page 1-18
- "Hedging" on page 4-2

\section*{Specifying Constraints with ConSet}

In this section...
"Introduction" on page 4-31
"Setting Constraints" on page 4-31
"Portfolio Rebalancing" on page 4-33

\section*{Introduction}

Both hedgeopt and hedgeslf accept an optional input argument, ConSet, that allows you to specify a set of linear inequality constraints for instruments in your portfolio. The examples in this section are brief. For additional information regarding portfolio constraint specifications, refer to "Analyzing Portfolios".

\section*{Setting Constraints}

For the first example of setting constraints, return to the fully hedged portfolio example that used hedgeopt to determine the minimum cost of obtaining simultaneous delta, gamma, and vega neutrality (target sensitivities all 0). Recall that when hedgeopt computes the cost of rebalancing a portfolio, the input target sensitivities you specify are treated as equality constraints during the optimization process. The situation is reproduced next for convenience.
```

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);

```

The outputs provide a fully hedged portfolio
Sens =
```

 -0.00 -0.00 -0.00
    ```
at an expense of over \(\$ 23,000\).
Cost =
23055.90

The positions required to achieve this fully hedged portfolio are
```

Quantity' =

```
100.00
-182. 36
- 19.55
80.00
8.00
-32.97
40.00
10.00

Suppose now that you want to place some upper and lower bounds on the individual instruments in your portfolio. You can specify these constraints, along with a variety of general linear inequality constraints, with Financial Toolbox \({ }^{\mathrm{TM}}\) function portcons.

As an example, assume that, in addition to holding instruments \(1,4,5,7\), and 8 fixed as before, you want to bound the position of all instruments to within \(+/-180\) contracts (for each instrument, you cannot short or long more than 180 contracts). Applying these constraints disallows the current position in the second instrument (short 182.36). All other instruments are currently within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper bounds vectors and then calling portcons.
```

LowerBounds = [-180 -180 -180 -180 -180 -180 -180 -180];
UpperBounds = [[180 180 180 180 180 180 180 180}]
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

```

To impose these constraints, call hedgeopt with ConSet as the last input.
```

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens, ConSet);

```

Examine the outputs and see that they are all set to NaN , indicating that the problem, given the constraints, is not solvable. Intuitively, the results mean that you cannot obtain simultaneous delta, gamma, and vega neutrality with these constraints at any price.

To see how close you can get to portfolio neutrality with these constraints, call hedgeslf.
```

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,...

```
Holdings, FixedInd, ConSet);

Sens =
```

 -352.43
 21.99
 -498.77
 Value1 =
855.10
Quantity =
100.00
-180.00
-37.22
80.00
8.00
-31.86
40.00
10.00

```
hedgeslf enforces the lower bound for the second instrument, but the sensitivity is far from neutral. The cost to obtain this portfolio is
```

ValueO - Value1

```
ans =
22819.52

\section*{Porifolio Rebalancing}

As a final example of user-specified constraints, rebalance the portfolio using the second hedging goal of hedgeopt. Assume that you are willing to spend as much as \(\$ 20,000\) to rebalance your portfolio, and you want to know what minimum portfolio sensitivities you can get for your money. In this form, recall that the target cost \((\$ 20,000)\) is treated as an inequality constraint during the optimization process.

For reference, start up hedgeopt without any user-specified linear inequality constraints.
```

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], 20000);

```
Sens =
```

 -4345.36 295.81 -6586.64
 Cost =
20000.00
Quantity' =
100.00
-151.86
-253.47
80.00
8.00
-18.18
40.00
10.00

```

This result corresponds to the \(\$ 20,000\) point along the Portfolio Sensitivities Profile shown in the figure Rebalancing Cost.

Assume that, in addition to holding instruments 1, 4, 5, 7, and 8 fixed as before, you want to bound the position of all instruments to within \(+/-150\) contracts (for each instrument, you cannot short more than 150 contracts and you cannot long more than 150 contracts). These bounds disallow the current position in the second and third instruments ( -151.86 and -253.47). All other instruments are currently within the upper/lower bounds.

As before, you can generate these constraints by first specifying the lower and upper bounds vectors and then calling portcons.
```

LowerBounds = [-150 -150 -150 -150 -150 -150 -150 -150];
UpperBounds = [[150 150 150 150 150 150 150 150];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

```

To impose these constraints, again call hedgeopt with ConSet as the last input.
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... Holdings, FixedInd, [], 20000, [], ConSet);

Sens =
\(\begin{array}{lll}-8818.47 & 434.43 & -4010.79\end{array}\)

Cost \(=\)
19876.89

\section*{Quantity' =}
100.00
-150.00
-150.00
80.00
8.00
- 28.32
40.00
10.00

With these constraints, hedgeopt enforces the lower bound for the second and third instruments. The cost incurred is \(\$ 19,876.89\).

\section*{See Also}
hedgeopt | hedgeslf

\section*{Related Examples}
- "Portfolio Creation" on page 1-7
- "Adding Instruments to an Existing Portfolio" on page 1-9
- "Instrument Constructors" on page 1-18
- "Creating Instruments or Properties" on page 1-19
- "Searching or Subsetting a Portfolio" on page 1-21
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11
- "Pricing and Hedging a Portfolio Using the Black-Karasinski Model" on page 4-16
- "Hedging with Constrained Portfolios" on page 4-36

\section*{More About}
- "Instrument Constructors" on page 1-18
- "Hedging" on page 4-2

\section*{Hedging with Constrained Porifolios}

\section*{In this section...}
"Overview" on page 4-36
"Example: Fully Hedged Portfolio" on page 4-36
"Example: Minimize Portfolio Sensitivities" on page 4-38
"Example: Under-Determined System" on page 4-39
"Example: Portfolio Constraints with hedgeslf" on page 4-41

\section*{Overview}

Both hedging functions cast the optimization as a constrained linear least-squares problem. (See the function lsqlin in the Optimization Toolbox documentation for details.) In particular, lsqlin attempts to minimize the constrained linear least squares problem
\[
\begin{aligned}
\min _{x} \frac{1}{2}\|C x-d\|_{2}^{2} \text { such that } \quad A \cdot x & \leq b \\
A e q \cdot x & =b e q \\
l b \leq x & \leq u b
\end{aligned}
\]
where \(C, A\), and \(A e q\) are matrices, and \(d, b, b e q, l b\), and \(u b\) are vectors. For Financial Instruments Toolbox software, \(x\) is a vector of asset holdings (contracts).

Depending on the constraint and the number of assets in the portfolio, a solution to a particular problem may or may not exist. Furthermore, if a solution is found, it may not be unique. For a unique solution to exist, the least squares problem must be sufficiently and appropriately constrained.

\section*{Example: Fully Hedged Porffolio}

Recall that hedgeopt allows you to allocate an optimal hedge by one of two goals:
- Minimize the cost of hedging a portfolio given a set of target sensitivities.
- Minimize portfolio sensitivities for a given set of maximum target costs.

As an example, reproduce the results for the fully hedged portfolio example.
```

TargetSens = [0 0 0];
FixedInd = [14 4 5 7 8];
[Sens,Cost,Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);
Sens =
-0.00 -0.00 -0.00
Cost =
23055.90
Quantity' =
98.72
-182.36
-19.55
80.00
8.00
-32.97
40.00
10.00

```

This example finds a unique solution at a cost of just over \(\$ 23,000\). The matrix C (formed internally by hedgeopt and passed to lsqlin) is the asset Price vector expressed as a row vector.

C \(=\) Price' \(=\left[\begin{array}{lll}98.72 & 97.530 .0598 .72100 .556 .280 .05 ~ 3.69]\end{array}\right.\)
The vector \(d\) is the current portfolio value Value0 \(=23674.62\). The example maintains, as closely as possible, a constant portfolio value subject to the specified constraints.

\section*{Additional Constraints}

In the absence of any additional constraints, the least squares objective involves a single equation with eight unknowns. This is an under-determined system of equations. Because such systems generally have an infinite number of solutions, you need to specify additional constraints to achieve a solution with practical significance.

The additional constraints can come from two sources:
- User-specified equality constraints
- Target sensitivity equality constraints imposed by hedgeopt

The example in "Fully Hedged Portfolio" on page \(4-8\) specifies five equality constraints associated with holding assets \(1,4,5,7\), and 8 fixed. This reduces the number of unknowns from eight to three, which is still an under-determined system. However, when combined with the first goal of hedgeopt, the equality constraints associated with the target sensitivities in TargetSens produce an additional system of three equations with three unknowns. This additional system guarantees that the weighted average of the delta, gamma, and vega of assets 2 , 3 , and 6 , together with the remaining assets held fixed, satisfy the overall portfolio target sensitivity needs in TargetSens.

Combining the least-squares objective equation with the three portfolio sensitivity equations provides an overall system of four equations with three unknown asset holdings. This is no longer an under-determined system, and the solution is as shown.

If the assets held fixed are reduced, for example, FixedInd = [ \(\left.\begin{array}{lll}1 & 4 & 5\end{array}\right]\), hedgeopt returns a no cost, fully hedged portfolio (Sens = [lll 0000 and Cost = 0).

If you further reduce FixedInd (for example, [ \(\left.\begin{array}{lll}1 & 4 & 5\end{array}\right]\), [ 14 4], or even []), hedgeopt always returns a no cost, fully hedged portfolio. In these cases, insufficient constraints result in an under-determined system. Although hedgeopt identifies no cost, fully hedged portfolios, there is nothing unique about them. These portfolios have little practical significance.

Constraints must be sufficient and appropriately defined. Additional constraints having no effect on the optimization are called dependent constraints. As a simple example, assume that parameter \(Z\) is constrained such that \(Z \leq 1\). Furthermore, assume that you somehow add another constraint that effectively restricts \(Z \leq 0\). The constraint \(Z \leq 1\) now has no effect on the optimization.

\section*{Example: Minimize Portfolio Sensitivities}

To illustrate using hedgeopt to minimize portfolio sensitivities for a given maximum target cost, specify a target cost of \(\$ 20,000\) and determine the new portfolio sensitivities, holdings, and cost of the rebalanced portfolio.
```

MaxCost = 20000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [1 4 5 7 8], [], MaxCost);

```
```

Sens =
-4345.36 295.81 -6586.64
Cost =
20000.00
Quantity' =
100.00
-151.86
-253.47
80.00
8.00
-18.18
40.00
10.00

```

This example corresponds to the \(\$ 20,000\) point along the cost axis in the figures Rebalancing Cost Profile, Funds Available for Rebalancing, and Rebalancing Cost.

When minimizing sensitivities, the maximum target cost is treated as an inequality constraint; in this case, MaxCost is the most you are willing to spend to hedge a portfolio. The least-squares objective matrix C is the matrix transpose of the input asset sensitivities

C = Sensitivities'
a 3-by-8 matrix in this example, and d is a 3-by-1 column vector of zeros, [0 0 0]'.

Without any additional constraints, the least-squares objective results in an underdetermined system of three equations with eight unknowns. By holding assets \(1,4,5,7\), and 8 fixed, you reduce the number of unknowns from eight to three. Now, with a system of three equations with three unknowns, hedgeopt finds the solution shown.

\section*{Example: Under-Determined System}

Reducing the number of assets held fixed creates an under-determined system with meaningless solutions. For example, see what happens with only four assets constrained.
```

FixedInd = [11 4 5 7];

```
```

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], MaxCost);
Sens =
-0.00 -0.00 -0.00
Cost =
20000.00
Quantity' =
100.00
-149.31
-14.91
80.00
8.00
-34.64
40.00
-32.60

```

You have spent \(\$ 20,000\) (all the funds available for rebalancing) to achieve a fully hedged portfolio.

With an increase in available funds to \(\$ 50,000\), you still spend all available funds to get another fully hedged portfolio.

MaxCost \(=50000\);
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... Holdings, FixedInd, [],MaxCost);

Sens =
\(-0.00\)
0.00
0.00

Cost =
50000.00

\section*{Quantity' =}
100.00
\(-473.78\)
-60.51
80.00
8.00
\(-18.20\)
40.00
385.60

All solutions to an under-determined system are meaningless. You buy and sell various assets to obtain zero sensitivities, spending all available funds every time. If you reduce the number of fixed assets any further, this problem is insufficiently constrained, and you find no solution (the outputs are all NaN ).

Note also that no solution exists whenever constraints are inconsistent. Inconsistent constraints create an infeasible solution space; the outputs are all NaN .

\section*{Example: Porffolio Constraints with hedgeslf}

The other hedging function, hedgeslf, attempts to minimize portfolio sensitivities such that the rebalanced portfolio maintains a constant value (the rebalanced portfolio is hedged against market moves and is closest to being self-financing). If a self-financing hedge is not found, hedgeslf tries to rebalance a portfolio to minimize sensitivities.

From a least-squares systems approach, hedgeslf first attempts to minimize cost in the same way that hedgeopt does. If it cannot solve this problem (a no cost, self-financing hedge is not possible), hedgeslf proceeds to minimize sensitivities like hedgeopt. Thus, the discussion of constraints for hedgeopt is directly applicable to hedgeslf as well.

To illustrate this hedging facility using equity exotic options, consider the portfolio CRRInstSet obtained from the example MAT-file deriv. mat. The portfolio consists of eight option instruments: two stock options, one barrier, one compound, two lookback, and two Asian.

The hedging functions require inputs that include the current portfolio holdings (allocations) and a matrix of instrument sensitivities. To create these inputs, start by loading the example portfolio into memory

\section*{load deriv.mat;}

Next, compute the prices and sensitivities of the instruments in this portfolio.
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);
Extract the current portfolio holdings (the quantity held or the number of contracts).
Holdings = instget(CRRInstSet, 'FieldName', 'Quantity');

For convenience place the delta, gamma, and vega sensitivity measures into a matrix of sensitivities.
```

Sensitivities = [Delta Gamma Vega];

```

Each row of the Sensitivities matrix is associated with a different instrument in the portfolio and each column with a different sensitivity measure.
\begin{tabular}{rrrrr} 
disp([Price & Holdings & \multicolumn{1}{c}{ Sensitivities]) } & \\
8.29 & 10.00 & 0.59 & 0.04 & 53.45 \\
2.50 & 5.00 & -0.31 & 0.03 & 67.00 \\
12.13 & 1.00 & 0.69 & 0.03 & 67.00 \\
3.32 & 3.00 & -0.12 & -0.01 & -98.08 \\
7.60 & 7.00 & -0.40 & -45926.32 & 88.18 \\
11.78 & 9.00 & -0.42 & -112143.15 & 119.19 \\
4.18 & 4.00 & 0.60 & 45926.32 & 49.21 \\
3.42 & 6.00 & 0.82 & 112143.15 & 41.71
\end{tabular}

The first column contains the dollar unit price of each instrument, the second contains the holdings of each instrument, and the third, fourth, and fifth columns contain the delta, gamma, and vega dollar sensitivities, respectively.

Suppose that you want to obtain a delta, gamma, and vega neutral portfolio using hedgeslf.
```

[Sens, Value1, Quantity]= hedgeslf(Sensitivities, Price, ...
Holdings)

```
Sens =
            0.00
            -0.00
            0.00
Value1 \(=\)
313.93
```

Quantity =
10.00
7.64
-1.56
26.13
9.94
3.73
-0.75

```
8.11
hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the rebalanced portfolio (Value1) and the new allocation for each instrument (Quantity).

If Value 0 and Value 1 represent the portfolio value before and after rebalancing, respectively, you can verify the cost by comparing the portfolio values.
```

ValueO= Holdings' * Price
Value0 =

```
    313.93

In this example, the portfolio is fully hedged (simultaneous delta, gamma, and vega neutrality) and self-financing (the values of the portfolio before and after balancing (Value0 and Value1) are the same.

Suppose now that you want to place some upper and lower bounds on the individual instruments in your portfolio. By using Financial Toolbox function portcons, you can specify these constraints, along with various general linear inequality constraints.

As an example, assume that, in addition to holding instrument 1 fixed as before, you want to bound the position of all instruments to within +/- 20 contracts (for each instrument, you cannot short or long more than 20 contracts). Applying these constraints disallows the current position in the fourth instrument (long 26.13). All other instruments are currently within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper bounds vectors and then calling portcons.
```

LowerBounds =[[-20
UpperBounds = [[20
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

```

To impose these constraints, call hedgeslf with ConSet as the last input.
[Sens, Cost, Quantity1] = hedgeslf(Sensitivities, Price, ... Holdings, 1, ConSet)

Sens =
\(-0.00\)
0.00
```

 0.00
 Cost =
313.93
Quantity1 =
10.00
5 . 2 8
10.98
20.00
20.00
-6.99
-20.00
9.39

```

Observe that hedgeslf enforces the upper bound on the fourth instrument, and the portfolio continues to be fully hedged and self-financing.

\section*{See Also}
hedgeopt | hedgeslf

\section*{Related Examples}
- "Portfolio Creation" on page 1-7
- "Adding Instruments to an Existing Portfolio" on page 1-9
- "Instrument Constructors" on page 1-18
- "Creating Instruments or Properties" on page 1-19
- "Searching or Subsetting a Portfolio" on page 1-21
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11
- "Pricing and Hedging a Portfolio Using the Black-Karasinski Model" on page 4-16
- "Specifying Constraints with ConSet" on page 4-31
- "Portfolio Rebalancing" on page 4-33

\section*{More About}
- "Instrument Constructors" on page 1-18
- "Hedging" on page 4-2

\section*{Mortgage-Backed Securities}
- "What Are Mortgage-Backed Securities?" on page 5-2
- "Fixed-Rate Mortgage Pool" on page 5-3
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model" on page 5-16
- "Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model" on page 5-39
- "Using Collateralized Mortgage Obligations (CMOs)" on page 5-48
- "CMO Workflow" on page 5-56
- "Create PAC and Sequential CMO" on page 5-59

\section*{What Are Mortgage-Backed Securities?}

Mortgage-backed securities (MBSs) are a type of investment that represents ownership in a group of mortgages. Principal and interest from the individual mortgages are used to pay principal and interest on the MBS.

Ownership in a group of mortgages is typically represented by a pass-through certificate (PC). Most pass-through certificates are issued by the Government National Mortgage Agency, a branch of the United States government, or by one of two private corporations: Fannie Mae or Freddie Mac. With these certificates, homeowners' payments pass from the originating bank through the issuing agency to holders of the certificates. These agencies also frequently guarantee that the certificate holder receives timely payment of principal and interest from the PCs.

\section*{See Also}
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbsoas2price | mbsoas2yield | mbspassthrough | mbsprice | mbsprice2oas | mbsprice2speed | mbswal | mbsyield | mbsyield2oas | mbsyield2speed | psaspeed2default | psaspeed2rate

\section*{Related Examples}
- "Fixed-Rate Mortgage Pool" on page 5-3

\section*{Fixed-Rate Mortgage Pool}

Financial Instruments Toolbox software supports calculations involved with generic fixed-rate mortgage pools and balloon mortgages.
```

In this section...
"Introduction" on page 5-3
"Inputs to Functions" on page 5-4
"Generating Prepayment Vectors" on page 5-4
"Mortgage Prepayments" on page 5-6
"Risk Measurement" on page 5-8
"Mortgage Pool Valuation" on page 5-9
"Computing Option-Adjusted Spread" on page 5-10
"Prepayments with Fewer Than 360 Months Remaining" on page 5-12
"Pools with Different Numbers of Coupons Remaining" on page 5-13

```

\section*{Introduction}

Generic fixed-rate mortgage pools and balloon mortgages have pass-through certificates (PC) that typically have embedded call options in the form of prepayment. Prepayment is an excess payment applied to the principal of a PC. These accelerated payments reduce the effective life of a PC.

The toolbox comes with a standard Bond Market Association (PSA) prepayment model and can generate multiples of standard prepayment speeds. The Public Securities Association provides a set of uniform practices for calculating the characteristics of mortgage-backed securities when there is an assumed prepayment function.

Alternatively, aside from the standard PSA implementation in this toolbox, you can supply your own projected prepayment vectors. Currently, however, custom prepayment functionality that incorporates pool-specific information and interest rate forecasts are not available in this toolbox. If you plan to use custom prepayment vectors in your calculations, you presumably already own such a suite in MATLAB.

\section*{Inputs to Functions}

Because of the generic, all-purpose nature of the toolbox pass-through functions, you can fine-tune them to conform to a particular mortgage. Most functions require at least this set of inputs:
- Gross coupon rate
- Settlement date
- Issue (effective) date
- Maturity date

Typical optional inputs include standard prepayment speed (or customized vector), net coupon rate (if different from gross coupon rate), and payment delay in number of days.

All calculations are based on expected payment dates and actual cash flow to the investor. For example, when GrossRate and CouponRate differ as inputs to mbsdurp, the function returns a modified duration based on CouponRate. (A notable exception is mbspassthrough, which returns interest quantities based on the GrossRate.)

\section*{Generating Prepayment Vectors}

You can generate PSA multiple prepayment vectors quickly. To generate prepayment vectors of 100 and 200 PSA, type
```

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);

```

This function computes two prepayment values: conditional prepayment rate (CPR) and single monthly mortality (SMM) rate. CPR is the percentage of outstanding principal prepaid in one year. SMM is the percentage of outstanding principal prepaid in one month. In other words, CPR is an annual version of SMM.

Since the entire 360-by-2 array is too long to show in this document, observe the SMM (100 and 200 PSA) plots, spaced one month apart, instead.


Prepayment assumptions form the basis upon which far more comprehensive MBS calculations are based. As an illustration, observe the following example, which shows the use of the function mbscfamounts to generate cash flows and timings based on a set of standard prepayments.

Consider three mortgage pools that were sold on the issue date (which starts unamortized). The first two pools "balloon out" in 60 months, and the third is regularly amortized to the end. The prepayment speeds are assumed to be 100, 200, and 200 PSA, respectively.
```

Settle = [datenum('1-Feb-2000');
datenum('1-Feb-2000');
datenum('1-Feb-2000')];
Maturity = [datenum('1-Feb-2030')];
IssueDate = datenum('1-Feb-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;

```
PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);
```

PrepayMatrix = ones(360,3);
PrepayMatrix(1:60,1:2) = SMM(1:60,1:2);
PrepayMatrix(:,3) = SMM(:,2);
[CFlowAmounts, CFlowDates, TFactors, Factors] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, [], PrepayMatrix);

```

The fourth output argument，Factors，indicates the fraction of the balance still outstanding at the beginning of each month．A snapshot of this argument in the MATLAB Variables editor illustrates the 60 －month life of the first two of the mortgages with balloon payments and the continuation of the third mortgage until the end（360 months）．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{F9 Variable Editor} \\
\hline 略 & 荗鸩首 & \(\theta 10\). & ｜Stack： & － & o valid ple \\
\hline \multicolumn{6}{|l|}{Factors} \\
\hline \multicolumn{6}{|l|}{W Factors＜3x361 double＞} \\
\hline \multicolumn{2}{|r|}{59} & 60 & 61 & 62 & 63 \\
\hline 1 & 0.7627 & 0.7580 & 0.7533 & 0 & 0 \\
\hline 2 & 0.6021 & 0.5951 & 0.5882 & 0 & 0 \\
\hline 3 & 0.6021 & 0.5951 & 0.5882 & 0.5813 & 0.5746 \\
\hline & & & & & \\
\hline
\end{tabular}

You can readily see that mbscfamounts is the building block of most fixed rate and balloon pool cash flows．

\section*{Mortgage Prepayments}

Prepayment is beneficial to the pass－through owner when a mortgage pool has been purchased at discount．The next example compares mortgage yields（compounded monthly）versus the purchase clean price with constant prepayment speed．The example illustrates that when you have purchased a pool at a discount，prepayment generates a higher yield with decreasing purchase price．
```

Price = [85; 90; 95];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

```

Compute the mortgage and bond-equivalent yields.
```

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Speed)

```

MYield =
0.1018
0.0918
0.0828

\section*{BEMBSYield =}
0.1040
0.0936
0.0842

If for this same pool of mortgages, there was no prepayment (Speed \(=0\) ), the yields would decline to

MYield =
0.0926
0.0861
0.0802

BEMBSYield =
0.0944
0.0877
0.0815

Likewise, if the rate of prepayment doubled (Speed \(=200)\), the yields would increase to MYield =
0.1124
0.0984
0.0858

BEMBSYield =
0.1151
0.1004
0.0873

For the same prepayment vector, deeper discount pools earn higher yields. For more information, see mbsprice and mbsyield.

\section*{Risk Measurement}

Financial Instruments Toolbox provides the most basic risk measures of a pool portfolio:
- Modified duration
- Convexity
- Average life of pool

Consider the following example, which calculates the Macaulay and modified durations given the price of a mortgage pool.
```

Price = [95; 100; 105];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;
[YearDuration, ModDuration] = mbsdurp(Price, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, Speed)
YearDuration =
6.1341
6.3882
6.6339
ModDuration =

```
    5.8863
    6.1552
    6.4159

Using Financial Instruments Toolbox functions, you can obtain modified duration and convexity from either price or yield, as long as you specify a prepayment vector or an assumed prepayment speed. The toolbox risk-measurement functions (mbsdurp, mbsdury, mbsconvp, mbsconvy, and mbswal) adhere to the guidelines listed in the PSA Uniform Practices manual.

\section*{Mortgage Pool Valuation}

For accurate valuation of a mortgage pool, you must generate interest-rate paths and use them with mortgage pool characteristics to properly value the pool. A widely used methodology is the option-adjusted spread (OAS). OAS measures the yield spread that is not directly attributable to the characteristics of a fixed-income investment.

\section*{Calculating OAS}

Prepayment alters the cash flows of an otherwise regularly amortizing mortgage pool. A comprehensive option-adjusted spread calculation typically begins with the generation of a set of paths of spot rates to predict prepayment. A path is collection of \(i\) spot-rate paths, with corresponding \(j\) cash flows on each of those paths.

The effect of the OAS on pool pricing is shown mathematically in the following equation, where \(K\) is the option-adjusted spread.
\[
\text { PoolPrice }=\frac{1}{\text { NumberofPaths }} \times \sum_{i}^{\text {NumberofPaths }} \sum_{j}^{C F_{i j}} \frac{C F_{i j}}{\left(1+\text { zerorates }_{i j}+K\right)^{T_{i j}}}
\]

\section*{Calculating Effective Duration}

Alternatively, if you are more interested in the sensitivity of a mortgage pool to interest rate changes, use effective duration, which is a more appropriate measure. Effective duration is defined mathematically with the following equation.
\[
\text { Effective Duration }=\frac{P(y+\Delta y)-P(y-\Delta y)}{2 P(y) \Delta y}
\]

\section*{Calculating Market Price}

The toolbox has all the components required to calculate OAS and effective duration if you supply prepayment vectors or assumptions. For OAS, given a prepayment vector, you can generate a set of cash flows with mbscfamounts. Discounting these cash flows with the reference curve and then adding OAS produces the market price. See "Computing Option-Adjusted Spread" on page 5-10 for a discussion on the computation of optionadjusted spread.

Effective duration is a more difficult issue. While modified duration changes the discounting process (by changing the yield used to discount cash flows), effective duration must account for the change in cash flow because of the change in yield. A possible
solution is to recompute prices using mbsprice for a small change in yield, in both the upwards and downwards directions. In this case, you must recompute the prepayment input. Internally, this alters the cash flows of the mortgage pool. Assuming that the OAS stays constant in all yield environments, you can apply a set of discounting factors to the cash flows in up and down yield environments to find the effective duration.

\section*{Computing Option-Adjusted Spread}

The option-adjusted spread (OAS) is an amount of extra interest added above (or below if negative) the reference zero curve. To compute the OAS, you must provide the zero curve as an extra input. You can specify the zero curve in any intervals and with any compounding method. (To minimize any error due to interpolation, keep the intervals as regular and frequent as possible.) You must supply a prepayment vector or specify a speed corresponding to a standard PSA prepayment vector.

One way to compute the appropriate zero curve for an agency is to look at its bond yields and bootstrap them from the shortest maturity onwards. You can do this with Financial Toolbox functions zbtprice and zbtyield.

The following example shows how to calculate an appropriate zero curve followed by computation of the pool's OAS. This example calculates the OAS of a 30 -year fixed rate mortgage with about a 28 -year weighted average maturity left, given an assumption of 0 , 50 , and 100 PSA prepayment speeds.

Create curve for zerorates.


Since the above is Treasury data and not selected agency data, a term structure of spread is assumed. In this example, the spread declines proportionally from a maximum of 250 basis points at the shortest maturity.
```

Yields = Yields + 0.025 * (1./[1:6]');

```

Get parameters from Bonds matrix.
```

Settle = datenum('20-Aug-2002');
Maturity = Bonds(:,1);
CouponRate = Bonds(:,2);
Face = Bonds(:,3);
Period = Bonds(:,4);
Basis = Bonds(:,5);
EndMonthRule = Bonds(:,6);
[Prices, AccruedInterest] = bndprice(Yields, CouponRate, ...
Settle, Maturity, Period, Basis, EndMonthRule, [], [], [], [], ...
Face);

```

Use zbtprice to solve for zero rates.
```

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCompounding = 2*ones(size(ZeroRatesP));
ZeroMatrix = [CurveDatesP, ZeroRatesP, ZeroCompounding];

```

Use output from zbtprice to calculate the OAS.
```

Price = 95;
Settle = datenum('20-Aug-2002');
Maturity = datenum('2-Jan-2030');
IssueDate = datenum('2-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0; 50; 100];
OAS = mbsprice2oas(ZeroMatrix, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...
PrepaySpeed)

```
OAS =
    26.0502
    28.6348
    31.2222

This example shows that one cash flow set is being discounted and solved for its OAS, as contrasted with the NumberOfPaths set of cash flows as shown in "Mortgage Pool Valuation" on page 5-9. Averaging the sets of cash flows resulting from all simulations into one average cash flow vector and solving for the OAS, discounts the averaged cash flows to have a present value of today's (average) price.

While this example uses the mortgage pool price (mbsprice2oas) to determine the OAS, you can also use yield to resolve it (mbsyield2oas). Also, there are reverse OAS functions that return prices and yields given OAS (mbsoas2price and mbsoas2yield).

The example also restates earlier examples that show discount securities benefit from higher level of prepayment, keeping everything else unchanged. The relation is reversed for premium securities.

\section*{Prepayments with Fewer Than 360 Months Remaining}

When fewer than 360 months remain in the pool, the applicable PSA prepayment vector is "seasoned" by the pool's age. (Elements in the 360 -element prepayment vector that represent past payments are skipped. For example, on a 30 -year mortgage that is 10 months old, only the final 350 prepayments are applied.)

Assume, for example, that you have two 30-year loans, one new and another 10 months old. Both have the same PSA speed of 100 and prepay using the vectors plotted below.


Still within the scope of relative valuation, you could also solve for the percentage of the standard PSA prepayment vector given the pool's arbitrary, user-supplied prepayment
vector, such that the PSA speed gives the same Macaulay duration as the user-supplied prepayment vector.

If you supply a custom prepayment vector, you must account for the number of months remaining.
```

Price = 101;
Settle = datenum('1-Jan-2001');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(348,1);
CouponRate = 0.075;
Delay = 14;
ImpliedSpeed = mbsprice2speed(Price, Settle, Maturity, ...
IssueDate, GrossRate, PrepayMatrix, CouponRate, Delay)
ImpliedSpeed =

```
    104.2543

Examine the prepayment input. The remaining 29 years require 348 monthly elements in the prepayment vector. Suppose then, keeping everything the same, you change Settle to February 14, 2003.
```

Settle = datenum('14-Feb-2003');

```

You can use cpncount to count all incoming coupons received after Settle by invoking
NumCouponsRemaining = cpncount(Settle, Maturity, 12, 1, [], ...
IssueDate)
NumCouponsRemaining =
323

The input 12 defines the monthly payment frequency, 1 defines the \(30 / 360\) basis, and IssueDate defines aging and determination-of-holder date. Thus, you must supply a 323 -element vector to account for a prepayment corresponding to each monthly payment.

\section*{Pools with Different Numbers of Coupons Remaining}

Suppose one pool has two remaining coupons, and the other has three. MATLAB expects the prepayment matrix to be in the following format:
```

V11 V21
V12 V22
NaN V23

```
\(\mathrm{V}_{\mathrm{ij}}\) denotes the single monthly mortality (SMM) rate for pool i during the j th coupon period since Settle.

The use of NaN to pad the prepayment matrix is necessary because MATLAB cannot concatenate vectors of different lengths into a matrix. Also, it can serve as an error check against any unintended operation (any MATLAB operation that would return NaN ).

For example, assume that the 2 -month pool has a constant SMM of \(0.5 \%\) and the 3 month pool has a constant SMM of \(1 \%\) in every period. The prepayment matrix you would create is depicted below.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{- Variable Editor - PrepaymentMatrix} & - & 回 & \(\Sigma\) \\
\hline \multicolumn{7}{|l|}{File Edit View Graphics Debug \(\quad>\boldsymbol{x} \times \times\)} \\
\hline \multicolumn{5}{|l|}{} & & \\
\hline \multicolumn{7}{|l|}{\# PrepaymentMatrix < \(3 \times 2\) double>} \\
\hline \multirow[t]{2}{*}{} & 1 & 2 & 3 & & 4 & \\
\hline & 0.0050 & 0.0100 & & & & , \\
\hline 2 & 0.0050 & 0.0100 & & & & \\
\hline \multirow[t]{2}{*}{3} & NaN & 0.0100 & & & & - \\
\hline & 1 III & & & & & , \\
\hline
\end{tabular}

Create this input in whatever manner is best for you.

\section*{Summary of Prepayment Data Vector Representation}
- When you specify a PSA prepayment speed, MATLAB "seasons" the pool according to its age.
- When you specify your own prepayment matrix, identify the maximum number of coupons remaining using cpncount. Then supply the matrix elements up to the point when cash flow ceases to exist.
- When different length pools must exist in the same matrix, pad the shorter one(s) with NaN . Each column of the prepayment matrix corresponds to a specific pool.

\section*{See Also}
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbsoas2price | mbsoas2yield | mbspassthrough | mbsprice | mbsprice2oas | mbsprice2speed | mbswal | mbsyield | mbsyield2oas | mbsyield2speed | psaspeed2default | psaspeed2rate

\section*{Related Examples}
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model" on page 5-16
- "Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model" on page 5-39
- "Using Collateralized Mortgage Obligations (CMOs)" on page 5-48

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model}

This example shows how to model prepayment in MATLAB® using functionality from the Financial Instruments Toolbox \({ }^{\mathrm{TM}}\). Specifically, a variation of the Richard and Roll prepayment model is implemented using a two factor Hull-White interest-rate model and a LIBOR Market Model to simulate future interest-rate paths. A mortgage-backed security is priced with both the custom and default prepayment models.

\section*{Introduction}

Prepayment modeling is crucial to the analysis of mortgage-backed securities (MBS). Prepayments by individual mortgage holders affect both the amount and timing of cash flows -- and for collateralized mortgage obligations (e.g.: interest-only securities), prepayment can greatly affect the value of the securities.

\section*{PSA Model}

The most basic prepayment model is the Public Securities Association (PSA) model, which assumes a ramp-up phase and then a constant conditional prepayment rate (CPR). The PSA model can be generated in MATLAB using the Financial Instruments Toolbox function PSASPEED2RATE
```

G2PP_CPR = psaspeed2rate([100 200]);
figure
plot(G2PP_CPR)
title('100 and 200 PSA Prepayment Speeds')
xlabel('Months')
ylabel('CPR')
ylim([0 .14])
legend({'100 PSA','200 PSA'}, 'Location', 'Best')

```


\section*{Mortgage-Backed Security}

The MBS analyzed in this example matures in 2020 and has the properties outlined in this section. Cash flows are generated for PSA prepayment speeds simply by entering the PSA speed as an input argument.
```

% Parameters for MBS passthrough to be priced
Settle = datenum('15-Dec-2007');
Maturity = datenum('15-Dec-2020');
IssueDate = datenum('15-Dec-2000');
GrossRate = .0475;
CouponRate = .045;
Delay = 14;

```
```

Period = 12;
Basis = 4;
% Generate cash flows and dates for baseline case using 100 PSA
[CFlowAmounts, CFlowDates] = mbscfamounts(Settle,Maturity, IssueDate,...
GrossRate, CouponRate, Delay,100);
CFlowTimes = yearfrac(Settle,CFlowDates);
NumCouponsRemaining = cpncount(Settle, Maturity, Period,Basis, 1, IssueDate);

```

\section*{Richard and Roll Model}

While prepayment modeling often involves quite complex and sophisticated modeling, often at the loan level, this example will use a slightly modified approach based on the model proposed by Richard and Roll in [6].

The Richard and Roll prepayment model involves the following factors:
- Refinancing incentive
- Seasonality (month of the year)
- Seasoning or age of the mortgage
- Burnout

Richard and Roll propose a multiplicative model of the following:

\section*{CPR \(=\) RefiIncentive \(*\) SeasoningMultiplier \(*\) SeasonalityMultiplier \(*\) BurnoutMultiplier}

For the custom model in this example, the Burnout Multiplier, which describes the tendency of prepayment to slow when a significant number of homeowners have already refinanced, is ignored and the first three terms are used.

The refinancing incentive is a function of the ratio of the coupon-rate of the mortgage to the available mortgage rate at that particular point in time. For example, the Office of Thrift Supervision (OTS) proposes the following model:
\[
\text { Refi }=.2406-.1389 * \arctan \left(5.952 *\left(1.089-\frac{\text { CouponRate }}{\text { MortgageRate }}\right)\right)
\]

The refinancing incentive requires a simulation of future interest rates. This will be discussed later in this example.
```

C_M = .1:.1:2;
G2PP_Refi = .2406 - .1389 * atan(5.952*(1.089 - C_M));
figure
plot(C_M,G2PP_Refi)
xlabel('Coupon/Mortgage Rate')
ylabel('CPR')
title('Refinancing Incentive')

```

Refinancing Incentive


Seasoning captures the tendency of prepayment to ramp up at the beginning of a mortgage before leveling off. The OTS models the seasoning multiplier as follows:

Seasoning = ones(360,1);
Seasoning(1:29) \(=(1: 29) / 30\);
figure
```

plot(Seasoning)
xlim([1 360])
title('Seasoning Multiplier')
xlabel('Months')

```

Seasoning Multiplier


The seasonality multiplier simply models the seasonal behavior of prepayments -- this data is based on Figure 3 of [6], which applies to the behavior of Ginnie Mae 30-year, single-family MBSs.
```

Seasonality = [.94 .76 .73 .96 .98 .92 .99 1.1 1.18 1.21 1.23 .97];
figure
plot(Seasonality)
xlim([1 12])
ax = gca;

```
```

ax.XTick = 1:12;
ax.XTickLabel = {'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug', ...
Sep','Oct','Nov','Dec'};
title('Seasonality Multiplier')

```

Seasonality Multiplier


\section*{G2++ Interest-Rate Model}

Since the refinancing incentive requires a simulation of future interest rates, an interestrate model must be used. One choice is a two-factor additive Gaussian model, referred to as G2++ by Brigo and Mercurio [2].

The G2++ Interest Rate Model is:
\[
\begin{aligned}
& r(t)=x(t)+y(t)+\varphi(t) \\
& d x(t)=-a x(t) d t+\sigma d W_{1}(t) \\
& d y(t)=-b y(t) d t+\eta d W_{2}(t)
\end{aligned}
\]
where \(d W_{1}(t) d W_{2}(t)\) is a two-dimensional Brownian motion with correlation \(\rho\)
\[
\begin{aligned}
& d W_{1}(t) d W_{2}(t)=\rho d t \\
& \varphi(T)=f^{M}(0, T)+\frac{\sigma^{2}}{2 a^{2}}\left(1-e^{-a T}\right)^{2}+\frac{\eta^{2}}{2 b^{2}}\left(1-e^{-b T}\right)^{2}+\rho \frac{\sigma \eta}{a b}\left(1-e^{-a T}\right)\left(1-e^{-b T}\right)
\end{aligned}
\]
and \(r(t)\) is the short rate, \(a\) and \(b\) are mean reversion constants and \(\sigma\) and \(\eta\) are volatility constants, and \(f^{M}(0, T)\) is the market forward rate, or the forward rate observed on the Settle date.

\section*{LIBOR Market Model}

The LIBOR Market Model (LMM) differs from short-rate models in that it evolves a set of discrete forward rates. Specifically, the lognormal LMM specifies the following diffusion equation for each forward rate:
\[
\frac{d F_{i}(t)}{F_{i}}=-\mu_{i} d t+\sigma_{i}(t) d W_{i}
\]
where
dW is an N dimensional geometric Brownian motion with:
\[
d W_{i}(t) d W_{j}(t)=\rho_{i j} d t
\]

The LMM relates the drifts of the forward rates based on no-arbitrage arguments. Specifically, under the Spot LIBOR measure, the drifts are expressed as the following:
\[
\mu_{i}(t)=-\sigma_{i}(t) \sum_{j=q(t)}^{i} \frac{\tau_{j} \rho_{i, j} \sigma_{j}(t) F_{j}(t)}{1+\tau_{j} F_{j}(t)}
\]
where
\(\tau_{i}\) is the time fraction associated with the ith forward rate
\[
q(t) \text { is an index function defined by the relation } T_{q(t)-1}<t<T_{q(t)}
\]
and the Spot LIBOR numeraire is defined as the following:
\[
B(t)=P\left(t, T_{q(t)}\right) \prod_{n=0}^{q(t)-1}\left(1+\tau_{n} F_{n}\left(T_{n}\right)\right)
\]

Given the above, the choice with the LMM is how to model volatility and correlation.
The volatility of the rates can be modeled with a stochastic volatility, but for this example a deterministic volatility is used, and so a functional form needs to be specified. One of the most popular functional forms in the literature is the following:
\[
\sigma_{i}(t)=\phi_{i}\left(a\left(T_{i}-t\right)+b\right) e^{c\left(T_{i}-t\right)}+d
\]
where \(\phi\) adjusts the curve to match the volatility for the \(i^{\text {th }}\) forward rate.
Similarly, the correlation between the forward rates needs to be specified. This can be estimated from historical data or fitted to option prices. For this example, the following functional form will be used:
\[
\rho_{i, j}=e^{-\beta|i-j|}
\]

Once the volatility and correlation are specified, the parameters need to be calibrated -- this can be done with historical or market data, typically swaptions or caps/floors. For this example, we simply use reasonable estimates for the correlation and volatility parameters.
```

% The volatility function to be used -- and one choice for the parameters
LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);

```
```

LMMVolParams = [.13 .04 .7 .08];
% Volatility specification
fplot(@(t) LMMVolFunc(LMMVolParams,t),[0 10])
title(['Volatility Function with parameters ' mat2str(LMMVolParams)])
ylabel('Volatility (%)')
xlabel('Tenor (years)')

```


\section*{Calibration to Market Data}

The parameters in the G2++ model can be calibrated to market data. Typically, the parameters are calibrated to observed interest-rate cap, floor and/or swaption data. For now, market cap data is used for calibration.

This data is hardcoded but could be imported into MATLAB with the Database Toolbox \({ }^{\text {TM }}\) or Datafeed Toolbox \({ }^{\mathrm{TM}}\).
```

% Zero Curve -- this data is hardcoded for now but could be bootstrapped
% using the bootstrap method of IRDataCurve
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
ZeroDates = daysadd(Settle,360*ZeroTimes,1);
DiscountRates = zero2disc(ZeroRates,ZeroDates,Settle);
irdc = IRDataCurve('Zero',Settle,ZeroDates,ZeroRates);
figure
plot(ZeroDates,ZeroRates)
datetick
title(['US Zero Curve for ' datestr(Settle)])
% Cap Data
Reset = 2;
Notional = 100;
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
CapVolatility = [. 28 . 30 . 32 . 31 . 30 .27 .23 .2 . 18 . 17 .165]';
% ATM strikes could be computed with SWAPBYZERO
Strike = [0.0353 0.0366 0.0378 0.0390 0.0402 0.0421 0.0439 ...
0.0456 0.0471 0.0471 0.0471]';
% This could be computed with CAPBYBLK
BlackCapPrices = [0.1532 0.6416 1.3366 2.0290 2.7366 4.2960 6.5992 ...
9.6787 12.2580 14.0969 15.7873]';
figure
scatter(CapMaturity,CapVolatility)
datetick
title(['ATM Volatility for Caps on ' datestr(Settle)])
%
% To calibrate the model parameters, a parameter set will be found that
% minimizes the sum of the squared differences between the G2++ predicted
% Cap values and the observed Black Cap values. The Optimization Toolbox(TM)
% function LSQNONLIN is used in this example, although other approaches
% (e.g. Global Optimization) may also be applicable. The function CAPBYLG2F
% is used to compute analytic values for the caps given parameter values.
%
% Upper and lower bounds for the model parameters are set to be

```
```

% relatively constrained. As Brigo and Mercurio discuss, the correlation

% parameter, $$
rho
$$, can often be close to -1 when fitting a G2++ model

% to interest-rate cap prices. Therefore, $$
rho
$$ is constrained
% to be between -.7 and . }7\mathrm{ to ensure that the parameters represent a truly
% two-factor model. The remaining mean reversion and volatility
% parameters are constrained to be between 0 and .5. Calibration remains a
% complex task, and while the plot below indicates that the best fit
% parameters seem to do a reasonably good job of reproducing the Cap
% prices, it should be noted that the procedure outlined here simply
% represents one approach.
% Call to LSQNONLIN to calibrate parameters
objfun = @(x) BlackCapPrices - capbylg2f(irdc,x(1),x(2),x(3),x(4),x(5),Strike,CapMatur
x0 = [.5 .05 .1 .01 -.1];
lb = [0 0 0 0 -.7];
ub = [. 5 .5 .5 .5 .5 .7];
G2PP_Params = lsqnonlin(objfun,x0,lb,ub);
a = G2PP_Params(1);
b = G2PP_Params(2);
sigma = G2PP_Params(3);
eta = G2PP_Params(4);
rho = G2PP_Params(5);
% Compare the results
figure
scatter(CapMaturity,BlackCapPrices)
hold on
scatter(CapMaturity, capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity),'rx')
datetick
title('Market and Model Implied Prices')
ylabel('Price (\$)')
Local minimum possible.
lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the default value of the function tolerance.
```

US Zero Curve for 15-Dec-2007




## G2++ Model Implementation

The LinearGaussian2F model can be used to specify the G2++ model and simulate future paths interest rates.

```
% G2++ model from Brigo and Mercurio with time homogeneous volatility
% parameters
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho);
```


## LIBOR Market Model Implementation

After the volatility and correlation have been calibrated, Monte Carlo simulation is used to evolve the rates forward in time. The LiborMarketModel object is used to simulate the forward rates.

While factor reduction is often used with the LMM to reduce computational complexity, there is no factor reduction in this example.

6M LIBOR rates are chosen to be evolved in this simulation. Since a monthly prepayment vector must be computed, interpolation is used to generate the intermediate rates. Simple linear interpolation is used.

```
numForwardRates = 46;
% Instead of being fit, VolPhi is simply hard-coded
% representative of a declining volatility over time.
VolPhi = linspace(1.2,.8,numForwardRates-1)';
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
CorrMat = CorrFunc(meshgrid(1:numForwardRates-1)',meshgrid(1:numForwardRates-1),Beta);
VolFunc = cell(length(VolPhi),1);
for jdx = 1:length(VolPhi)
 VolFunc(jdx) = {@(t) VolPhi(jdx)*ones(size(t)).*(LMMVolParams(1)*t + ...
 LMMVolParams(2)).*exp(-LMMVolParams(3)*t) + LMMVolParams(4)};
end
LMM = LiborMarketModel(irdc,VolFunc,CorrMat);
```


## G2++ Monte Carlo Simulation

The various interest-rate paths can be simulated by calling the simTermStructs method.
One limitation to two-factor Gaussian models like this one is that it does permit negative interest rates. This is a concern, particularly in low interest-rate environments. To handle this possibility, any interest-rate paths with negative rates are simply rejected.

```
nPeriods = NumCouponsRemaining;
nTrials = 100;
DeltaTime = 1/12;
% Generate factors and short rates
Tenor = [1/12 1 2 3 4 5 7 10 15 20 30];
G2PP_SimZeroRates = G2PP.simTermStructs(nPeriods,'NTRIALS',nTrials,...
 'Tenor',Tenor,'DeltaTime',DeltaTime);
SimDates = daysadd(Settle,360*DeltaTime*(0:nPeriods),1);
% Tenors that will be recovered for each simulation date. The stepsize is
```

```
% included here to facilitate computing a discount factor for each
% simulation path.
% Remove any paths that go negative
NegIdx = squeeze(any(any(G2PP_SimZeroRates < 0,1),2));
G2PP_SimZeroRates(:,:,NegIdx) = [];
nTrials = size(G2PP_SimZeroRates,3);
% Plot evolution of one sample path
trialIdx = 1;
figure
surf(Tenor,SimDates,G2PP_SimZeroRates(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of G2++ Model'])
xlabel('Tenor (Years)')
```



## LIBOR Market Model Simulation

The various interest-rate paths can be simulated by calling the simTermStructs method of the LiborMarketModel object.

```
LMMPeriod = 2; % Semi-annual rates
LMMNumPeriods = NumCouponsRemaining/12*LMMPeriod; % Number of semi-annual periods
LMMDeltaTime = 1/LMMPeriod;
LMMNTRIALS = 100;
% Simulate
[LMMZeroRates, LMMForwardRates] = LMM.simTermStructs(LMMNumPeriods,'nTrials',LMMNTRIAL
ForwardTimes = 1/2:1/2:numForwardRates/2;
LMMSimTimes = 0:1/LMMPeriod:LMMNumPeriods/LMMPeriod;
```

```
% Plot evolution of one sample path
trialIdx = 1;
figure
tmpPlotData = LMMZeroRates(:,:,trialIdx);
tmpPlotData(tmpPlotData == 0) = NaN;
surf(ForwardTimes,LMMSimTimes,tmpPlotData)
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of LIBOR Market Moc
xlabel('Tenor (Years)')
```


## Evolution of the Zero Curve for Trial:1 of LIBOR Market Model



## Compute Mortgage Rates from Simulation

Once the interest-rate paths have been simulated, the mortgage rate needs to be computed -- one approach, discussed by [7], is to compute the mortgage rate from a combination of the 2 -year and 10 -year rates.

For this example, the following is used:

```
 MortgageRate =.024+.2*TwoYearRate +.6*TenYearRate
% Compute mortgage rates from interest rate paths
TwoYearRates = squeeze(G2PP_SimZeroRates(:,Tenor == 2,:));
TenYearRates = squeeze(G2PP SimZeroRates(:,Tenor == 7,:));
G2PP_MortgageRates = .024 + .2*TwoYearRates + .6*TenYearRates;
LMMMortgageRates = squeeze(.024 + .2*LMMZeroRates(:,4,:) + .6*LMMZeroRates(:,20,:));
LMMDiscountFactors = squeeze(cumprod(1./(1 + LMMZeroRates(:,1,:)*.5)));
% Interpolate to get monthly mortgage rates
MonthlySimTimes = 0:1/12:LMMNumPeriods/LMMPeriod;
LMMMonthlyMortgageRates = zeros(nPeriods+1,LMMNTRIALS);
LMMMonthlyDF = zeros(nPeriods+1,LMMNTRIALS);
for trialidx = 1:LMMNTRIALS
 LMMMonthlyMortgageRates(:,trialidx) = interp1(LMMSimTimes,LMMMortgageRates(:,trialic
 LMMMonthlyDF(:,trialidx) = interp1(LMMSimTimes,LMMDiscountFactors(:,trialidx),Month:
end
```


## Computing CPR and Generating and Valuing Cash Flows

Once the Mortgage Rates have been simulated, the CPR can be computed from the multiplicative model for each interest-rate path.

```
% Compute Seasoning and Refinancing Multipliers
Seasoning = ones(nPeriods+1,1);
Seasoning(1:30) = 1/30*(1:30);
G2PP_Refi = .2406 - .1389 * atan(5.952*(1.089 - CouponRate./G2PP_MortgageRates));
LMM_Refi = . 2406 - . 1389 * atan(5.952*(1.089 - CouponRate./LMMMonthlyMortgageRates));
% CPR is simply computed by evaluating the multiplicative model
G2PP_CPR = bsxfun(@times,G2PP_Refi,Seasoning.*(Seasonality(month(CFlowDates))'));
LMM_CPR = bsxfun(@times,LMM_Refi,Seasoning.*(Seasonality(month(CFlowDates))'));
% Compute single monthly mortality (SMM) from CPR
G2PP_SMM = 1 - (1 - G2PP_CPR).^(1/12);
LMM_SMM = 1 - (1 - LMM_CPR).^(1/12);
```

```
% Plot CPR's against 100 PSA
CPR_PSA100 = psaspeed2rate(100);
figure
PSA_handle = plot(CPR_PSA100(1:nPeriods),'rx');
hold on
G2PP_handle = plot(G2PP_CPR,'b');
LMM_handle = plot(LMM_CPR,'g');
tit\overline{l}e('Prepayment Speeds')
legend([PSA_handle(1) G2PP_handle(1) LMM_handle(1)],{'100 PSA','G2PP CPR','LMM CPR'},
```

Prepayment Speeds


## Generate Cash Flows and Compute Present Value

With a vector of single monthly mortalities (SMM) computed for each interest-rate path, cash flows for the MBS can be computed and discounted.

```
% Compute the baseline zero rate at each cash flow time
CFlowZero = interp1(ZeroTimes,ZeroRates,CFlowTimes,'linear','extrap');
% Compute DF for each cash flow time
CFlowDF_Zero = zero2disc(CFlowZero,CFlowDates,Settle);
% Compute the price of the MBS using the zero curve
Price_Zero = CFlowAmounts*CFlowDF_Zero';
% Generate the cash flows for each IR Path
G2PP_CFlowAmounts = mbscfamounts(Settle, ...
 repmat(Maturity,1,nTrials), IssueDate, GrossRate, CouponRate, Delay, [], G2PP_SMM(`
% Compute the DF for each IR path
G2PP_CFlowDFSim = cumprod(exp(squeeze(-G2PP_SimZeroRates(:,1,:).*DeltaTime)));
% Present value the cash flows for each MBS
G2PP_Price_Ind = sum(G2PP_CFlowAmounts.*G2PP_CFlowDFSim',2);
G2PP_Price = mean(G2PP_Price_Ind);
% Repeat for LMM
LMM_CFlowAmounts = mbscfamounts(Settle, ...
 repmat(Maturity,1,LMMNTRIALS), IssueDate, GrossRate, CouponRate, Delay, [], LMM_SMN
% Present value the cash flows for each MBS
LMM_Price_Ind = sum(LMM_CFlowAmounts.*LMMMonthlyDF',2);
LMM_Price = mean(LMM_Price_Ind);
```

The results from the different approaches can be compared. The number of trials for the G2++ model will typically be less than 100 due to the filtering out of any paths that produce negative interest rates.

Additionally, while the number of trials for the G2++ model in this example is set to be 100 , it is often the case that a larger number of simulations need to be run to produce an accurate valuation.

```
fprintf(' # of Monte Carlo Trials: %8d\n' , nTrials)
fprintf(' # of Time Periods/Trial: %8d\n\n' , nPeriods)
fprintf(' MBS Price with PSA 100: %8.4f\n' , Price_Zero)
fprintf(' MBS Price with Custom G2PP Prepayment Model: %8.4f\n\n', G2PP_Price)
fprintf(' MBS Price with Custom LMM Prepayment Model: %8.4f\n\n', LMM_Price)
```

```
of Monte Carlo Trials: 73
of Time Periods/Trial: 156
```

```
 MBS Price with PSA 100: 1.0187
MBS Price with Custom G2PP Prepayment Model: 0.9871
MBS Price with Custom LMM Prepayment Model: 0.9993
```


## Conclusion

This example shows how to calibrate and simulate a G2++ interest-rate model and how to use the generated interest-rate paths in a prepayment model loosely based on the Richard and Roll model. This example also provides a useful starting point to using the G2++ and LMM interest-rate models in other financial applications.

## Bibliography

This example is based on the following books, papers and journal articles:
1 Andersen, L. and V. Piterbarg (2010). Interest Rate Modeling, Atlantic Financial Press.
2 Brigo, D. and F. Mercurio (2001). Interest Rate Models - Theory and Practice with Smile, Inflation and Credit (2nd ed. 2006 ed.). Springer Verlag. ISBN 978-3-540-22149-4.
3 Hayre, L, ed., Salomon Smith Barney Guide to Mortgage-Backed and Asset-Backed Securities. New York: John Wiley \& Sons, 2001b
4 Karpishpan, Y., O. Turel, and A. Hasha, Introducing the Citi LMM Term Structure Model for Mortgages, The Journal of Fixed Income, Volume 20 (2010) 44-58.
5 Rebonato, R., K. McKay, and R. White (2010). The Sabr/Libor Market Model: Pricing, Calibration and Hedging for Complex Interest-Rate Derivatives. John Wiley \& Sons.
6 Richard, S. F., and R. Roll, 1989, "Prepayments on Fixed Rate Mortgage-Backed Securities" ,Journal of Portfolio Management.
7 Office of Thrift Supervision, "Net Portfolio Value Model Manual", March 2000.
8 Stein, H. J., Belikoff, A. L., Levin, K. and Tian, X., Analysis of Mortgage Backed Securities: Before and after the Credit Crisis (January 5, 2007). Credit Risk Frontiers: Subprime Crisis, Pricing and Hedging, CVA, MBS, Ratings, and Liquidity; Bielecki, Tomasz,; Damiano Brigo and Frederic Patras, eds., February 2011. Available at SSRN: http://ssrn.com/abstract=955358

## See Also

mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbsoas2price | mbsoas2yield|mbspassthrough | mbsprice | mbsprice2oas

```
| mbsprice2speed | mbswal | mbsyield | mbsyield2oas | mbsyield2speed |
psaspeed2default | psaspeed2rate
```


## Related Examples

- "Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model" on page 5-39
- "Using Collateralized Mortgage Obligations (CMOs)" on page 5-48


## More About

- "What Are Mortgage-Backed Securities?" on page 5-2


## Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model

This example illustrates how the Financial Toolbox ${ }^{\text {TM }}$ and Financial Instruments Toolbox ${ }^{\mathrm{TM}}$ are used to price a level mortgage backed security using the BDT model.

## Load the BDT Tree Stored in the Data File

```
load mbsexample.mat
```


## Observe the Interest Rate Tree

Visualize the interest rate evolution along the tree by looking at the output structure BDTTree. BDTTree returns an inverse discount tree, which you can convert into an interest-rate tree with the cvtree function.

```
BDTTreeR = cvtree(BDTTree);
```

Look at the upper branch and lower branch paths of the tree:

```
OldFormat = get(0, 'format');
format short
%Rate at root node:
RateRoot = treepath(BDTTreeR.RateTree, [0])
%Rates along upper branch:
RatePathUp = treepath(BDTTreeR.RateTree, [\begin{array}{lllll}{1}&{1}&{1}&{1}&{1}\end{array}])
%Rates along lower branch:
RatePathDown = treepath(BDTTreeR.RateTree, [2 2 2 2 2])
RateRoot =
 0.0399
RatePathUp
0.0399
0.0397
0.0391
0.0383
```

0.0373
0.0360

## RatePathDown =

0.0399
0.0470
0.0550
0.0638
0.0734
0.0841

## Compute the Price Tree for the Non-Prepayable Mortgage

Let's say that we have a 3 year $\$ 10000$ level prepayable loan, with a mortgage interest rate of $4.64 \%$ semi-annually compounded.

```
MortgageAmount = 10000;
CouponRate = 0.0464;
Period = 2;
Settle='01-Jan-2007';
Maturity='01-Jan-2010';
Compounding = BDTTree.TimeSpec.Compounding;
format bank
```

Use the function amortize in the Financial Toolbox to calculate the mortgage payment of the loan (MP), the interest and principal components, and the outstanding principal balance.

```
NumPeriods = date2time(Settle,Maturity, Compounding)';
[Principal, InterestPayment, OutstandingBalance, MP] = amortize(CouponRate/Period, Numf
% Display Principal, Interest and Outstanding balances
PrincipalAmount = Principal'
InterestPaymentAmount = InterestPayment'
OutstandingBalanceAmount =OutstandingBalance'
CFlowAmounts = MP*ones(1,NumPeriods);
% The CFlowDates are the same as the tree level dates
CFlowDates= {'01-Jul-2007' ,'01-Jan-2008' ,'01-Jul-2008' , '01-Jan-2009' , '01-Jul-200
```

```
% Calculate the price of the non-prepayable mortgage
[PriceNonPrepayableMortgage, PriceTreeNonPrepayableMortgage] = cfbybdt(BDTTree, CFlowAr
for iLevel = 2:length(PriceTreeNonPrepayableMortgage.PTree)
 PriceTreeNonPrepayableMortgage.PTree{iLevel}(:,:)= PriceTreeNonPrepayableMortgage.
end
% Look at the price of the mortgage today (tObs = 0)
PriceNonPrepayableMortgage
```

```
% The value of the non-prepayable mortgage is $10017.47. This value exceeds
```

% The value of the non-prepayable mortgage is \$10017.47. This value exceeds
% the \$10000 amount borrowed since the homeowner received not only \$10000, but
% the \$10000 amount borrowed since the homeowner received not only \$10000, but
% also a prepayment option.
% also a prepayment option.
% Look at the value of the mortgage on the last date, right after the last
% Look at the value of the mortgage on the last date, right after the last
% mortgage payment, is zero:
% mortgage payment, is zero:
PriceTreeNonPrepayableMortgage.PTree{end};
PriceTreeNonPrepayableMortgage.PTree{end};
% Visualize the price tree for the non-prepayable mortgage.
% Visualize the price tree for the non-prepayable mortgage.
treeviewer(PriceTreeNonPrepayableMortgage)
treeviewer(PriceTreeNonPrepayableMortgage)
PrincipalAmount =
1572.59
1609.07
1646.40
1684.60
1723.68
1763.67
InterestPaymentAmount =
232.00
195.52
158.19
119.99
80.91
40.92
OutstandingBalanceAmount =
8427.41
6818.34

```


Compute the Price Tree of the Prepayment Option
\% The Prepayment option is like a call option on a bond.
```

%
% The exercise price or strike will be equal to the outstanding principal amount
% which has been calculated using the function amortize.
OptSpec = 'call';
Strike = [MortgageAmount OutstandingBalance];
ExerciseDates =[Settle CFlowDates];
AmericanOpt = 0;
Maturity = CFlowDates(end);
% Compute the price of the prepayment option:
[PricePrepaymentOption, PriceTreePrepaymentOption] = prepaymentbybdt(BDTTree, OptSpec,
0, Settle, Maturity,[], [], [], ...
[], [], [], [], 0, [], CFlowAmounts);
% Look at the price of the prepayment option today (tObs = 0)
PricePrepaymentOption
% The value of the prepayment option is \$17.47 as expected.
% Visualize the price tree for the prepayment option
treeviewer(PriceTreePrepaymentOption)
PricePrepaymentOption =
17.47

```


\section*{Calculate the Price Tree of the Prepayable Mortgage.}
\% Compute the price of the prepayable mortgage.

PricePrepayableMortgage = PriceNonPrepayableMortgage - PricePrepaymentOption;

PriceTreePrepayableMortgage = PriceTreeNonPrepayableMortgage;
for iLevel = 1:length(PriceTreeNonPrepayableMortgage.PTree)
PriceTreePrepayableMortgage.PTree\{iLevel\} (: , :) = PriceTreeNonPrepayableMortgage.PTr PriceTreePrepaymentOption.PTree\{iLevel\}(:,:);
end
\% Look at the price of the prepayable mortgage today (tObs \(=0\))
```

PricePrepayableMortgage
% The value of the prepayable mortgage is \$10000 as expected.
% Visualize the price and price tree for the prepayable mortgage
treeviewer(PriceTreePrepayableMortgage)
set(O, 'format', OldFormat);
PricePrepayableMortgage =
10000.00

```

\(\left[\begin{array}{ll}\text { Tree Visualization } & \text { Visualization } \\ \text { Selection } & \text { O Table } \\ \text { O Path } & \text { Diagram } \\ & \text { Plot } \\ & \end{array}\right.\)

\section*{Instrument:}

1

\section*{See Also}
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbsoas2price | mbsoas2yield | mbspassthrough | mbsprice | mbsprice2oas | mbsprice2speed | mbswal | mbsyield | mbsyield2oas | mbsyield2speed | psaspeed2default | psaspeed2rate

\section*{Related Examples}
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model" on page 5-16
- "Using Collateralized Mortgage Obligations (CMOs)" on page 5-48

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\title{
Using Collateralized Mortgage Obligations (CMOs)
}

\author{
In this section... \\ "What Are CMOs?" on page 5-48 \\ "Prepayment Risk" on page 5-48
}

\section*{What Are CMOs?}

Financial Instruments Toolbox supports collateralized mortgage obligations (CMOs) to provide investors with a greater range of risk and return characteristics than mortgagebacked securities (MBS). In contrast to an MBS, which simply redirects principal and interest cash flows to investors on a pro rata basis, a CMO structures cash flows to different tranches, or slices, to create securities that are better tailored to specific investors.

For example, banks might be primarily concerned with extension risk, or the risk that their investment lengthens in time due to increasing interest rates, given that they typically have short-term deposits as liabilities. Insurance companies and pension funds might be concerned primarily with contraction risk, or the risk that their investment will pay off too soon, with liabilities that have much longer lives. A CMO structure addresses the interest-rate risk of extension or contraction with a blend of short-term and long-term CMO securities, called tranches.

\section*{Prepayment Risk}

Prepayment risk is the risk that the term of the security varies according to differing rates of repayment of principal by borrowers (repayments from refinancings, sales, curtailments, or foreclosures). In a CMO, you can structure the principal (and associated coupon) stream from the underlying mortgage pool collateral to allocate prepayment risk. If principal is prepaid faster than expected (for example, if mortgage rates fall and borrowers refinance), then the overall term of the mortgage pool collateral shortens.

You cannot remove prepayment risk, but you can reallocate it among CMO tranches so that some tranches have some protection against this risk, and other tranches will absorb more of this risk. To facilitate this allocation of prepayment risk, CMOs are structured such that prepayments are allocated among tranches using a fixed set of rules. The most common schemes for prepayment tranching are:
- Sequential tranching, with or without, Z-bond tranching
- Schedule bond tranching
- Planned amortization class (PAC) bonds
- Target amortization class (TAC) bonds

Financial Instruments Toolbox supports these schemes for prepayment tranching for CMOs and tools for pricing and scheduling cash flows between the tranches, as well as analyzing the price and yield for CMOs. Financial Instruments Toolbox functionality for CMOs does not model credit risk. Therefore, this functionality is most appropriate for CMOs where credit risk is not an issue (for example, agency CMOs where the underlying mortgage pool collateral is insured for default by the agency Government-Sponsored Enterprises (GSEs), such as Fannie Mae and Freddie Mac).

\section*{Sequential Tranches Without a Z-Bond}

All available principal and interest payments go to the first sequential tranche, until its balance decrements to zero, then to the second, and so on. For example, consider the following example where all principal and interest from the underlying mortgage pool is repaid on tranche A first, then tranche B, then tranche C. Interest is paid on each tranche as long as the principal for the tranche has not been retired.

\section*{Sequential Tranches with a Z-Bond}

The Z-bond, also called an accural bond, is a type of interest and principal pay rule. The Z-bond tranche supports other sequential pay tranches by not receiving an interest payment. The interest payment that would have accrued to the Z-bond tranche pays off the principal of other bonds, and the principal of the Z-bond tranche increases. The

Z-bond tranche starts receiving interest and principal payments only after the other tranches in the CMO have been fully paid. The Z-bond tranche is used in a sequentialpay structure to accelerate the principal repayments of the sequential-pay bonds.

A Z-bond differs from other CMO instruments because it is not tranching principal but interest. The Z-bond receives no cash flows until all other securities have been paid off. In the interim, the interest that is owed to the Z-bond is accrued to its principal. The following chart demonstrates the difference between a Z-bond and a normal sequential pay tranche. The C tranche pays off sooner with the Z-bond, because the interest cash flows to the Z-bond are being used to pay down the principal of the C tranche.

For comparison, the following graphic is the same sequential CMO with no Z-bond.

\section*{PAC Tranches}

Planned amortization class (PAC) bonds help reduce the effects of prepayment risk. They are designed to produce more stable cash flows by redirecting prepayments from the underlying mortgage collateral to other classes (tranches) called companion or support classes. PAC bonds have a principal payment rate over a predetermined period of time. The PAC bond payment schedule is determined by two different prepayment rates, which together form a band (also called a collar). Early in the life of the CMO, the prepayment at the lower PSA yields a lower prepayment. Later in its life, the principal in the higher PSA declines enough that it yields a lower prepayment. The PAC tranche receives whichever rate is lower, so it will change prepayment at one PSA for the first part of its life, then switch to the other rate. The ability to stay on this schedule is maintained by a support bond, which absorbs excess prepayments, and receives fewer prepayments to prevent extension of average life.

However, the PAC is only protected from extension to the amount that prepayments are made on the underlying MBSs. If there is a sustained period of fast prepayments, then that might completely eliminate a PAC bond's outstanding support class. When the principal of the associated PAC bond is exhausted, the CMO is called a "busted PAC", or "busted collar". Alternatively, in times of slow prepayments, amortization of the support bonds is delayed if there is not enough principal for the currently paying PAC bond. This extends the average life of the class.

A PAC bond protects against both extension and contraction risk by:
- Specifying a schedule of principal payments for the PAC bond
- Including support tranches that are allocated prepayments inside a specified prepayment band

PAC bonds typically specify a band expressed using the PSA model. A PAC bond with a range of \(100-250 \%\) has this principal schedule.

The principal repayment schedule is the minimum principal payment as Region 1 shows. This is the principal payment schedule as long as the actual prepayment stays within the prepayment band of \(100-250 \%\) PSA.

For example, for different prepayment speeds of \(125 \%, 175 \%\), and \(225 \%\) PSA, the actual principal payments are shown in the following graphs. At higher prepayment speeds, the support tranche is allocated principal earlier while the principal timing for the other tranches remains constant.

\section*{TAC Tranches}

Target amortization class (TAC) bonds are similar to PAC bonds, but they do not provide protection against extension of average life. Create the schedule of principal payments by using just a single PSA. TAC bonds pay a "targeted" principal payment schedule at a single, constant prepayment speed. As long as the underlying mortgage collateral does not prepay at a rate slower than this speed, the TAC bond payment schedule is met. TAC bonds can protect against increasing prepayments and early retirement of the TAC bond investment. If the principal cash flow from the mortgage collateral exceeds the TAC schedule, the excess is allocated to TAC companion (support) classes. Alternatively, if prepayments fall below the speed necessary to maintain the TAC schedule, the weighted average life of the TAC is extended. The TAC bond does not protect against low prepayment rates.

For example, here is a TAC structure rated for \(125 \%, 175 \%\), and \(450 \%\) PSA.

For prepayments below \(175 \%\) PSA, the TAC bond extends like a normal sequential pay CMO. TAC bonds are appealing because they offer higher yields than comparable PAC bonds. The unaddressed risk from low prepyament rates generally does not concern investors as much as risk from high prepayment rates.

\section*{See Also}
cmosched | cmoschedcf | cmoseqcf | mbscfamounts | mbspassthrough

\section*{Related Examples}
- "CMO Workflow" on page 5-56
- "Create PAC and Sequential CMO" on page 5-59
- "Fixed-Rate Mortgage Pool" on page 5-3

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{CMO Workflow}

In general, the CMO workflow is:
1 Calculate underlying mortgage cash flows.
2 Define CMO tranches
3 If using a PAC or TAC CMO, calculate the principal schedule.
4 Calculate cash flows for each tranche.
5 Analyze the CMO by computing price, yield, spread of CMO cash flows.

\section*{Calculate Underlying Mortgage Cash Flows}

Underlying mortgage pool pass-through cash flows are calculated by the existing function mbspassthrough. The CMO cash flow functions require the principal payments (including prepayments) calculated from existing functions mbspassthrough or mbscfamounts.
```

principal = 10000000;
coupon = 0.06;
terms = 360;
psa = 150;
[principal_balance, monthly_payments, sched_principal_payments,...
interest_payments, prepayments] = mbspassthrough(principal,...
coupon, terms, terms, psa, []);
principal_payments = sched_principal_payments.' + prepayments.';

```

After determining principal payments for the underlying mortgage collateral, you can generate cash flows for a sequential CMO, with or without a Z-bond, by using cmoseqcf. For a PAC or TAC CMO, the cash flows are generated using cmoschedcf

\section*{Define CMO Tranches}

Define CMO tranche; for example, define a CMO with two tranches:
```

TranchePrincipals = [500000; 500000];
TrancheCoupons = [0.06; 0.06];

```

\section*{If Using a PAC or TAC CMO, Calculate Principal Schedule}

Calculate the PAC/TAC principal balance schedule based on a band of PSA speeds. For scheduled CMOs (PAC/TAC), the CMO cash flow functions additionally take in the principal balance schedule calculated by the CMO schedule function cmosched.
```

speed = [100 300];

```
[balanceSchedule, initialBalance] = cmosched(principal, coupon,...
terms, terms, speed, TranchePrincipals(1));

\section*{Calculate Cash Flows for Each Tranche}

You can reuse the output from the cash flow generation functions to further divide the cash flows into tranches. For example, the output from cmoschedcf for a PAC tranche can be divided into sequential tranches by passing the principal cash flows of the PAC tranche into the cmoschedcf function. The outputs of the CMO cash flow functions are the principal and interest cash flows, and the principal balance.
[principal_balances, principal_cashflows, interest_cashflows] = cmoschedcf(principal_payments,...
TranchePrincipals, TrancheCoupons, balanceSchedule);

\section*{Analyze CMO by Computing Price, Yield, and Spread of CMO Cash Flows}

The outputs from the CMO functions (cmoseqcf and cmoschedcf) are cash flows. The functions used to analyze a CMO are based on these cash flows. To that end, you can use cfbyzero, cfspread, cfyield, and cfprice to compute prices, yield, and spreads for the CMO cash flows. In addition, using the following, you can calculate a weighted average life (WAL) for each tranche in the CMO:
\[
W A L=\sum_{i=1}^{n} \frac{P_{i}}{P} t_{i}
\]
where:
\(P\) is the total principal.
\(P_{i}\) is the principal repayment of the coupon \(i\).
\(\frac{P_{i}}{P}\) is the fraction of the principal repaid in coupon \(i\).
\(t_{i}\) is the time in years from the start to coupon \(i\).

\section*{See Also}
cmosched | cmoschedcf | cmoseqcf | mbscfamounts | mbspassthrough

\section*{Related Examples}
- "Using Collateralized Mortgage Obligations (CMOs)" on page 5-48
- "Create PAC and Sequential CMO" on page 5-59
- "Fixed-Rate Mortgage Pool" on page 5-3

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{Create PAC and Sequential CMO}

This example shows how to use an underlying mortgage-backed security (MBS) pool for a 30 -year fixed-rate mortgage of \(6 \%\) to define a PAC bond, and then define a sequential CMO from the PAC bond. Analyze the CMO by comparing the CMO spread to a zero-rate curve for a 30 -year Treasury bond and then calculate the weighted-average life (WAL) for the PAC bond.

\section*{Step 1. Define the underlying mortgage pool.}
```

principal = 100000000;
grossrate = 0.06;
coupon = 0.05;
originalTerm = 360;
termRemaining = 360;
speed = 100;
delay = 14;
Settle = datenum('1-Jan-2011');
IssueDate = datenum('1-Jan-2011');
Maturity = addtodate(IssueDate, 360, 'month');

```

Step 2. Calculate underlying pool cash flow.
[CFlowAmounts, CFlowDates, ~, ~, ~, UnitPrincipal, UnitInterest, ... UnitPrepayment] = mbscfamounts(Settle, Maturity, IssueDate, grossrate, ... coupon, delay, speed, []);

\section*{Step 3. Calculate prepayments.}
```

principalPayments = UnitPrincipal * principal;
netInterest = UnitInterest * principal;
prepayments = UnitPrepayment * principal;
dates = CFlowDates' + delay;

```

\section*{Step 4. Generate a plot for underlying MBS payments.}
```

area([principalPayments'+prepayments', netInterest'])
title('Underlying MBS Payments');
legend('Principal Payments (incl. Prepayments)', 'Interest Payments')

```


Step 5. Calculate the PAC schedule.
pacSpeed = [80 300];
[balanceSchedule, pacInitBalance] = ...
cmosched(principal, grossrate, originalTerm, termRemaining, ... pacSpeed, []);

Step 6. Generate a plot for the PAC principal balance schedule.
```

figure;
area([pacInitBalance'; balanceSchedule'])
title('PAC Principal Balance Schedule');
legend('Principal Balance Schedule');

```


\section*{Step 7. Calculate PAC cash flow.}
```

pacTranchePrincipals = [pacInitBalance; principal-pacInitBalance];
pacTrancheCoupons = [0.05; 0.05];
[pacBalances, pacPrincipals, pacInterests] = ...
cmoschedcf(principalPayments+prepayments, ...
pacTranchePrincipals, pacTrancheCoupons, balanceSchedule);

```

\section*{Step 8. Generate a plot for the PAC CMO tranches.}

Generate a plot for the PAC CMO tranches:
figure;
area([pacPrincipals' pacInterests']);
```

title('PAC CMO (PAC and Support Tranches)');
legend('PAC Principal Payments', 'Support Principal Payments', ...
'PAC Interest Payments', 'Support Interest Payments');

```


\section*{Step 9. Create sequential CMO from the PAC bond.}

CMO tranches, \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and D
seqTranchePrincipals = ...
[20000000; 20000000; 10000000; pacInitBalance-50000000];
seqTrancheCoupons = [0.05; 0.05; 0.05; 0.05];
Step 10. Calculate cash flows for each tranche.
[seqBalances, seqPrincipals, seqInterests] = ...
```

cmoseqcf(pacPrincipals(1, :), seqTranchePrincipals, ...
seqTrancheCoupons, false);

```

\section*{Step 11. Generate a plot for the sequential PAC CMO.}

Generate a plot for the sequential PAC CMO:
```

figure
area([seqPrincipals' pacPrincipals(2, :)' pacInterests']);
title('Sequential PAC CMO (Sequential PAC and Support Tranches)');
legend('Sequential PAC Principals (A)', 'Sequential PAC Principals (B)', ...
'Sequential PAC Principals (C)', 'Sequential PAC Principals (D)', ...
'Support Principal Payments', 'PAC Interest Payments', ...
'Support Interest Payments');

```


\section*{Step 12. Create the discount curve.}
```

CurveSettle = datenum('1-Jan-2011');
ZeroRates = [0.01 0.03 0.10 0.19 0.45 0.81 1.76 2.50 3.18 4.09 4.38]'/100;
CurveTimes = [1/12 3/12 6/12 1 2 3 5 7 10 20 30]';
CurveDates = daysadd(CurveSettle, 360 * CurveTimes, 1);
zeroCurve = intenvset('Rates', ZeroRates, 'StartDates', CurveSettle, ...
'EndDates', CurveDates);

```

\section*{Step 13. Price the CMO cash flows.}

The cash flow for the sequential PAC principal A tranche is calculated using the cash flow functions cfbyzero, cfyield, cfprice, and cfspread.
```

cflows = seqPrincipals(1, :)+seqInterests(1, :);
cfdates = dates(2:end)';
price1 = cfbyzero(zeroCurve, cflows, cfdates, Settle, 4)
yield = cfyield(cflows, cfdates, price1, Settle, 'Basis', 4)
price2 = cfprice(cflows, cfdates, yield, Settle, 'Basis', 4)
spread = cfspread(zeroCurve, price2, cflows, cfdates, Settle, 'Basis', 4)
WAL = sum(cflows .* yearfrac(Settle, cfdates, 4)) / sum(cflows)

```
price1 =
 \(2.2109 \mathrm{e}+07\)
yield =
 0.0090
price2 \(=\)
 \(2.2109 \mathrm{e}+07\)
spread =
 8.5711e-13
WAL =

The weighted average life (WAL) for the sequential PAC principal A tranche is 2.54 years.

\section*{See Also}
cfbyzero | cfbyzero | cfprice | cfspread | cfyield | cmosched | cmoschedcf cmoseqcf | mbscfamounts

\section*{Related Examples}
- "Fixed-Rate Mortgage Pool" on page 5-3

\section*{More About}
- "Using Collateralized Mortgage Obligations (CMOs)" on page 5-48

\section*{Debt Instruments}
- "Agency Option-Adjusted Spreads" on page 6-2
- "Using Zero-Coupon Bonds" on page 6-6
- "Stepped-Coupon Bonds" on page 6-10
- "Term Structure Calculations" on page 6-13

\section*{Agency Option-Adjusted Spreads}

Often bonds are issued with embedded options, which then makes standard price/yield or spread measures irrelevant. For example, a municipality concerned about the chance that interest rates may fall in the future might issue bonds with a provision that allows the bond to be repaid before the bond's maturity. This is a call option on the bond and must be incorporated into the valuation of the bond. Option-adjusted spread (OAS), which adjusts a bond spread for the value of the option, is the standard measure for valuing bonds with embedded options. Financial Instruments Toolbox software supports computing option-adjusted spreads for bonds with single embedded options using the agency model.

The Securities Industry and Financial Markets Association (SIFMA) has a simplified approach to compute OAS for agency issues (Government Sponsored Entities like Fannie Mae and Freddie Mac) termed "Agency OAS". In this approach, the bond has only one call date (European call) and uses Black's model (a variation on Black Scholes, http: / / en.wikipedia.org/wiki/Black_model) to value the bond option. The price of the bond is computed as follows:

Price \(_{\text {Callable }}=\) Price \(_{\text {NonCallable }}-\) Price \(_{\text {Option }}\)
where
Price \(_{\text {Callable }}\) is the price of the callable bond.
\(\mathrm{Price}_{\text {NonCallable }}\) is the price of the noncallable bond, that is, price of the bond using bndspread.

Price \({ }_{\text {Option }}\) is the price of the option, that is, price of the option using Black's model.
The Agency OAS is the spread, when used in the previous formula, yields the market price. Financial Instruments Toolbox software supports these functions:

\section*{Agency OAS}
\begin{tabular}{|l|l|}
\hline Agency OAS Functions & Purpose \\
\hline agencyoas & \begin{tabular}{l}
Compute the OAS of the callable bond using the Agency \\
OAS model.
\end{tabular} \\
\hline agencyprice & \begin{tabular}{l}
Price the callable bond OAS using Agency using the OAS \\
model.
\end{tabular} \\
\hline
\end{tabular}

\section*{Computing the Agency OAS for Bonds}

To compute the Agency OAS using agencyoas, you must provide the zero curve as the input ZeroData. You can specify the zero curve in any intervals and with any compounding method. You can do this using Financial Toolbox \({ }^{\text {TM }}\) functions zbtprice and zbtyield. Or, you can use IRDataCurve to construct an IRDataCurve object, and then use the getZeroRates to convert to dates and data for use in the ZeroData input.

After creating the ZeroData input for agencyoas, you can then:
1 Assign parameters for CouponRate, Settle, Maturity, Vol, CallDate, and Price.
2 Compute the option-adjusted spread using agencyoas to derive the OAS output.
If you have the Agency OAS for the callable bond, you can use the OAS value as an input to agencyprice to determine the price for a callable bond.

In the following example, the Agency OAS is computed using agencyoas for a range of bond prices and the spread of an identically priced noncallable bond is calculated using bndspread.
```

%% Data
% Bond data -- note that there is only 1 call date
Settle = datenum('20-Jan-2010');
Maturity = datenum('30-Dec-2013');
Coupon = .022;
Vol = .5117;
CallDate = datenum('30-Dec-2010');
Period = 2;
Basis = 1;
Face = 100;
% Zero Curve data
ZeroTime = [.25 .5 1 2 3 4 5 7 10 20 30]';
ZeroDates = daysadd(Settle,360*ZeroTime,1);
ZeroRates =[ . 0008 .0017 .0045 .0102 .0169 .0224 .0274 .0347 .0414 .0530 .0740]';
ZeroData = [ZeroDates ZeroRates];
CurveCompounding = 2;
CurveBasis = 1;
Price = 94:104;
OAS = agencyoas(ZeroData, Price', Coupon, Settle,Maturity, Vol, CallDate,'Basis',Basis)
Spread = bndspread(ZeroData, Price', Coupon, Settle, Maturity)
plot(OAS,Price)
hold on
plot(Spread,Price,'r')
xlabel('Spread (bp)')
ylabel('Price')
title('AOAS and Spread for an Agency and Equivalent Noncallable Bond')
legend({'Callable Issue','Noncallable Issue'})

```
OAS =
```

    163.4942
    133.7306
    103.8735
    73.7505
        43.1094
        11.5608
    -21.5412
    -57.3869
    -98.5675
    -152.5226
-239.6462
Spread =
168.1412
139.7047
111.6123
83.8561
56.4286
29.3227
2.5314
-23.9523
-50.1348
-76.0226
-101.6218

```

The following plot demonstrates as the price increases, the value of the embedded option in the Agency issue increases, and the value of the issue itself does not increase as much as it would for a noncallable bond, illustrating the negative convexity of this issue:

\section*{See Also}
agencyoas | agencyprice

\section*{Related Examples}
- "Using Zero-Coupon Bonds" on page 6-6
- "Stepped-Coupon Bonds" on page 6-10
- "Term Structure Calculations" on page 6-13

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Using Zero-Coupon Bonds}
```

In this section...
"Introduction" on page 6-6
"Measuring Zero-Coupon Bond Function Quality" on page 6-6
"Pricing Treasury Notes" on page 6-7
"Pricing Corporate Bonds" on page 6-8

```

\section*{Introduction}

A zero-coupon bond is a corporate, Treasury, or municipal debt instrument that pays no periodic interest. Typically, the bond is redeemed at maturity for its full face value. It is a security issued at a discount from its face value, or it may be a coupon bond stripped of its coupons and repackaged as a zero-coupon bond.

Financial Instruments Toolbox software provides functions for valuing zero-coupon debt instruments. These functions supplement existing coupon bond functions such as bndprice and bndyield that are available in Financial Toolbox software.

\section*{Measuring Zero-Coupon Bond Function Quality}

Zero-coupon function quality is measured by how consistent the results are with couponbearing bonds. Because the zero coupon's yield is bond-equivalent, comparisons with coupon-bearing bonds are possible.

In the textbook case, where time \((t)\) is measured continuously and the rate \((r)\) is continuously compounded, the value of a zero bond is the principal multiplied by \(e^{-r t}\). In reality, the rate quoted is continuous and the basis can be variable, requiring a more consistent approach to meet the stricter demands of accurate pricing.

The following two examples
- "Pricing Treasury Notes" on page 6-7
- "Pricing Corporate Bonds" on page 6-8
show how the zero functions are consistent with supported coupon bond functions.

\section*{Pricing Treasury Notes}

A Treasury note can be considered to be a package of zeros. The toolbox functions that price zeros require a coupon bond equivalent yield. That yield can originate from any type of coupon paying bond, with any periodic payment, or any accrual basis. The next example shows the use of the toolbox to price a Treasury note and compares the calculated price with the actual price quotation for that day.
```

Settle = datenum('02-03-2003');
MaturityCpn = datenum('05-15-2009');
Period = 2;
Basis = 0;
% Quoted yield.
QYield = 0.03342;
% Quoted price.
QPriceACT = 112.127;
CouponRate = 0.055;

```

Extract the cash flow and compute price from the sum of zeros discounted.
```

[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ...
Period, Basis);
MaturityofZeros = CDates;

```

Compute the price of the coupon bond identically as a collection of zeros by multiplying the discount factors to the corresponding cash flows.
```

PriceofZeros = CFlows * zeroprice(QYield, Settle, ...
MaturityofZeros, Period, Basis)/100;

```

The following table shows the intermediate calculations.
\begin{tabular}{lll}
Cash Flows & Discount Factors & Discounted Cash Flows \\
\hline-1.2155 & 1.0000 & -1.2155 \\
2.7500 & 0.9908 & 2.7246 \\
2.7500 & 0.9745 & 2.6799 \\
2.7500 & 0.9585 & 2.6359 \\
2.7500 & 0.9427 & 2.5925 \\
2.7500 & 0.9272 & 2.5499
\end{tabular}
\begin{tabular}{lll}
Cash Flows & Discount Factors & Discounted Cash Flows \\
2.7500 & 0.9120 & 2.5080 \\
2.7500 & 0.8970 & 2.4668 \\
2.7500 & 0.8823 & 2.4263 \\
2.7500 & 0.8678 & 2.3864 \\
2.7500 & 0.8535 & 2.3472 \\
2.7500 & 0.8395 & 2.3086 \\
2.7500 & 0.8257 & 2.2706 \\
102.7500 & 0.8121 & 83.4451 \\
& & Total 112.1263
\end{tabular}

Compare the quoted price and the calculated price based on zeros.
[QPriceACT PriceofZeros]
ans =

\section*{\(112.1270 \quad 112.1263\)}

This example shows that zeroprice can satisfactorily price a Treasury note, a semiannual actual/actual basis bond, as if it were a composed of a series of zero-coupon bonds.

\section*{Pricing Corporate Bonds}

You can similarly price a corporate bond, for which there is no corresponding zero-coupon bond, as opposed to a Treasury note, for which corresponding zeros exist. You can create a synthetic zero-coupon bond and arrive at the quoted coupon-bond price when you later sum the zeros.
```

Settle = datenum('02-05-2003');
MaturityCpn = datenum('01-14-2009');
Period = 2;
Basis = 1;
% Quoted yield.
QYield = 0.05974;
% Quoted price.
QPrice30 = 99.382;
CouponRate = 0.05850;

```

Extract cash flow and compute price from the sum of zeros.
```

[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ...
Period, Basis);
Maturity = CDates;

```

Compute the price of the coupon bond identically as a collection of zeros by multiplying the discount factors to the corresponding cash flows.
```

Price30 = CFlows * zeroprice(QYield, Settle, Maturity, Period, ...
Basis)/100;

```

Compare quoted price and calculated price based on zeros.
```

[QPrice30 Price30]

```
ans =
```

99.3820 99.3828

```

As a test of fidelity, intentionally giving the wrong basis, say actual/actual (Basis = 0) instead of \(30 / 360\), gives a price of 99.3972 . Such a systematic error, if recurring in a more complex pricing routine, quickly adds up to large inaccuracies.

In summary, the zero functions in MATLAB software facilitate extraction of present value from virtually any fixed-coupon instrument, up to any period in time.

\section*{See Also}
bndprice | bndyield

\section*{Related Examples}
- "Agency Option-Adjusted Spreads" on page 6-2
- "Stepped-Coupon Bonds" on page 6-10
- "Term Structure Calculations" on page 6-13

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Stepped-Coupon Bonds}
```

In this section...
"Introduction" on page 6-10
"Cash Flows from Stepped-Coupon Bonds" on page 6-10
"Price and Yield of Stepped-Coupon Bonds" on page 6-11

```

\section*{Introduction}

A stepped-coupon bond has a fixed schedule of changing coupon amounts. Like fixed coupon bonds, stepped-coupon bonds could have different periodic payments and accrual bases.

The functions stepcpnprice and stepcpnyield compute prices and yields of such bonds. An accompanying function stepcpncfamounts produces the cash flow schedules pertaining to these bonds.

\section*{Cash Flows from Stepped-Coupon Bonds}

Consider a bond that has a schedule of two coupons. Suppose that the bond starts out with a \(2 \%\) coupon that steps up to \(4 \%\) in 2 years and onward to maturity. Assume that the issue and settlement dates are both March 15, 2003. The bond has a 5-year maturity. Use stepcpncfamounts to generate the cash flow schedule and times.
```

Settle = datenum('15-Mar-2003');
Maturity = datenum('15-Mar-2008');
ConvDates = [datenum('15-Mar-2005')];
CouponRates = [0.02, 0.04];
[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ...
ConvDates, CouponRates)

```

Notably, ConvDates has one less element than CouponRates because MATLAB software assumes that the first element of CouponRates indicates the coupon schedule between Settle (March 15, 2003) and the first element of ConvDates (March 15, 2005), shown diagrammatically below.
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
Pay 2\% from March 15, \\
2003
\end{tabular} & \begin{tabular}{l}
Pay 4\% from March \\
15,2003
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Effective \(2 \%\) on March \\
15,2003
\end{tabular} & \begin{tabular}{l}
Effective 4\% on March \\
15,2005
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Coupon Dates & Semiannual Coupon Payment \\
15-Mar-03 & 0 \\
15-Sep-03 & 1 \\
15-Mar-04 & 1 \\
15-Sep-04 & 1 \\
15-Mar-05 & 1 \\
15-Sep-05 & 2 \\
15-Mar-06 & 2 \\
15-Sep-06 & 2 \\
15-Mar-07 & 2 \\
15-Sep-07 & 2 \\
15-Mar-08 & 102
\end{tabular}

The payment on March 15, 2005 is still a \(2 \%\) coupon. Payment of the \(4 \%\) coupon starts with the next payment, September 15, 2005. March 15, 2005 is the end of first coupon schedule, not to be confused with the beginning of the second.

In summary, MATLAB takes user input as the end dates of coupon schedules and computes the next coupon dates automatically.

The payment due on settlement (zero in this case) represents the accrued interest due on that day. It is negative if such amount is nonzero. Comparison with cfamounts in Financial Toolbox shows that the two functions operate identically.

\section*{Price and Yield of Stepped-Coupon Bonds}

The toolbox provides two basic analytical functions to compute price and yield for stepped-coupon bonds. Using the above bond as an example, you can compute the price when the yield is known.

You can estimate the yield to maturity as a number-of-year weighted average of coupon rates. For this bond, the estimated yield is:
\[
\frac{(2 \times 2)+(4 \times 3)}{5}
\]
or \(3.33 \%\). While definitely not exact (due to nonlinear relation of price and yield), this estimate suggests close to par valuation and serves as a quick first check on the function.
```

Yield = 0.0333;

```
[Price, AccruedInterest] = stepcpnprice(Yield, Settle, ...
Maturity, ConvDates, CouponRates)

The price returned is 99.2237 (per \(\$ 100\) notional), and the accrued interest is zero, consistent with our earlier assertions.

To validate that there is consistency among the stepped-coupon functions, you can use the above price and see if indeed it implies a \(3.33 \%\) yield by using stepcpnyield.
```

YTM = stepcpnyield(Price, Settle, Maturity, ConvDates, ...

```
CouponRates)

YTM =
0.0333

\section*{See Also}
stepcpncfamounts | stepcpnprice | stepcpnyield

\section*{Related Examples}
- "Agency Option-Adjusted Spreads" on page 6-2
- "Using Zero-Coupon Bonds" on page 6-6
- "Term Structure Calculations" on page 6-13

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Term Structure Calculations}
```

In this section...
"Introduction" on page 6-13
"Computing Spot and Forward Curves" on page 6-13
"Computing Spreads" on page 6-15

```

\section*{Introduction}

So far, a more formal definition of "yield" and its application has not been developed. In many situations when cash flow is available, discounting factors to the cash flows may not be immediately apparent. In other cases, what is relevant is often a spread, the difference between curves (also known as the term structure of spread).

All these calculations require one main ingredient, the Treasury spot, par-yield, or forward curve. Typically, the generation of these curves starts with a series of on-the-run and selected off-the-run issues as inputs.

MATLAB software uses these bonds to find spot rates one at a time, from the shortest maturity onwards, using bootstrap techniques. All cash flows are used to construct the spot curve, and rates between maturities (for these coupons) are interpolated linearly.

\section*{Computing Spot and Forward Curves}

For an illustration of how this works, observe the use of zbtyield (or equivalently zbtprice) on a portfolio of six Treasury bills and bonds.
\begin{tabular}{lll}
\hline Bills & Maturity Date & Current Yield \\
3 month & \(4 / 17 / 03\) & 1.15 \\
6 month & \(7 / 17 / 03\) & 1.18
\end{tabular}
\begin{tabular}{llll}
\hline Notes/Bonds & Coupon & Maturity Date & Current Yield \\
\hline 2 year & 1.750 & \(12 / 31 / 04\) & 1.68 \\
5 year & 3.000 & \(11 / 15 / 07\) & 2.97
\end{tabular}
\begin{tabular}{llll}
\hline Notes/Bonds & Coupon & Maturity Date & Current Yield \\
\hline 10 year & 4.000 & \(11 / 15 / 12\) & 4.01 \\
30 year & 5.375 & \(2 / 15 / 31\) & 4.92
\end{tabular}

You can specify prices or yields to the bonds above to infer the spot curve. The function zbtyield accepts yields (bond-equivalent yield, to be exact).

To proceed, first assemble the above table into a variable called Bonds. The first column contains maturities, the second contains coupons, and the third contains notionals or face values of the bonds. (Note that bills have zero coupons.)
```

Bonds = [datenum('04/17/2003') 0 100;
datenum('07/17/2003') 0 100;
datenum('12/31/2004') 0.0175 100;
datenum('11/15/2007') 0.03 100;
datenum('11/15/2012') 0.04 100;
datenum('02/15/2031') 0.05375 100];

```

Then specify the corresponding yields.
```

Yields = [0.0115;
0.0118;
0.0168;
0.0297;
0.0401;
0.0492];

```

You are now ready to compute the spot curve for each of these six maturities. The spot curve is based on a settlement date of January 17, 2003.
```

Settle = datenum('17-Jan-2003');
[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle)

```

This gets you the Treasury spot curve for the day.
You can compute the forward curve from this spot curve with zero2fwd.
```

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, ...
Settle)

```

Here the notion of forward rates refers to rates between the maturity dates shown above, not to a certain period (forward 3 -month rates, for example).

\section*{Computing Spreads}

Calculating the spread between specific, fixed forward periods (such as the TreasuryEurodollar spread) requires an extra step. Interpolate the zero rates (or zero prices, instead) for the corresponding maturities on the interval dates. Then use the interpolated zero rates to deduce the forward rates, and thus the spread of Eurodollar forward curve segments versus the relevant forward segments from Treasury bills.

Additionally, the variety of curve functions (including zero2fwd) helps to standardize such calculations. For instance, by making both rates quoted with quarterly compounding and on an actual/360 basis, the resulting spread structure is fully comparable. This avoids the small inconsistency that occurs when directly comparing the bond-equivalent yield of a Treasury bill to the quarterly forward rates implied by Eurodollar futures.

\section*{Noise in Curve Computations}

When introducing more bonds in constructing curves, noise may become a factor and may need some "smoothing" (with splines, for example); this helps obtain a smoother forward curve.

The following spot and forward curves are constructed from 67 Treasury bonds. The fitted and bootstrapped spot curve (bottom right figure) displays comparable stability. The forward curve (upper-left figure) contains significant noise and shows an improbable forward rate structure. The noise is not necessarily bad; it could uncover trading opportunities for a relative-value approach. Yet, a more balanced approach is desired when the bootstrapped forward curve oscillates this much and contains a negative rate as large as \(-10 \%\) (not shown in the plot because it is outside the limits).

Implied Forward Curves. The jagged curve comes from direct bootstrapping. The smooth curve shows the effect of smoothing with splines.

Implied Spot Rate Curves. These curves correspond to the forward curve above.

This example uses termfit, an example function from Financial Toolbox software that also requires the use of Curve Fitting Toolbox \({ }^{\text {TM }}\) software.

\section*{See Also}
zbtprice | zbtyield

\section*{Related Examples}
- "Agency Option-Adjusted Spreads" on page 6-2
- "Using Zero-Coupon Bonds" on page 6-6
- "Stepped-Coupon Bonds" on page 6-10

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Derivative Securities}
- "Interest Rate Swaps" on page 7-2
- "Bond Futures" on page 7-10
- "Managing Interest Rate Risk with Bond Futures" on page 7-15
- "Fitting the Diebold Li Model" on page 7-23

\section*{Interest Rate Swaps}
```

In this section...
"Swap Pricing Assumptions" on page 7-2
"Swap Pricing Example" on page 7-3
"Portfolio Hedging" on page 7-7

```

\section*{Swap Pricing Assumptions}

Financial Instruments Toolbox contains the function liborfloat2fixed, which computes a fixed-rate par yield that equates the floating-rate side of a swap to the fixedrate side. The solver sets the present value of the fixed side to the present value of the floating side without having to line up and compare fixed and floating periods.

\section*{Assumptions on Floating-Rate Input}
- Rates are quarterly, for example, that of Eurodollar futures.
- Effective date is the first third Wednesday after the settlement date.
- All delivery dates are spaced 3 months apart.
- All periods start on the third Wednesday of delivery months.
- All periods end on the same dates of delivery months, 3 months after the start dates.
- Accrual basis of floating rates is actual/360.
- Applicable forward rates are estimated by interpolation in months when forward-rate data is not available.

\section*{Assumptions on Fixed-Rate Output}
- Design allows you to create a bond of any coupon, basis, or frequency, based on the floating-rate input.
- The start date is a valuation date, that is, a date when an agreement to enter into a contract by the settlement date is made.
- Settlement can be on or after the start date. If it is after, a forward fixed-rate contract results.
- Effective date is assumed to be the first third Wednesday after settlement, the same date as that of the floating rate.
- The end date of the bond is a designated number of years away, on the same day and month as the effective date.
- Coupon payments occur on anniversary dates. The frequency is determined by the period of the bond.
- Fixed rates are not interpolated. A fixed-rate bond of the same present value as that of the floating-rate payments is created.

\section*{Swap Pricing Example}

This example shows the use of the functions in computing the fixed rate applicable to a series of 2 -, 5 -, and 10 -year swaps based on Eurodollar market data. According to the Chicago Mercantile Exchange (http://www.cmegroup.com), Eurodollar data on Friday, October 11, 2002, was as shown in the following table.

Note This example illustrates swap calculations in MATLAB software. Timing of the data set used was not rigorously examined and was assumed to be the proxy for the swap rate reported on October 11, 2002.

\section*{Eurodollar Data on Friday, October 11, 2002}
\begin{tabular}{lll}
Month & Year & Settle \\
10 & 2002 & 98.21 \\
11 & 2002 & 98.26 \\
12 & 2002 & 98.3 \\
1 & 2003 & 98.3 \\
2 & 2003 & 98.31 \\
3 & 2003 & 98.275 \\
6 & 2003 & 98.12 \\
9 & 2003 & 97.87 \\
12 & 2003 & 97.575 \\
3 & 2004 & 97.26 \\
6 & 2004 & 96.98 \\
9 & 2004 & 96.745 \\
12 & 2004 & 96.515 \\
3 & 2005 & 96.33
\end{tabular}
\begin{tabular}{lll}
Month & Year & Settle \\
6 & 2005 & 96.135 \\
9 & 2005 & 95.955 \\
12 & 2005 & 95.78 \\
3 & 2006 & 95.63 \\
6 & 2006 & 95.465 \\
9 & 2006 & 95.315 \\
12 & 2006 & 95.16 \\
3 & 2007 & 95.025 \\
6 & 2007 & 94.88 \\
9 & 2007 & 94.74 \\
12 & 2007 & 94.595 \\
3 & 2008 & 94.48 \\
6 & 2008 & 94.375 \\
9 & 2008 & 94.28 \\
12 & 2008 & 94.185 \\
3 & 2009 & 94.1 \\
6 & 2009 & 94.005 \\
9 & 2009 & 93.925 \\
12 & 2009 & 93.865 \\
3 & 2010 & 93.82 \\
6 & 2010 & 93.755 \\
9 & 2010 & 93.7 \\
12 & 2010 & 93.645 \\
3 & 2011 & 93.61 \\
6 & 2011 & 93.56 \\
9 & 2011 & 93.515 \\
12 & 2011 & 93.47 \\
6 & 93.445 \\
\hline 6 & 93.41 \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
Month & Year & Settle \\
9 & 2012 & 93.39
\end{tabular}

Using this data, you can compute \(1-, 2-, 3-, 4-, 5-\) - 7 -, and 10 -year swap rates with the toolbox function liborfloat2fixed. The function requires you to input only Eurodollar data, the settlement date, and tenor of the swap. MATLAB software then performs the required computations.

To illustrate how this function works, first load the data contained in the supplied Excel \({ }^{\circledR}\) worksheet EDdata.xls.
```

[EDRawData, textdata] = xlsread('EDdata.xls');

```

Extract the month from the first column and the year from the second column. The rate used as proxy is the arithmetic average of rates on opening and closing.
```

Month = EDRawData(:,1);
Year = EDRawData(:,2);
IMMData = (EDRawData(:,4)+EDRawData(:,6))/2;
EDFutData = [Month, Year, IMMData];

```

Next, input the current date.
```

Settle = datenum('11-0ct-2002');

```

To compute for the 2-year swap rate, set the tenor to 2 .
Tenor = 2;
Finally, compute the swap rate with liborfloat2fixed.
```

[FixedSpec, ForwardDates, ForwardRates] = ...

```
liborfloat2fixed(EDFutData, Settle, Tenor)

MATLAB returns a par-swap rate of \(2.23 \%\) using the default setting (quarterly compounding and 30/360 accrual), and forward dates and rates data (quarterly compounded).

\section*{FixedSpec =}

Coupon: 0.0223
Settle: '16-Oct-2002'
Maturity: '16-Oct-2004

Period: 4
Basis: 1

ForwardDates =

731505
731596
731687
731778
731869
731967
732058
732149

ForwardRates =
0.0178
0.0168
0.0171
0.0189
0.0216
0.0250
0.0280
0.0306

In the FixedSpec output, note that the swap rate actually goes forward from the third Wednesday of October 2002 (October 16, 2002), 5 days after the original Settle input (October 11, 2002). This, however, is still the best proxy for the swap rate on Settle, as the assumption merely starts the swap's effective period and does not affect its valuation method or its length.

The correction suggested by Hull and White improves the result by turning on convexity adjustment as part of the input to liborfloat2fixed. (See Hull, J., Options, Futures, and Other Derivatives, 4th Edition, Prentice-Hall, 2000.) For a long swap, for example, five years or more, this correction could prove to be large.

The adjustment requires additional parameters:
- StartDate, which you make the same as Settle (the default) by providing an empty matrix [] as input.
- ConvexAdj to tell liborfloat2fixed to perform the adjustment.
- RateParam, which provides the parameters a and S as input to the Hull-White short rate process.
- Optional parameters InArrears and Sigma, for which you can use empty matrices [] to accept the MATLAB defaults.
- FixedCompound, with which you can facilitate comparison with values cited in Table H15 of Federal Reserve Statistical Release by turning the default quarterly compounding into semiannual compounding, with the (default) basis of 30/360.
```

StartDate = [];
Interpolation = [];
ConvexAdj = 1;
RateParam = [0.03; 0.017];
FixedCompound = 2;
[FixedSpec, ForwardDaates, ForwardRates] = ...
liborfloat2fixed(EDFutData, Settle, Tenor, StartDate, ...
Interpolation, ConvexAdj, RateParam, [], [], FixedCompound)

```

This returns \(2.21 \%\) as the 2 -year swap rate, quite close to the reported swap rate for that date.

Analogously, the following table summarizes the solutions for \(1-, 3-, 5-, 7\)-, and 10 -year swap rates (convexity-adjusted and unadjusted).

Calculated and Market Average Data of Swap Rates on Friday, October 11, 2002
\begin{tabular}{lllll}
\begin{tabular}{l}
Swap \\
Length \\
(Years)
\end{tabular} & Unadjusted & Adjusted & Table H15 & \begin{tabular}{l}
Adjusted Error \\
(Basis Points)
\end{tabular} \\
\hline 1 & \(1.80 \%\) & \(1.79 \%\) & \(1.80 \%\) & -1 \\
2 & \(2.24 \%\) & \(2.21 \%\) & \(2.22 \%\) & -1 \\
3 & \(2.70 \%\) & \(2.66 \%\) & \(2.66 \%\) & 0 \\
4 & \(3.12 \%\) & \(3.03 \%\) & \(3.04 \%\) & -1 \\
5 & \(3.50 \%\) & \(3.37 \%\) & \(3.36 \%\) & +1 \\
7 & \(4.16 \%\) & \(3.92 \%\) & \(3.89 \%\) & +3 \\
10 & \(4.87 \%\) & \(4.42 \%\) & \(4.39 \%\) & +3
\end{tabular}

\section*{Portfolio Hedging}

You can use these results further, such as for hedging a portfolio. The liborduration function provides a duration-hedging capability. You can isolate assets (or liabilities) from interest-rate risk exposure with a swap arrangement.

Suppose that you own a bond with these characteristics:
- \(\$ 100\) million face value
- \(7 \%\) coupon paid semiannually
- \(5 \%\) yield to maturity
- Settlement on October 11, 2002
- Maturity on January 15, 2010
- Interest accruing on an actual/365 basis

Use of the bnddury function from Financial Toolbox software shows a modified duration of 5.6806 years.

To immunize this asset, you can enter into a pay-fixed swap, specifically a swap in the amount of notional principal (\(N s\)) such that \(N s^{*}\) SwapDuration \(+\$ 100 \mathrm{M}^{*} 5.6806=0\) (or Ns \(=-100 * 5.6806 /\) SwapDuration \()\),

Suppose again, you choose to use a 5 -, 7 -, or 10 -year swap (\(3.37 \%, 3.92 \%\), and \(4.42 \%\) from the previous table) as your hedging tool.
```

SwapFixRate = [0.0337; 0.0392; 0.0442];
Tenor = [5; 7; 10];
Settle = '11-Oct-2002';
PayFixDuration = liborduration(SwapFixRate, Tenor, Settle)

```

This gives a duration of \(-3.6835,-4.7307\), and -6.0661 years for 5 -, 7 -, and 10 -year swaps. The corresponding notional amount is computed by
```

Ns = -100*5.6806./PayFixDuration
Ns =
154.2163
120.0786
93.6443

```

The notional amount entered in pay-fixed side of the swap instantaneously immunizes the portfolio.

\author{
See Also \\ liborduration | liborfloat2fixed | liborprice
}

\section*{Related Examples}
- "Analysis of Bond Futures" on page 7-11
- "Fitting the Diebold Li Model" on page 7-23
- "Managing Interest Rate Risk with Bond Futures" on page 7-15

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Bond Futures}
```

In this section...
"Supported Bond Futures" on page 7-10
"Analysis of Bond Futures" on page 7-11
"Managing Present Value with Bond Futures" on page 7-13

```

\section*{Supported Bond Futures}

Bond futures are futures contracts where the commodity for delivery is a government bond. There are established global markets for government bond futures. Bond futures provide a liquid alternative for managing interest-rate risk.

In the U.S. market, the Chicago Mercantile Exchange (CME) offers futures on Treasury bonds and notes with maturities of \(2,5,10\), and 30 years. Typically, the following bond future contracts from the CME have maturities of \(3,6,9\), and 12 months:
- 30-year U.S. Treasury bond
- 10-year U.S. Treasury bond
- 5-year U.S. Treasury bond
- 2-year U.S. Treasury bond

The short position in a Treasury bond or note future contract must deliver to the long position in one of many possible existing Treasury bonds. For example, in a 30 -year Treasury bond future, the short position must deliver a Treasury bond with at least 15 years to maturity. Because these bonds have different values, the bond future contract is standardized by computing a conversion factor. The conversion factor normalizes the price of a bond to a theoretical bond with a coupon of \(6 \%\). The price of a bond future contract is represented as:

InvoicePrice \(=\) FutPrice \(\times C F+A I\)
where:
FutPrice is the price of the bond future.
\(C F\) is the conversion factor for a bond to deliver in a futures contract.
\(A I\) is the accrued interest.

The short position in a futures contract has the option of which bond to deliver and, in the U.S. bond market, when in the delivery month to deliver the bond. The short position typically chooses to deliver the bond known as the Cheapest to Deliver (CTD). The CTD bond most often delivers on the last delivery day of the month.

Financial Instruments Toolbox software supports the following bond futures:
- U.S. Treasury bonds and notes
- German Bobl, Bund, Buxl, and Schatz
- UK gilts
- Japanese government bonds (JGBs)

The functions supporting all bond futures are:
\begin{tabular}{|l|l|}
\hline Function & Purpose \\
\hline convfactor & \begin{tabular}{l}
Calculates bond conversion factors for U.S. Treasury bonds, \\
German Bobl, Bund, Buxl, and Schatz, U.K. gilts, and JGBs.
\end{tabular} \\
\hline bndfutprice & Prices bond future given repo rates. \\
\hline bndfutimprepo & Calculates implied repo rates for a bond future given price. \\
\hline
\end{tabular}

The functions supporting U.S. Treasury bond futures are:
\begin{tabular}{|l|l|}
\hline Function & Purpose \\
\hline tfutbyprice & Calculates future prices of Treasury bonds given the spot price. \\
\hline tfutbyyield & Calculates future prices of Treasury bonds given current yield. \\
\hline tfutimprepo & \begin{tabular}{l}
Calculates implied repo rates for the Treasury bond future \\
given price.
\end{tabular} \\
\hline tfutpricebyrepo & \begin{tabular}{l}
Calculates Treasury bond futures price given the implied repo \\
rates.
\end{tabular} \\
\hline tfutyieldbyrepo & \begin{tabular}{l}
Calculates Treasury bond futures yield given the implied repo \\
rates.
\end{tabular} \\
\hline
\end{tabular}

\section*{Analysis of Bond Futures}

The following example demonstrates analyzing German Euro-Bund futures traded on Eurex. However, convfactor, bndfutprice, and bndfutimprepo apply to bond futures in the U.S., U.K., Germany, and Japan. The workflow for this analysis is:

1 Calculate bond conversion factors.
2 Calculate implied repo rates to find the CTD bond.
3 Price the bond future using the term implied repo rate.

\section*{Calculating Bond Conversion Factors}

Use conversion factors to normalize the price of a particular bond for delivery in a futures contract. When using conversion factors, the assumption is that a bond for delivery has a \(6 \%\) coupon. Use convfactor to calculate conversion factors for all bond futures from the U.S., Germany, Japan, and U.K.

For example, conversion factors for Euro-Bund futures on Eurex are listed at www.eurexchange.com. The delivery date for Euro-Bund futures is the 10th day of the month, as opposed to bond futures in the U.S., where the short position has the option of choosing when to deliver the bond.

For the \(4 \%\) bond, compute the conversion factor with:
```

CF1 = convfactor('10-Sep-2009','04-Jul-2018', .04,.06,3)
CF1 =

```

\subsection*{0.8659}

This syntax for convfactor works fine for bonds with standard coupon periods. However, some deliverable bonds have long or short first coupon periods. Compute the conversion factors for such bonds using the optional input parameters StartDate and FirstCouponDate. Specify all optional input arguments for convfactor as parameter/ value pairs:
```

CF2 = convfactor('10-Sep-2009','04-Jan-2019', .0375,'Convention',3,'startdate',...
datenum('14-Nov-2008'))
CF2 =
0.8426

```

\section*{Calculating Implied Repo Rates to Find the CTD Bond}

To determine the availability of the cheapest bond for deliverable bonds against a futures contract, compute the implied repo rate for each bond. The bond with the highest repo rate is the cheapest because it has the lowest initial value, thus yielding a higher return,
provided you deliver it with the stated futures price. Use bndfutimprepo to calculate repo rates:
```

% Bond Properties
CouponRate = [.0425;.0375;.035];
Maturity = [datenum('04-Jul-2018');datenum('04-Jan-2019'); datenum('04-Jul-2019')];
CF = [0.882668;0.842556;0.818193];
Price = [105.00;100.89;98.69];
% Futures Properties
FutSettle = '09-Jun-2009';
FutPrice = 118.54;
Delivery = '10-Sep-2009';
% Note that the default for BNDFUTIMPREPO is for the bonds to be
% semi-annual with a day count basis of 0. Since these are German
% bonds, we need to have a Basis of 8 and a Period of 1
ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle, Delivery, CF, ...
CouponRate, Maturity,'Basis',8,'Period',1)
ImpRepo =
0.0261
-0.0022
-0.0315

```

\section*{Pricing Bond Futures Using the Term Implied Repo Rate}

Use bndfutprice to perform price calculations for all bond futures from the U.S., Germany, Japan, and U.K. To price the bond, given a term repo rate:
```

% Assume a term repo rate of .0091;
RepoRate = .0091;
[FutPrice,AccrInt] = bndfutprice(RepoRate, Price(1), FutSettle,...
Delivery, CF(1), CouponRate(1), Maturity(1),...
Basis',8,'Period',1)
FutPrice =
118.0126
AccrInt =
0.7918

```

\section*{Managing Present Value with Bond Futures}

The Present Value of a Basis Point (PVBP) is used to manage interest-rate risk. PVBP is a measure that quantifies the change in price of a bond given a one-basis point shift in interest rates. The PVBP of a bond is computed with the following:

\section*{\(P V B P_{\text {Bond }}=\frac{\text { Duration } \times \text { MarketValue }}{100}\)}

The PVBP of a bond futures contract can be computed with the following:
\[
P V B P_{\text {Futures }}=\frac{P V B P_{\text {CTDBond }}}{C T D \text { ConversionFactor }}
\]

Use bnddurp and bnddury from Financial Toolbox software to compute the modified durations of CTD bonds. For more information, see "Managing Interest Rate Risk with Bond Futures" on page 7-15 and "Fitting the Diebold Li Model" on page 7-23.

\section*{See Also}
bnddurp | bnddury | bndfutimprepo | bndfutprice | convfactor | tfutbyprice | tfutbyyield | tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo

\section*{Related Examples}
- "Analysis of Bond Futures" on page 7-11
- "Fitting the Diebold Li Model" on page 7-23
- "Managing Interest Rate Risk with Bond Futures" on page 7-15

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Managing Interest Rate Risk with Bond Futures}

This example shows how to hedge the interest rate risk of a portfolio using bond futures.

\section*{Modifying the Duration of a Porffolio with Bond Futures}

In managing a bond portfolio, you can use a benchmark portfolio to evaluate performance. Sometimes a manager is constrained to keep the portfolio's duration within a particular band of the duration of the benchmark. One way to modify the duration of the portfolio is to buy and sell bonds, however, there may be reasons why a portfolio manager wishes to maintain the existing composition of the portfolio (e.g., the current holdings reflect fundamental research/views about future returns). Therefore, another option for modifying the duration is to buy and sell bond futures.

Bond futures are futures contracts where the commodity to be delivered is a government bond that meets the standard outlined in the futures contract (e.g., the bond has a specified remaining time to maturity).

Since often many bonds are available, and each bond may have a different coupon, you can use a conversion factor to normalize the payment by the long to the short.

There exist well developed markets for government bond futures. Specifically, the Chicago Board of Trade offers futures on the following:
- 2 Year Note
- 3 Year Note
- 5 Year Note
- 10 Year Note
- 30 Year Bond
http://www.cmegroup.com/trading/interest-rates/
Eurex offers futures on the following:
- Euro-Schatz Futures 1.75 to 2.25
- Euro-Bobl Futures 4.5 to 5.5
- Euro-Bund Futures 8.5 to 10.5
- Euro-Buxl Futures 24.0 to 35
http://www.eurexchange.com

Bond futures can be used to modify the duration of a portfolio. Since bond futures derive their value from the underlying instrument, the duration of a bond futures contract is related to the duration of the underlying bond.

There are two challenges in computing this duration:
- Since there are many available bonds for delivery, the short in the contract has a choice in which bond to deliver.
- Some contracts allow the short flexibility in choosing the delivery date.

Typically, the bond used for analysis is the bond that is cheapest for the short to deliver (CTD).

One approach is to compute duration measures using the CTD's duration and the conversion factor.

For example, the Present Value of a Basis Point (PVBP) can be computed from the following:
\[
\begin{aligned}
& P V B P_{\text {Futures }}=\frac{P V B P_{C T D}}{\text { ConversionFactor }_{C T D}} \\
& P V B P_{C T D}=\frac{\text { Duration }_{C T D} * \text { Price }_{C T D}}{100}
\end{aligned}
\]

Note that these definitions of duration for the futures contract are approximate, and do not account for the value of the delivery options for the short.

If the goal is to modify the duration of a portfolio, use the following:
\[
\text { NumContracts }=\frac{\left(\text { Dur }_{\text {Target }}-\text { Dur }_{\text {Initial }}\right) * \text { Value }_{\text {Portfolio }}}{\text { Dur }_{C T D} * \text { Price }_{C T D} * \text { ContractSize }^{\text {ConvFactor }} \text { CTD }}
\]

Note that the contract size is typically for 100,000 face value of a bond -- so the contract size is typically 1000, as the bond face value is 100 .

The following example assumes an initial duration, portfolio value, and target duration for a portfolio with exposure to the Euro interest rate. The June Euro-Bund Futures contract is used to modify the duration of the portfolio.

Note that typically futures contracts are offered for March, June, September and December.
```

% Assume the following for the portfolio and target
PortfolioDuration = 6.4;
PortfolioValue = 100000000;
BenchmarkDuration = 4.8;
% Deliverable Bunds -- note that these conversion factors may also be
% computed with the MATLAB(R) function CONVFACTOR
BondPrice = [106.46;108.67;104.30];
BondMaturity = datenum({'04-Jan-2018','04-Jul-2018','04-Jan-2019'});
BondCoupon = [.04;.0425;.0375];
ConversionFactor = [.868688;.880218;.839275];
% Futures data -- found from http://www.eurexchange.com
FuturesPrice = 122.17;
FuturesSettle = '23-Apr-2009';
FuturesDelivery = '10-Jun-2009';
% To find the CTD bond we can compute the implied repo rate
ImpliedRepo = bndfutimprepo(BondPrice,FuturesPrice,FuturesSettle,...
FuturesDelivery,ConversionFactor,BondCoupon,BondMaturity);
% Note that the bond with the highest implied repo rate is the CTD
[CTDImpRepo,CTDIndex] = max(ImpliedRepo);
% Compute the CTD's Duration -- note the period and basis for German Bunds
Duration = bnddurp(BondPrice,BondCoupon,FuturesSettle,BondMaturity,1,8);
ContractSize = 1000;
% Use the formula above to compute the number of contracts to sell
NumContracts = (BenchmarkDuration - PortfolioDuration)*PortfolioValue./...
(BondPrice(CTDIndex) *ContractSize*Duration(CTDIndex))*ConversionFactor(CTDIndex);
disp(['To achieve the target duration, ' num2str(abs(round(NumContracts))) ...
Euro-Bund Futures must be sold.'])
To achieve the target duration, }180\mathrm{ Euro-Bund Futures must be sold.

```

\section*{Modifying the Key Rate Durations of a Portfolio with Bond Futures}

One of the shortcomings of using duration as a risk measure is that it assumes parallel shifts in the yield curve. While many studies have shown that this explains roughly
\(85 \%\) of the movement in the yield curve, changes in the slope or shape of the yield curve are not captured by duration -- and therefore, hedging strategies are not successful at addressing these dynamics.

One approach is to use key rate duration -- this is particularly relevant when using bond futures with multiple maturities, like Treasury futures.

The following example uses \(2,5,10\) and 30 year Treasury Bond futures to hedge the key rate duration of a portfolio.

Computing key rate durations requires a zero curve. This example uses the zero curve published by the Treasury and found at the following location:
http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/ yield.shtml

Note that this zero curve could also be derived using the Interest Rate Curve functionality found in IRDataCurve and IRFunctionCurve.
```

% Assume the following for the portfolio and target, where the duration
% vectors are key rate durations at 2, 5, 10, and 30 years.
PortfolioDuration = [.5 1 2 6];
PortfolioValue = 100000000;
BenchmarkDuration = [.4 .8 1.6 5];
% The following are the CTD Bonds for the 30, 10, 5 and 2 year futures
% contracts -- these were determined using the procedure outlined in the
% previous section.
CTDCoupon = [4.75 3.125 5.125 7.5]'/100;
CTDMaturity = datenum({'3/31/2011','08/31/2013','05/15/2016','11/15/2024'});
CTDConversion = [0.9794 0.8953 0.9519 1.1484]';
CTDPrice = [107.34 105.91 117.00 144.18]';
ZeroRates = [0.07 0.10 0.31 0.50 0.99 1.38 1.96 2.56 3.03 3.99 3.89]'/100;
ZeroDates = daysadd(FuturesSettle,[30 360 360*2 360*3 360*5 ...
360*7 360*10 360*15 360*20 360*25 360*30],1);
% Compute the key rate durations for each of the CTD bonds.
CTDKRD = bndkrdur([ZeroDates ZeroRates], CTDCoupon,FuturesSettle,...
CTDMaturity,'KeyRates',[2 5 10 30]);
% Note that the contract size for the 2 Year Note Future is \$200,000
ContractSize = [2000;1000;1000;1000];

```
```

NumContracts = (bsxfun(@times,CTDPrice.*ContractSize./CTDConversion,CTDKRD))\...
(BenchmarkDuration - PortfolioDuration)'*PortfolioValue;
sprintf(['To achieve the target duration, \n' ...
num2str(-round(NumContracts(1))) ' 2 Year Treasury Note Futures must be sold, \n'
num2str(-round(NumContracts(2))) ' 5 Year Treasury Note Futures must be sold, \n'
num2str(-round(NumContracts(3))) ' 10 Year Treasury Note Futures must be sold, \n'
num2str(-round(NumContracts(4))) ' Treasury Bond Futures must be sold, \n'])
ans =
To achieve the target duration,
2 4 2 Year Treasury Note Futures must be sold,
4 7 5 Year Treasury Note Futures must be sold,
68 10 Year Treasury Note Futures must be sold,
120 Treasury Bond Futures must be sold,

```

\section*{Improving the Performance of a Hedge with Regression}

An additional component to consider in hedging interest rate risk with bond futures, again related to movements in the yield curve, is that typically the yield curve moves more at the short end than at the long end.

Therefore, if a position is hedged with a future where the CTD bond has a maturity that is different than the portfolio this could lead to a situation where the hedge under- or over-compensates for the actual interest rate risk of the portfolio.

One approach is to perform a regression on historical yields at different maturities to determine a Yield Beta, which is a value that represents how much more the yield changes for different maturities.

This example shows how to use this approach with UK Long Gilt futures and historical data on Gilt Yields.

Market data on Gilt futures is found at the following:
http://www.euronext.com
Historical data on gilts is found at the following;
http://www.dmo.gov.uk

Note that while this approach does offer the possibility of improving the performance of a hedge, any analysis using historical data depends on historical relationships remaining consistent.

Also note that an additional enhancement takes into consideration the correlation between different maturities. While this approach is outside the scope of this example, you can use this to implement a minimum variance hedge.
```

% Assume the following for the portfolio and target
PortfolioDuration = 6.4;
PortfolioValue = 100000000;
BenchmarkDuration = 4.8;
% This is the CTD Bond for the Long Gilt Futures contract
CTDBondPrice = 113.40;
CTDBondMaturity = datenum('7-Mar-2018');
CTDBondCoupon = .05;
CTDConversionFactor = 0.9325024;
% Market data for the Long Gilt Futures contract
FuturesPrice = 120.80;
FuturesSettle = '23-Apr-2009';
FuturesDelivery = '10-Jun-2009';
CTDDuration = bnddurp(CTDBondPrice,CTDBondCoupon,FuturesSettle,CTDBondMaturity);
ContractSize = 1000;
NumContracts = (BenchmarkDuration - PortfolioDuration)*PortfolioValue./...
(CTDBondPrice*ContractSize*CTDDuration)*CTDConversionFactor;
disp(['To achieve the target duration with a conventional hedge ' ...
num2str(-round(NumContracts)) ...
' Long Gilt Futures must be sold.'])
To achieve the target duration with a conventional hedge 182 Long Gilt Futures must be

```

To improve the accuracy of this hedge, historical data is used to determine a relationship between the standard deviation of the yields. Specifically, standard deviation of yields is plotted and regressed vs bond duration. This relationship is then used to compute a Yield Beta for the hedge.
```

% Load data from XLS spreadsheet
load ukbonddata_20072008

```
```

Duration = bnddury(Yield(1,:)',Coupon,Dates(1,:),Maturity);
scatter(Duration,100*std(Yield))
title('Standard Deviation of Yields for UK Gilts 2007-2008')
ylabel('Standard Deviation of Yields (%)')
xlabel('Duration')
annotation(gcf,'textbox',[0.4067 0.685 0.4801 0.0989],...
String',{'Note that the Standard Deviation',...
'of Yields is greater at shorter maturities.'},...
'FitBoxToText','off',...
'EdgeColor','none');
stats = regstats(std(Yield),Duration);
YieldBeta = (stats.beta'*[1 PortfolioDuration]')./(stats.beta'*[1 CTDDuration]');

```

Standard Deviation of Yields for UK Gilts 2007-2008

Now the Yield Beta is used to compute a new value for the number of contracts to be sold. Note that since the duration of the portfolio was less than the duration of the CTD Gilt, the number of futures to sell is actually greater than in the first case.

NumContracts = (BenchmarkDuration - PortfolioDuration)*PortfolioValue./... (CTDBondPrice*ContractSize*CTDDuration)*CTDConversionFactor*YieldBeta;
disp(['To achieve the target duration using a Yield Beta-modified hedge, ' ... num2str(abs(round(NumContracts))) ...
' Long Gilt Futures must be sold.'])
To achieve the target duration using a Yield Beta-modified hedge, 193 Long Gilt Future

\section*{Bibliography}

This example is based on the following books and papers:
[1] Burghardt, G., T. Belton, M. Lane and J. Papa. The Treasury Bond Basis. New York, NY: McGraw-Hill, 2005.
[2] Krgin, D. Handbook of Global Fixed Income Calculations. New York, NY: John Wiley \& Sons, 2002.
[3] CFA Program Curriculum, Level III, Volume 4, Reading 31. CFA Institute, 2009.

\section*{See Also}
bnddurp | bnddury | bndfutimprepo | bndfutprice | convfactor | tfutbyprice | tfutbyyield | tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo

\section*{Related Examples}
- "Analysis of Bond Futures" on page 7-11
- "Fitting the Diebold Li Model" on page 7-23

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Fitting the Diebold Li Model}

This example shows how to construct a Diebold Li model of the US yield curve for each month from 1990 to 2010. This example also demonstrates how to forecast future yield curves by fitting an autoregressive model to the time series of each parameter.

The paper can be found here:
http://www.ssc.upenn.edu/~fdiebold/papers/paper49/Diebold-Li.pdf

\section*{Load the Data}

The data used are monthly Treasury yields from 1990 through 2010 for tenors of \(1 \mathrm{Mo}, 3\) Mo, \(6 \mathrm{Mo}, 1 \mathrm{Yr}, 2 \mathrm{Yr}, 3 \mathrm{Yr}, 5 \mathrm{Yr}, 7 \mathrm{Yr}, 10 \mathrm{Yr}, 20 \mathrm{Yr}\), 30 Yr .

Daily data can be found here:
http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/ TextView.aspx?data=yieldAll

Data is stored in a MATLAB® data file as a MATLAB dataset object.
```

load Data_USYieldCurve

```
\% Extract data for the last day of each month
MonthYearMat \(=\) repmat((1990:2010)', 1, 12)' ';
EOMDates = lbusdate(MonthYearMat(:),repmat((1:12)',21,1));
MonthlyIndex = find(ismember(Dataset.Properties.ObsNames,datestr(EOMDates)));
Estimationdataset = Dataset(MonthlyIndex,:);
EstimationData = double(Estimationdataset);

\section*{Diebold Li Model}

Diebold and Li start with the Nelson Siegel model
\[
y=\beta_{0}+\left(\beta_{1}+\beta_{2}\right) \frac{\tau}{m}\left(1-e^{\frac{-m}{\tau}}\right)-\beta_{2} e^{\frac{-m}{\tau}}
\]
and rewrite it to be the following:
\[
y_{t}(\tau)=\beta_{1 t}+\beta_{2 t}\left(\frac{1-e^{-\lambda_{t} \tau}}{\lambda_{t} \tau}\right)+\beta_{3 t}\left(\frac{1-e^{-\lambda_{t} \tau}}{\lambda_{t} \tau}-e^{-\lambda_{\ell} \tau}\right)
\]

The above model allows the factors to be interpreted in the following way: Beta1 corresponds to the long term/level of the yield curve, Beta2 corresponds to the short term/ slope, and Beta3 corresponds to the medium term/curvature. \(\lambda\) determines the maturity at which the loading on the curvature is maximized, and governs the exponential decay rate of the model.

Diebold and Li advocate setting \(\lambda\) to maximize the loading on the medium term factor, Beta3, at 30 months. This also transforms the problem from a nonlinear fitting one to a simple linear regression.
```

% Explicitly set the time factor lambda
lambda_t = .0609;
% Construct a matrix of the factor loadings
% Tenors associated with data
TimeToMat = [3 6 9 12 24 36 60 84 120 240 360]';
X = [ones(size(TimeToMat)) (1 - exp(-lambda_t*TimeToMat))./(lambda_t*TimeToMat) ...
((1 - exp(-lambda_t*TimeToMat))./(lambda_t*TimeToMat) - exp(-lambda_t*TimeToMat))]
% Plot the factor loadings
plot(TimeToMat,X)
title('Factor Loadings for Diebold Li Model with time factor of .0609')
xlabel('Maturity (months)')
ylim([0 1.1])
legend({'Beta1','Beta2','Beta3'},'location','east')

```

Factor Loadings for Diebold Li Model with time factor of 0609

\section*{Fit the Model}

A DieboldLi object has been developed to facilitate fitting the model from yield data. The DieboldLi object inherits from the IRCurve object, so the getZeroRates, getDiscountFactors, getParYields, getForwardRates and toRateSpec methods are all implemented. Additionally, the method fitYieldsFromBetas has been implemented to estimate the Beta parameters given a lambda parameter for observed market yields.

The DieboldLi object will be used to fit a Diebold Li model for each month from 1990 through 2010.
```

% Preallocate the Betas
Beta = zeros(size(EstimationData,1),3);

```
```

% Loop through and fit each end of month yield curve
for jdx = 1:size(EstimationData,1)
tmpCurveModel = DieboldLi.fitBetasFromYields(EOMDates(jdx),lambda_t*12,daysadd(EOML
Beta(jdx,:) = [tmpCurveModel.Beta1 tmpCurveModel.Beta2 tmpCurveModel.Beta3];
end

```

The Diebold Li fits on selected dates are included here
```

PlotSettles = datenum({'30-May-1997','31-Aug-1998','29-Jun-2001','31-0ct-2005'});
figure
for jdx = 1:length(PlotSettles)
subplot(2,2,jdx)
tmpIdx = find(strcmpi(Estimationdataset.Properties.ObsNames,datestr(PlotSettles(jd)
tmpCurveModel = DieboldLi.fitBetasFromYields(PlotSettles(jdx),lambda t*12,...
daysadd(PlotSettles(jdx),30*TimeToMat),EstimationData(tmpIdx,:)');
scatter(daysadd(PlotSettles(jdx),30*TimeToMat),EstimationData(tmpIdx,:))
hold on
PlottingDates = (PlotSettles(jdx)+30:30:PlotSettles(jdx)+30*360)';
plot(PlottingDates,tmpCurveModel.getParYields(PlottingDates),'r-')
title(['Yield Curve on ' datestr(PlotSettles(jdx))])
datetick
end

```


\section*{Forecasting}

The Diebold Li model can be used to forecast future yield curves. Diebold and Li propose fitting an \(\operatorname{AR}(1)\) model to the time series of each Beta parameter. This fitted model can then be used to forecast future values of each parameter, and by extension, future yield curves.

For this example the MATLAB function REGRESS is used to estimate the parameters for an \(\operatorname{AR}(1)\) model for each Beta.

The confidence intervals for the regression fit are also used to generate two additional yield curve forecasts that serve as additional possible scenarios for the yield curve.

The MonthsLag variable can be adjusted to make different period ahead forecasts. For example, changing the value from 1 to 6 would change the forecast from a 1 month ahead to 6 month ahead forecast.
```

MonthsLag = 1;
[tmpBeta,bint] = regress(Beta(MonthsLag+1:end,1),[ones(size(Beta(MonthsLag+1:end,1)))
ForecastBeta(1,1) = [1 Beta(end,1)]*tmpBeta;
ForecastBeta_Down(1,1) = [1 Beta(end,1)]*bint(:,1);
ForecastBeta_Up(1,1) = [1 Beta(end,1)]*bint(:,2);
[tmpBeta,bint] = regress(Beta(MonthsLag+1:end,2),[ones(size(Beta(MonthsLag+1:end,2)))
ForecastBeta(1,2) = [1 Beta(end,2)]*tmpBeta;
ForecastBeta_Down(1,2) = [1 Beta(end,2)]*bint(:,1);
ForecastBeta_Up(1,2) = [1 Beta(end,2)]*bint(:,2);
[tmpBeta,bint] = regress(Beta(MonthsLag+1:end,3),[ones(size(Beta(MonthsLag+1:end,3)))
ForecastBeta(1,3) = [1 Beta(end,3)]*tmpBeta;
ForecastBeta_Down(1,3) = [1 Beta(end,3)]*bint(:,1);
ForecastBeta_Up(1,3) = [1 Beta(end,3)]*bint(:,2);
% Forecasted yield curve
figure
Settle = daysadd(EOMDates(end),30*MonthsLag);
DieboldLi_Forecast = DieboldLi('ParYield',Settle,[ForecastBeta lambda_t*12]);
DieboldLi_Forecast_Up = DieboldLi('ParYield',Settle,[ForecastBeta_Up lambda_t*12]);
DieboldLi_Forecast_Down = DieboldLi('ParYield',Settle,[ForecastBe\overline{ta_Down lambda_t*12])}
PlottingDätes = (Settle+30:30:Settle+30*360)';
plot(PlottingDates,DieboldLi_Forecast.getParYields(PlottingDates), 'b-')
hold on
plot(PlottingDates,DieboldLi_Forecast_Up.getParYields(PlottingDates),'r-')
plot(PlottingDates,DieboldLi_Forecast_Down.getParYields(PlottingDates),'r-')
title(['Diebold Li Forecasted Yield Curves on ' datestr(EOMDates(end)) ' for ' datestr
legend({'Forecasted Curve','Additional Scenarios'},'location','southeast')
datetick

```


\section*{Bibliography}

This example is based on the following paper:
[1] Francis X. Diebold, Canlin Li, Forecasting the term structure of government bond yields, Journal of Econometrics, Volume 130, Issue 2, February 2006, Pages 337-364

\section*{See Also}
bnddurp | bnddury | bndfutimprepo | bndfutprice | convfactor | tfutbyprice | tfutbyyield | tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo

\section*{Related Examples}
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures" on page 7-15

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{Credit Derivatives}
- "Counterparty Credit Risk and CVA" on page 8-2
- "First-to-Default Swaps" on page 8-25
- "Credit Default Swap Option" on page 8-37
- "Wrong Way Risk with Copulas" on page 8-44

\section*{Counterparty Credit Risk and CVA}

This example shows how to compute the unilateral credit value (valuation) adjustment (CVA) for a bank holding a portfolio of vanilla interest rate swaps with several counterparties. CVA is the expected loss on an over-the-counter contract or portfolio of contracts due to counterparty default. The CVA for a particular counterparty is defined as the sum over all points in time of the discounted expected exposure at each moment multiplied by the probability that the counterparty defaults at that moment, all multiplied by 1 minus the recovery rate. The CVA formula is:
\[
C V A=(1-R) \int_{0}^{T} \operatorname{disc} E E(t) d P D(t)
\]

Where \(R\) is the recovery, discEE the discounted expected exposure at time \(t\), and PD the default probability distribution.

The expected exposure is computed by first simulating many future scenarios of risk factors for the given contract or portfolio. Risk factors can be interest rates, as in this example, but will differ based on the portfolio and can include FX rates, equity or commodity prices, or anything that will affect the market value of the contracts. Once a sufficient set of scenarios has been simulated, the contract or portfolio can be priced on a series of future dates for each scenario. The result is a matrix, or "cube", of contract values.

These prices are converted into exposures after taking into account collateral agreements that the bank might have in place as well as netting agreements, as in this example, where the values of several contracts may offset each other, lowering their total exposure.

The contract values for each scenario are discounted to compute the discounted exposures. The discounted expected exposures can then be computed by a simple average of the discounted exposures at each simulation date.

Finally, counterparty default probabilities are typically derived from credit default swap (CDS) market quotes and the CVA for the counterparty can be computed according to the above formula. We assume that a counterparty default is independent of its exposure (no wrong-way risk).

For this example we will work with a portfolio of vanilla interest rate swaps with the goal of computing the CVA for a particular counterparty.

\section*{Read Swap Porifolio}

The portfolio of swaps is close to zero value at time \(t=0\). Each swap is associated with a counterparty and may or may not be included in a netting agreement.
```

% Read swaps from spreadsheet
swapFile = 'cva-swap-portfolio.xls';
swapData = readtable(swapFile,'Sheet','Swap Portfolio');
swaps = struct( ...
Counterparty',[], ...
'NettingID',[], ...
'Principal',[], ...
'Maturity',[], ...
'LegRate',[], ...
'LegType',[], ...
'LatestFloatingRate',[], ...
'FloatingResetDates',[]);
swaps.Counterparty = swapData.CounterpartyID;
swaps.NettingID = swapData.NettingID;
swaps.Principal = swapData.Principal;
swaps.Maturity = swapData.Maturity;
swaps.LegType = [swapData.LegType ~swapData.LegType];
swaps.LegRate = [swapData.LegRateReceiving swapData.LegRatePaying];
swaps.LatestFloatingRate = swapData.LatestFloatingRate;
swaps.Period = swapData.Period;
swaps.LegReset = ones(size(swaps.LegType));
numSwaps = numel(swaps.Counterparty);

```

For more information on the swap parameters for Counterparty and NettingID, see creditexposures. For more information on the swap parameters for Principal, Maturity, LegType, LegRate, LatestFloatingRate, Period, and LegReset, see swapbyzero.

\section*{Create RateSpec from the Interest Rate Curve}
```

Settle = datenum('14-Dec-2007');
Tenor = [3 6 12 5*12 7*12 10*12 20*12 30*12]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
ZeroDates = datemnth(Settle,Tenor);

```
```

Compounding = 2;

```
Basis = 0;
RateSpec = intenvset('StartDates', Settle,'EndDates', ZeroDates, ...
 Rates', ZeroRates,'Compounding',Compounding,'Basis', Basis);
figure;
plot(ZeroDates, ZeroRates, 'o-');
xlabel('Date');
datetick('keeplimits');
ylabel('Zero rate');
grid on;
title('Yield Curve at Settle Date');

\section*{Set Changeable Simulation Parameters}

We can vary here the number of simulated interest rate scenarios we generate. We set our simulation dates to be more frequent at first, then turning less frequent further in the future.
```

% Number of Monte Carlo simulations
numScenarios = 1000;
% Compute monthly simulation dates, then quarterly dates later.
simulationDates = datemnth(Settle,0:12);
simulationDates = [simulationDates datemnth(simulationDates(end), 3:3:74)]';
numDates = numel(simulationDates);

```

\section*{Compute Floating Reset Dates}

For each simulation date, we compute previous floating reset date for each swap.
```

floatDates = cfdates(Settle-360,swaps.Maturity,swaps.Period);
swaps.FloatingResetDates = zeros(numSwaps,numDates);
for i = numDates:-1:1
thisDate = simulationDates(i);
floatDates(floatDates > thisDate) = 0;
swaps.FloatingResetDates(:,i) = max(floatDates,[],2);
end

```

\section*{Setup Hull-White Single Factor Model}

The risk factor we will simulate to value our contracts is the zero curve. For this example we will model the interest rate term structure using the one-factor Hull-White model. This is a model of the short rate and is defined as:
\[
d r=[\theta(t)-a r] d t+\sigma d z
\]
where
- \(d r\) : Change in the short rate after a small change in time, \(d t\)
- a: Mean reversion rate
- \(\sigma\) : Volatility of the short rate
- \(d z\) : A Weiner process (a standard normal process)
- \(\theta(t)\) : Drift function defined as:
\[
\theta(t)=F_{t}(0, t)+a F(0, t)+\frac{\sigma^{2}}{2 a}\left(1-e^{-2 a t}\right)
\]
\(F(0, t)\) : Instantaneous forward rate at time \(t\)
\(F_{t}(0, t)\) : Partial derivative of \(F\) with respect to time
Once we have simulated a path of the short rate we generate a full yield curve at each simulation date using the formula:
\[
\begin{aligned}
& R(t, T)=-\frac{1}{(T-t)} \ln A(t, T)+\frac{1}{(T-t)} B(t, T) r(t) \\
& \ln A(t, T)=\ln \frac{P(0, T)}{P(0, t)}+B(t, T) F(0, t)-\frac{1}{4 a^{3}} \sigma^{2}\left(e^{-a T}-e^{-a t}\right)^{2}\left(e^{2 a t}-1\right) \\
& B(t, T)=\frac{1-e^{-a(T-t)}}{a}
\end{aligned}
\]
\(R(t, T)\) : Zero rate at time \(t\) for a period of \(T-t\)
\(P(t, T)\) : Price of a zero coupon bond at time \(t\) that pays one dollar at time \(T\)
Each scenario contains the full term structure moving forward through time, modeled at each of our selected simulation dates.

Refer to "Calibrating the Hull-White Model Using Market Data" example in the Financial Instruments Toolbox \({ }^{\text {TM }}\) Users' Guide for more details on Hull-White one-factor model calibration.

Alpha \(=0.2\);
Sigma = 0.015;
hw1 = HullWhite1F(RateSpec,Alpha,Sigma);

\section*{Simulate Scenarios}

For each scenario, we simulate the future interest rate curve at each valuation date using the Hull-White one-factor interest rate model.
```

% Use reproducible random number generator (vary the seed to produce
% different random scenarios).
prevRNG = rng(0, 'twister');
dt = diff(yearfrac(Settle,simulationDates,1));
nPeriods = numel(dt);
scenarios = hw1.simTermStructs(nPeriods, ...
'nTrials',numScenarios, ...
'deltaTime',dt);
% Restore random number generator state
rng(prevRNG);
% Compute the discount factors through each realized interest rate
% scenario.
dfactors = ones(numDates,numScenarios);
for i = 2:numDates
tenorDates = datemnth(simulationDates(i-1),Tenor);
rateAtNextSimDate = interp1(tenorDates,squeeze(scenarios(i-1,:,:)), ...
simulationDates(i),'linear','extrap');
% Compute D(t1,t2)
dfactors(i,:) = zero2disc(rateAtNextSimDate, ...
repmat(simulationDates(i),1,numScenarios),simulationDates(i-1), -1,3);
end
dfactors = cumprod(dfactors,1);

```

\section*{Inspect a Scenario}

Create a surface plot of the yield curve evolution for a particular scenario.
```

i = 20;
figure;
surf(Tenor, simulationDates, scenarios(:,:,i))
axis tight
datetick('y','mmmyy');
xlabel('Tenor (Months)');
ylabel('Observation Date');
zlabel('Rates');
ax = gca;
ax.View = [-49 32];

```
```

title(sprintf('Scenario %d Yield Curve Evolution\n',i));

```

Scenario 20 Yield Curve Evolution

\section*{Compute Mark to Market Swap Prices}

For each scenario the swap portfolio is priced at each future simulation date. Prices are computed using a price approximation function, hswapapprox. It is common in CVA applications to use simplified approximation functions when pricing contracts due to the performance requirements of these Monte Carlo simulations.

Since the simulation dates do not correspond to the swaps cash flow dates (where the floating rates are reset) we estimate the latest floating rate with the 1-year rate (all swaps have period 1 year) interpolated between the nearest simulated rate curves.

The swap prices are then aggregated into a "cube" of values which contains all future contract values at each simulation date for each scenario. The resulting cube of contract prices is a 3 dimensional matrix where each row represents a simulation date, each column an contract, and each "page" a different simulated scenario.
```

% Compute all mark-to-market values for this scenario. We use an
% approximation function here to improve performance.
values = hcomputeMTMValues(swaps,simulationDates,scenarios,Tenor);

```

\section*{Inspect Scenario Prices}

Create a plot of the evolution of all swap prices for a particular scenario.
```

i = 32;

```
figure;
plot(simulationDates, values(:,:,i));
datetick;
ylabel('Mark-To-Market Price');
title(sprintf('Swap prices along scenario \%d', i));

\section*{Visualize Simulated Porifolio Values}

We plot the total portfolio value for each scenario of our simulation. As each scenario moves forward in time the values of the contracts will move up or down depending on how the modeled interest rate term structure changes. As the swaps get closer to maturity, their values will begin to approach zero since the aggregate value of all remaining cash flows will decrease after each cash flow date.
```

% View portfolio value over time
figure;
totalPortValues = squeeze(sum(values, 2));
plot(simulationDates,totalPortValues);
title('Total MTM Portfolio Value for All Scenarios');
datetick('x','mmmyy')

```


\section*{Compute Exposure by Counterparty}

The exposure of a particular contract (i) at time \(t\) is the maximum of the contract value (Vi) and 0:
\[
E_{i}(t)=\max \left\{V_{i}(t), 0\right\}
\]

And the exposure for a particular counterparty is simply a sum of the individual contract exposures:
\[
E_{c p}(t)=\sum E_{i}(t)=\sum \max \left\{V_{i}(t), 0\right\}
\]

In the presence of netting agreements, however, contracts are aggregated together and can offset each other. Therefore the total exposure of all contracts in a netting agreement is:
\[
E_{n a}(t)=\max \left\{\sum V_{i}(t), 0\right\}
\]

We compute these exposures for the entire portfolio as well as each counterparty at each simulation date using the creditexposures function.

Unnetted contracts are indicated using a NaN in the NettingID vector. Exposure of an unnetted contract is equal to the market value of the contract if it has positive value, otherwise it is zero.

Contracts included in a netting agreement have their values aggregated together and can offset each other. See the references for more details on computing exposure from mark-to-market contract values.
```

[exposures, expcpty] = creditexposures(values,swaps.Counterparty, ...
'NettingID',swaps.NettingID);

```

We plot the total portfolio exposure for each scenario in our simulation. Similar to the plot of contract values, the exposures for each scenario will approach zero as the swaps mature.
```

% View portfolio exposure over time
figure;
totalPortExposure = squeeze(sum(exposures,2));
plot(simulationDates,totalPortExposure);
title('Portfolio Exposure for All Scenarios');
datetick('x','mmmyy')
ylabel('Exposure (\$)')
xlabel('Simulation Dates')

```


\section*{Exposure Profiles}

Several exposure profiles are useful when analyzing the potential future exposure of a bank to a counterparty. Here we compute several (non-discounted) exposure profiles per counterparty as well as for the entire portfolio.
- PFE : Potential Future Exposure : A high percentile (95\%) of the distribution of exposures at any particular future date. Also called Peak Exposure (PE)
- MPFE : Maximum Potential Future Exposure : The maximum PFE across all dates
- EE : Expected Exposure : The mean (average) of the distribution of exposures at each date
- EPE : Expected Positive Exposure : Weighted average over time of the expected exposure
- EffEE : Effective Expected Exposure : The maximum expected exposure at any time, \(t\), or previous time
- EffEPE : Effective Expected Positive Exposure : The weighted average of the effective expected exposure

For further definitions, see for example Basel II document in references.
```

% Compute entire portfolio exposure
portExposures = sum(exposures,2);
% Compute exposure profiles for each counterparty and entire portfolio
cpProfiles = exposureprofiles(simulationDates,exposures);
portProfiles = exposureprofiles(simulationDates,portExposures);

```

We visualize the exposure profiles, first for the entire portfolio, then for a particular counterparty.
```

% Visualize portfolio exposure profiles
figure;
plot(simulationDates,portProfiles.PFE, ...
simulationDates,portProfiles.MPFE * ones(numDates,1), ...
simulationDates,portProfiles.EE, ...
simulationDates,portProfiles.EPE * ones(numDates,1), ...
simulationDates,portProfiles.EffEE, ...
simulationDates,portProfiles.EffEPE * ones(numDates,1));
legend({'PFE (95%)','Max PFE','Exp Exposure (EE)','Time-Avg EE (EPE)', ...
'Max past EE (EffEE)','Time-Avg EffEE (EffEPE)'})
datetick('x','mmmyy')
title('Portfolio Exposure Profiles');
ylabel('Exposure (\$)')
xlabel('Simulation Dates')

```


Visualize exposure profiles for a particular counterparty
```

cpIdx = find(expcpty == 5);
figure;
plot(simulationDates,cpProfiles(cpIdx).PFE, ...
simulationDates,cpProfiles(cpIdx).MPFE * ones(numDates,1), ...
simulationDates,cpProfiles(cpIdx).EE, ...
simulationDates,cpProfiles(cpIdx).EPE * ones(numDates,1), ...
simulationDates,cpProfiles(cpIdx).EffEE, ...
simulationDates,cpProfiles(cpIdx).EffEPE * ones(numDates,1));
legend({'PFE (95%)','Max PFE','Exp Exposure (EE)','Time-Avg EE (EPE)', ...
'Max past EE (EffEE)','Time-Avg EffEE (EffEPE)'})
datetick('x','mmmyy','keeplimits')

```


\section*{Discounted Exposures}

We compute the discounted expected exposures using the discount factors from each simulated interest rate scenario. The discount factor for a given valuation date in a given scenario is the product of the incremental discount factors from one simulation date to the next, along the interest rate path of that scenario.
```

% Get discounted exposures per counterparty, for each scenario

```
```

discExp = zeros(size(exposures));
for i = 1:numScenarios
discExp(:,:,i) = bsxfun(@times,dfactors(:,i),exposures(:,:,i));
end
% Discounted expected exposure
discProfiles = exposureprofiles(simulationDates,discExp, ...
ProfileSpec','EE');

```

We plot the discounted expected exposures for the aggregate portfolio as well as for each counterparty.
```

% Aggregate the discounted EE for each counterparty into a matrix
discEE = [discProfiles.EE];
% Portfolio discounted EE
figure;
plot(simulationDates,sum(discEE,2))
datetick('x','mmmyy','keeplimits')
title('Discounted Expected Exposure for Portfolio');
ylabel('Discounted Exposure ($)')
xlabel('Simulation Dates')
% Counterparty discounted EE
figure;
plot(simulationDates,discEE)
datetick('x','mmmyy','keeplimits')
title('Discounted Expected Exposure for Each Counterparty');
ylabel('Discounted Exposure ($)')
xlabel('Simulation Dates')

```


\section*{Calibrating Probability of Default Curve for Each Counterparty}

The default probability for a given counterparty is implied by the current market spreads of the counterparty's CDS. We use the function cdsbootstrap to generate the cumulative probability of default at each simulation date.
```

% Import CDS market information for each counterparty
CDS = readtable(swapFile,'Sheet','CDS Spreads');
disp(CDS);
CDSDates = datenum(CDS.Date);
CDSSpreads = table2array(CDS(:,2:end));
ZeroData = [RateSpec.EndDates RateSpec.Rates];

```
```

% Calibrate default probabilities for each counterparty
DefProb = zeros(length(simulationDates), size(CDSSpreads,2));
for i = 1:size(DefProb,2)
probData = cdsbootstrap(ZeroData, [CDSDates CDSSpreads(:,i)], ...
Settle, 'probDates', simulationDates);
DefProb(:,i) = probData(:,2);
end
% We plot of the cumulative probability of default for each counterparty.
figure;
plot(simulationDates,DefProb)
title('Default Probability Curve for Each Counterparty');
xlabel('Date');
grid on;
ylabel('Cumulative Probability')
datetick('x','mmmyy')
ylabel('Probability of Default')
xlabel('Simulation Dates')

Date	cp1	cp2	cp3	cp4	cp5
'3/20/2008'	140	85	115	170	140
'3/20/2009'	185	120	150	205	175
'3/20/2010'	215	170	195	245	210
'3/20/2011'	275	215	240	285	265
'3/20/2012'	340	255	290	320	310

```


\section*{CVA Computation}

The Credit Value (Valuation) Adjustment (CVA) formula is:
\[
C V A=(1-R) \int_{0}^{T} \operatorname{disc} E E(t) d P D(t)
\]

Where \(R\) is the recovery, discEE the discounted expected exposure at time \(t\), and PD the default probability distribution. This assumes the exposure is independent of default (no wrong-way risk), and it also assumes the exposures were obtained using risk-neutral probabilities.

Here we approximate the integral with a finite sum over the valuation dates as:
```

$C V A($ approx $)=(1-R) \sum_{i=2}^{n} \operatorname{discEE}\left(t_{i}\right)\left(P D\left(t_{i}\right)-P D\left(t_{i-1}\right)\right)$

```
where \(\mathrm{t} _1\) is todays date, \(\mathrm{t} _2, \ldots, \mathrm{t} _\mathrm{n}\) the future valuation dates.
We assume CDS info corresponds to counterparty with index cpIdx. The computed CVA is the present market value of our credit exposure to counterparty cpIdx. For this example we set the recovery rate at \(40 \%\).
```

Recovery = 0.4;
CVA = (1-Recovery) * sum(discEE(2:end,:) .* diff(DefProb));
for i = 1:numel(CVA)
fprintf('CVA for counterparty %d = \$%.2f\n',i,CVA(i));
end

```
figure;
bar(CVA);
title('CVA for each counterparty');
xlabel('Counterparty');
ylabel('CVA \$');
grid on;
CVA for counterparty \(1=\$ 2228.36\)
CVA for counterparty \(2=\$ 2487.60\)
CVA for counterparty \(3=\$ 920.39\)
CVA for counterparty \(4=\$ 5478.50\)
CVA for counterparty \(5=\$ 5859.30\)

\section*{References}

1 Pykhtin, Michael, and Steven Zhu, A Guide to Modeling Counterparty Credit Risk, GARP, July/August 2007, issue 37, pp. 16-22.

2 Pykhtin, Michael, and Dan Rosen, Pricing Counterparty Risk at the Trade Level and CVA, 2010.

3 Basel II: http://www.bis.org/publ/bcbs128.pdf page 256

\section*{See Also}
cdsbootstrap | cdsprice | cdsrpv01 | cdsspread

\section*{Related Examples}
- "First-to-Default Swaps" on page 8-25
- "Credit Default Swap Option" on page 8-37

\section*{External Websites}
- Pricing and Valuation of Credit Default Swaps (4 min 22 sec)

\section*{First-to-Default Swaps}

This example shows how to price first-to-default (FTD) swaps under the homogeneous loss assumption.

A first-to-default swap is an instrument that pays a predetermined amount when (and if) the first of a basket of credit instruments defaults. The credit instruments in the basket are usually bonds. If we assume that the loss amount following a credit event is the same for all credits in the basket, we are under the homogeneous loss assumption. This assumption makes models simpler, because any default in the basket triggers the same payment amount. This example is an implementation of the pricing methodology for these instruments, as described in O'Kane [2]. There are two steps in the methodology: a) Compute the survival probability for the basket numerically; b) Use this survival curve and standard single-name credit-default swap (CDS) functionality to find FTD spreads and to price existing FTD swaps.

\section*{Fit Probability Curves to Market Data}

Given CDS market quotes for each issuer in the basket, use cdsbootstrap to calibrate individual default probability curves for each issuer.
```

% Interest rate curve
ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...
'17-Jul-13','17-Jul-14'});
ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
ZeroData = [ZeroDates ZeroRates];
% CDS spreads
% Each row in MarketSpreads corresponds to a different issuer; each
% column to a different maturity date (corresponding to MarketDates)
MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...
'20-Sep-16'});
MarketSpreads = [
160 195 230 285 330;
130 165 205 260 305;
150 180 210 260 300;
165 200 225 275 295];
% Number of issuers equals number of rows in MarketSpreads
nIssuers = size(MarketSpreads,1);
% Settlement date
Settle = datenum('17-Jul-2009');

```

In practice, the time axis is discretized and the FTD survival curve is only evaluated at grid points. We use one point every three months. To request that cdsbootstrap returns default probability values over the specific grid points we want, use the optional argument 'ProbDates'. We add the original standard CDS market dates to the grid, otherwise the default probability information on those dates would be interpolated using the two closest dates on the grid, and the prices on market dates would be inconsistent with the original market data.
```

ProbDates = union(MarketDates,daysadd(Settle,360*(0.25:0.25:8),1));
nProbDates = length(ProbDates);
DefProb = zeros(nIssuers,nProbDates);
for ii = 1:nIssuers
MarketData = [MarketDates MarketSpreads(ii,:)'];
ProbData = cdsbootstrap(ZeroData,MarketData,Settle,...
'ProbDates',ProbDates);
DefProb(ii,:) = ProbData(:,2)';
end

```

These are the calibrated default probability curves for each credit in the basket.
```

figure
plot(ProbDates',DefProb)
datetick
title('Individual Default Probability Curves')
ylabel('Cumulative Probability')
xlabel('Date')

```


\section*{Determine Latent Variable Thresholds}

Latent variables are used in different credit risk contexts, with different interpretations. In some contexts, a latent variable is a proxy for a change in the value of assets, and the domain of this variable is binned, with each bin corresponding to a credit rating. The bins limits, or thresholds, are determined from credit migration matrices. In our context, the latent variable is associated to a time to default, and the thresholds determine bins in a discretized time grid where defaults may occur.

Formally, if the time to default of a particular issuer is denoted by \(\tau\), and we know its default probability function \(P(t)\), a latent variable \(A\) and corresponding thresholds \(C(t)\) satisfy
\[
\operatorname{Pr}(\tau \leq t)=P(t)=\operatorname{Pr}(A \leq C(t))
\]
or
\[
\operatorname{Pr}(s \leq \tau \leq t)=P(t)-P(s)=\operatorname{Pr}(C(s) \leq A \leq C(t))
\]

These relationships make latent variable approaches convenient for both simulations and analytical derivations. Both \(P(t)\) and \(C(t)\) are functions of time.

The choice of a distribution for the variable \(A\) determines the thresholds \(C(t)\). In the standard latent variable model, the variable \(A\) is chosen to follow a standard normal distribution, from which
\[
C(t)=\Phi^{-1}(P(t))
\]
where \(\Phi\) is the cumulative standard normal distribution.
Use the previous formula to determine the default-time thresholds, or simply default thresholds, corresponding to the default probabilities previously obtained for the credits in the basket.

DefThresh = norminv(DefProb);

\section*{Derive Survival Curve for the Basket}

Following O'Kane [2], we use a one-factor latent variable model to derive expressions for the survival probability function of the basket.

Given parameters \(\beta_{i}\) for each issuer \(i\), and given independent standard normal variables \(Z\) and \(\epsilon_{i}\), the one-factor latent variable model assumes that the latent variable \(A_{i}\) associated to issuer \(i\) satisfies
\[
A_{i}=\beta_{i} * Z+\sqrt{1-\beta_{i}^{2}} * \epsilon_{i}
\]

This induces a correlation between issuers \(i\) and \(j\) of \(\beta_{i} \beta_{j}\). All latent variables \(A_{i}\) share the common factor \(Z\) as a source of uncertainty, but each latent variable also has an idiosyncratic source of uncertainty \(\epsilon_{i}\). The larger the coefficient \(\beta_{i}\), the more the latent variable resembles the common factor \(Z\).

Using the latent variable model, we derive an analytic formula for the survival probability of the basket.

The probability that issuer \(i\) survives past time \(t_{j}\), in other words, that its default time \(\tau_{i}\) is greater than \(t_{j}\) is
\[
\operatorname{Pr}\left(\tau_{i}>t_{j}\right)=1-\operatorname{Pr}\left(A_{i} \leq C_{i}\left(t_{j}\right)\right)
\]
where \(C_{i}\left(t_{j}\right)\) is the default threshold computed above for issuer \(i\), for the \(j\)-th date in the discretization grid.

Conditional on the value of the one-factor \(Z\), the probability that all issuers survive past time \({ }^{t_{j}}\) is
\[
\operatorname{Pr}\left(\text { No defaults by time } t_{j} \mid Z\right)=\operatorname{Pr}\left(\tau_{i}>t_{j} \text { for all } i \mid Z\right)=\prod_{i}\left[1-\operatorname{Pr}\left(A_{i} \leq C_{i}\left(t_{j}\right) \mid Z\right)\right]
\]
where the product is justified because all the \(\epsilon_{i}\) 's are independent. Therefore, conditional on \(Z\), the \(A_{i \text { 's }}\) are independent.

The unconditional probability of no defaults by time \(t_{j}\) is the integral over all values of \(Z\) of the previous conditional probability
\[
\operatorname{Pr}\left(\text { No defaults by time } t_{j}\right)=\int_{Z} \prod_{i}\left[1-\operatorname{Pr}\left(A_{i} \leq C_{i}\left(t_{j}\right) \mid Z\right)\right] \phi(Z) d Z
\]
with \(\phi(Z)\) the standard normal density.
By evaluating this one-dimensional integral for each point \({ }^{t_{j}}\) in the grid, we get a discretization of the survival curve for the whole basket, which is the FTD survival curve.

The latent variable model can also be used to simulate default times, which is the back engine of many pricing methodologies for credit instruments. Loeffler and Posch [1], for example, estimate the survival probability of a basket via simulation. In each simulated scenario a time to default is determined for each issuer. With some bookkeeping, the probability of having the first default on each bucket of the grid can be estimated from
the simulation. The simulation approach is also discussed in O'Kane [2]. Simulation is very flexible and applicable to many credit instruments. However, analytic approaches are preferred, when available, because they are much faster and more accurate than simulation.

To compute the FTD survival probabilities in our example, we set all betas to the square root of a target correlation. Then we loop over all dates in the time grid to compute the one dimensional integral that gives the survival probability of the basket.

Regarding implementation, the conditional survival probability as a function of a scalar Z would be
```

condProb=@(Z)prod(normcdf((-DefThresh(:,jj)+beta*Z)./sqrt(1-beta.^2)));

```

However, the integration function we use requires that the function handle of the integrand accepts vectors. Although a loop around the scalar version of the conditional probability would work, it is far more efficient to vectorize the conditional probability using bsxfun.
```

beta = sqrt(0.25)*ones(nIssuers,1);
FTDSurvProb = zeros(size(ProbDates));
for jj = 1:nProbDates
% vectorized conditional probability as a function of Z
vecCondProb = @(Z)prod(normcdf(bsxfun(@rdivide,...
-repmat(DefThresh(:,jj),1,length(Z))+bsxfun(@times,beta,Z),...
sqrt(1-beta.^2))));
% truncate domain of normal distribution to [-5,5] interval
FTDSurvProb(jj) = integral(@(Z)vecCondProb(Z).*normpdf(Z), -5,5);
end
FTDDefProb = 1-FTDSurvProb;

```

Compare the FTD probability to the default probabilities of the individual issuers.
```

figure
plot(ProbDates',DefProb)
datetick
hold on
plot(ProbDates,FTDDefProb,'LineWidth',3)
datetick
hold off
title('FTD and Individual Default Probability Curves')
ylabel('Cumulative Probability')
xlabel('Date')

```


\section*{Find FTD Spreads and Price Existing FTD Swaps}

Under the assumption that all instruments in the basket have the same recovery rate, or homogeneous loss assumption (see O'Kane in References), we get the spread for the FTD swap using the cdsspread function, but passing the FTD probability data just computed.

Maturity = MarketDates;
ProbDataFTD = [ProbDates, FTDDefProb];
FTDSpread = cdsspread(ZeroData,ProbDataFTD,Settle,Maturity);
Compare the FTD spreads with the individual spreads.
figure
plot(MarketDates,MarketSpreads')
```

datetick
hold on
plot(MarketDates,FTDSpread,'LineWidth',3)
hold off
title('FTD and Individual CDS Spreads')
ylabel('FTD Spread (bp)')
xlabel('Maturity Date')

```

FTD and Individual CDS Spreads

An existing FTD swap can be priced with cdsprice, using the same FTD probability.
Maturity0 = MarketDates(1); \% Assume maturity on nearest market date SpreadO = 540; \% Spread of existing FTD contract \% Assume default values of recovery and notional FTDPrice = cdsprice(ZeroData, ProbDataFTD,Settle,Maturity0,Spread0); fprintf('Price of existing FTD contract: \%g\n',FTDPrice)

Price of existing FTD contract: 17644.7

\section*{Analyze Sensitivity to Correlation}

To illustrate the sensitivity of the FTD spreads to model parameters, we calculate the market spreads for a range of correlation values.
```

corr = [0 0.01 0.10 0.25 0.5 0.75 0.90 0.99 1];
FTDSpreadByCorr = zeros(length(Maturity),length(corr));
FTDSpreadByCorr(:,1) = sum(MarketSpreads)';
FTDSpreadByCorr(:,end) = max(MarketSpreads)';
for ii = 2:length(corr)-1
beta = sqrt(corr(ii))*ones(nIssuers,1);
FTDSurvProb = zeros(length(ProbDates));
for jj = 1:nProbDates
% vectorized conditional probability as a function of Z
condProb = @(Z)prod(normcdf(bsxfun(@rdivide,...
-repmat(DefThresh(:,jj),1,length(Z))+bsxfun(@times,beta,Z),...
sqrt(1-beta.^2))));
% truncate domain of normal distribution to [-5,5] interval
FTDSurvProb(jj) = integral(@(Z)condProb(Z).*normpdf(Z),-5,5);
end
FTDDefProb = 1-FTDSurvProb;
ProbDataFTD = [ProbDates, FTDDefProb];
FTDSpreadByCorr(:,ii) = cdsspread(ZeroData,ProbDataFTD,Settle,Maturity);
end

```

The FTD spreads lie in a band between the sum and the maximum of individual spreads. As the correlation increases to one, the FTD spreads decrease towards the maximum of the individual spreads in the basket (all credits default together). As the correlation decreases to zero, the FTD spreads approach the sum of the individual spreads (independent credits).
```

figure
legends = cell(1,length(corr));
plot(MarketDates,FTDSpreadByCorr(:,1),'k:')
legends{1} = 'Sum of Spreads';
datetick
hold on
for ii = 2:length(corr)-1
plot(MarketDates,FTDSpreadByCorr(:,ii),'LineWidth', 3*corr(ii))
legends{ii} = ['Corr ' num2str(corr(ii)*100) '%'];
end

```
```

plot(MarketDates,FTDSpreadByCorr(:,end),'k-.')
legends{end} = 'Max of Spreads';
hold off
title('FTD Spreads for Different Correlations')
ylabel('FTD Spread (bp)')
xlabel('Maturity Date')
legend(legends,'Location','NW')

```


For short maturities and small correlations, the basket is effectively independent (the FTD spread is very close to the sum of individual spreads). The correlation effect becomes more significant for longer maturities.

Here is an alternative visualization of the dependency of FTD spreads on correlation.
```

figure
surf(corr,MarketDates,FTDSpreadByCorr)
datetick('y')
ax = gca;
ax.YDir = 'reverse';
view(-40,10)
title('FTD Spreads for Different Correlations and Maturities')
xlabel('Correlation')
ylabel('Maturity Date')
zlabel('FTD Spread (bp)')

```

FTD Spreads for Different Correlations and Maturities

\section*{References}
[1] Loeffler, Gunter and Peter Posch, Credit risk modeling using Excel and VBA, Wiley Finance, 2007.
[2] O'Kane, Dominic, Modelling single-name and multi-name Credit Derivatives, Wiley Finance, 2008.

\section*{See Also}
cdsbootstrap | cdsprice | cdsrpv01 | cdsspread

\section*{Related Examples}
- "Credit Default Swap Option" on page 8-37

\section*{External Websites}
- \(\quad\) Pricing and Valuation of Credit Default Swaps (4 min 22 sec)

\section*{Credit Default Swap Option}

\author{
In this section... \\ "Pricing a Single-Name CDS Option" on page 8-37 \\ "Pricing a CDS Index Option" on page 8-39 \\ "References" on page 8-43
}

A credit default swap (CDS) option, or credit default swaption, is a contract that provides the holder with the right, but not the obligation, to enter into a credit default swap in the future. CDS options can either be payer swaptions or receiver swaptions. If a payer swaption, the option holder has the right to enter into a CDS where they pay premiums; and, if a receiver swaption, the option holder receives premiums. Financial Instruments Toolbox software provides cdsoptprice for pricing payer and receiver credit default swaptions. Also, with some additional steps, cdsoptprice can be used for pricing multiname CDS index options.

\section*{Pricing a Single-Name CDS Option}

This example shows how to price a single-name CDS option using cdsoptprice. The function cdsoptprice is based on the Black's model as described in O'Kane (2008). The optional knockout argument for cdsoptprice supports two variations of the mechanics of a CDS option. CDS options can be knockout or non-knockout options.
- A knockout option cancels with no payments if there is a credit event before the option expiry date.
- A non-knockout option does not cancel if there is a credit event before the option expiry date. In this case, the option holder of a non-knockout payer swaption can take delivery of the underlying long protection CDS on the option expiry date and exercise the protection, delivering a defaulted obligation in return for par. This portion of protection from option initiation to option expiry is known as the front-end protection (FEP). While this distinction does not affect the receiver swaption, the price of a nonknockout payer swaption is obtained by adding the value of the FEP to the knockout payer swaption price.

Define the CDS instrument.
Settle = datenum('12-Jun-2012');
OptionMaturity = datenum('20-Sep-2012');
```

CDSMaturity = datenum('20-Sep-2017');
OptionStrike = 200;
SpreadVolatility = .4;

```

Define the zero rate.
```

Zero_Time = [.5 1 2 2 3 4 5]';
Zero_Rate = [.5 .75 1.5 1.7 1.9 2.2]'/100;
Zero_Dates = daysadd(Settle,360*Zero_Time,1);
ZeroData = [Zero Dates Zero Rate]
ZeroData =
1.0e+05 *

7.3522	0.0000
7.3540	0.0000
7.3576	0.0000
7.3613	0.0000
7.3649	0.0000
7.3686	0.0000

```

Define the market data.
```

Market_Time = [1 2 3 5 7 10]';
Market_Rate = [100 120 145 220 245 270]';
Market_Dates = daysadd(Settle,360*Market_Time,1);
MarketData = [Market_Dates Market_Rate];
ProbData = cdsbootstrap(ZeroData, MarketData, Settle)

```
ProbData =
\begin{tabular}{cc}
\(1.0 \mathrm{e}+05\) * & \\
7.3540 & 0.0000 \\
7.3576 & 0.0000 \\
7.3613 & 0.0000 \\
7.3686 & 0.0000 \\
7.3759 & 0.0000 \\
7.3868 & 0.0000
\end{tabular}

Define the CDS option.
```

[Payer,Receiver] = cdsoptprice(ZeroData, ProbData, Settle, OptionMaturity, ...
CDSMaturity, OptionStrike, SpreadVolatility, 'Knockout', true);
fprintf(' Payer: %.Of Receiver: %.Of (Knockout)\n',Payer,Receiver);
[Payer,Receiver] = cdsoptprice(ZeroData, ProbData, Settle, OptionMaturity, ...
CDSMaturity, OptionStrike, SpreadVolatility, 'Knockout', false);
fprintf(' Payer: %.Of Receiver: %.Of (Non-Knockout)\n',Payer,Receiver);
Payer: 196 Receiver: 23 (Knockout)
Payer: 224 Receiver: 23 (Non-Knockout)

```

\section*{Pricing a CDS Index Option}

This example shows how to price CDS index options by using cdsoptprice with the forward spread adjustment. Unlike a single-name CDS, a CDS portfolio index contains multiple credits. When one or more of the credits default, the corresponding contingent payments are made to the protection buyer but the contract still continues with reduced coupon payments. Considering the fact that the CDS index option does not cancel when some of the underlying credits default before expiry, one might attempt to price CDS index options using the Black's model for non-knockout single-name CDS option. However, Black's model in this form is not appropriate for pricing CDS index options because it does not capture the exercise decision correctly when the strike spread (\(K\)) is very high, nor does it ensure put-call parity when \((K)\) is not equal to the contractual spread (O'Kane, 2008).

However, with the appropriate modifications, Black's model for single-name CDS options used in cdsoptprice can provide a good approximation for CDS index options. While there are some variations in the way the Black's model is modified for CDS index options, they usually involve adjusting the forward spread \(F\), the strike spread \(K\), or both. Here we describe the approach of adjusting the forward spread only. In the Black's model for single-name CDS options, the forward spread \(F\) is defined as:
\[
F=S\left(t, t_{E}, T\right)=\frac{S(t, T) R P V 01(t, T)-S\left(t, t_{E}\right) R P V 01\left(t, t_{E}\right)}{R P V 01\left(t, t_{E}, T\right)}
\]
where
\(S\) is the spread.
\(R P V 01\) is the risky present value of a basis point (see cdsrpv01).
\(t\) is the valuation date.
\(t_{E}\) is the option expiry date.
\(T\) is the CDS maturity date.
To capture the exercise decision correctly for CDS index options, we use the knockout form of the Black's model and adjust the forward spread to incorporate the FEP as follows:
\[
F_{A d j}=F+\frac{F E P}{R P V 01\left(t, t_{E}, T\right)}
\]
with \(F E P\) defined as
\[
F E P=(1-R) Z\left(t, t_{E}\right)\left(1-Q\left(t, t_{E}\right)\right)
\]
where
\(R\) is the recovery rate.
\(Z\) is the discount factor.
\(Q\) is the survival probability.
In cdsoptprice, forward spread adjustment can be made with the AdjustedForwardSpread parameter. When computing the adjusted forward spread, we can compute the spreads using cdsspread and the RPV01s using cdsrpv01.

Set up the data for the CDS index, its option, and zero curve. The underlying is a 5 -year CDS index maturing on 20-Jun-2017 and the option expires on 20-Jun-2012. Note that a flat index spread is assumed when bootstrapping the default probability curve.
```

% CDS index and option data
Recovery = .4;
Basis = 2;
Period = 4;
CDSMaturity = datenum('20-Jun-2017');
ContractSpread = 100;
IndexSpread = 140;
BusDayConvention = 'follow';
Settle = datenum('13-Apr-2012');
OptionMaturity = datenum('20-Jun-2012');

```
```

OptionStrike = 140;
SpreadVolatility = .69;
% Zero curve data
MM Time = [1 2 3 6]'
MM_Rate = [0.004111 0.00563 0.00757 0.01053]';
MM_Dates = daysadd(Settle,30*MM_Time,1);
Swap_Time = [1 2 3 4 5 6 7 8 9 10 12 15 20 30]';
Swap_Rate = [lllol387 0.01035 0.01145 0.01318 0.01508 0.01700 0.01868 ..
0.02012 0.02132 0.02237 0.02408 0.02564 0.02612 0.02524]';
Swap_Dates = daysadd(Settle,360*Swap_Time,1);
InstTypes = [repmat({'deposit'},size(MM_Time));repmat({'swap'},size(Swap_Time))];
Instruments = [repmat(Settle,size(InstTypes)) [MM_Dates;Swap_Dates] [MM_Rate;Swap_Rate]];
ZeroCurve = IRDataCurve.bootstrap('zero',Settle,InstTypes,Instruments);
% Bootstrap the default probability curve assuming a flat index spread.
MarketData = [CDSMaturity IndexSpread];
ProbDates = datemnth(OptionMaturity,(0:5*12)');
ProbData = cdsbootstrap(ZeroCurve, MarketData, Settle, 'ProbDates', ProbDates);

```

Compute the spot and forward RPV01s, which will be used later in the computation of the adjusted forward spread. For this purpose, we can use cdsrpv01.
```

% RPV01(t,T)
RPV01_CDSMaturity = cdsrpv01(ZeroCurve,ProbData,Settle,CDSMaturity)
% RPV01(t,t E,T)
RPV01_OptionExpiryForward = cdsrpv01(ZeroCurve,ProbData,Settle,CDSMaturity,...
StartDate',OptionMaturity)
% RPV01(t,t_E) = RPV01(t,T) - RPV01(t,t_E,T)
RPV01_OptionExpiry = RPV01_CDSMaturity - RPV01_OptionExpiryForward
RPV01_CDSMaturity =
4.7853
RPV01_OptionExpiryForward =
4.5971
RPV01_OptionExpiry =
0.1882

```

Compute the spot spreads using cdsspread.
```

% S(t,t_E)
Spread_OptionExpiry = cdsspread(ZeroCurve,ProbData,Settle,OptionMaturity,...
'Pēriod', Period, 'Basis', Basis, 'BusDayConvention', BusDayConvention,...
'PayAccruedPremium',true,'recoveryrate',Recovery)

```
```

% S(t,T)
Spread_CDSMaturity = cdsspread(ZeroCurve,ProbData,Settle,CDSMaturity,...
'Pēriod', Period, 'Basis', Basis, 'BusDayConvention', BusDayConvention, .. .
PayAccruedPremium',true,'recoveryrate',Recovery)
Spread_OptionExpiry =
139.9006
Spread_CDSMaturity =
140.0000

```

The spot spreads and RPV01s are then used to compute the forward spread.
```

% F = S(t,t_E,T)
ForwardSpread = (Spread_CDSMaturity.*RPV01_CDSMaturity - ...
Spread_OptionExpiry.*RPV01_OptionExpiry})./RPV01_OptionExpiryForward
ForwardSpread =

```
 140.0040

Compute the front-end protection (FEP).
```

FEP = 10000*(1-Recovery)*ZeroCurve.getDiscountFactors(OptionMaturity)*ProbData(1,2)
FEP =

```
 26.3108

Compute the adjusted forward spread.
```

AdjustedForwardSpread = ForwardSpread + FEP./RPV01_OptionExpiryForward

```
AdjustedForwardSpread =
 145.7273

Compute the option prices using cdsoptprice with the adjusted forward spread. Note again that the Knockout parameter should be set to be true because the FEP was already incorporated into the adjusted forward spread.
```

Payer,Receiver] = cdsoptprice(ZeroCurve, ProbData, Settle, OptionMaturity, ..
CDSMaturity, OptionStrike, SpreadVolatility,'Knockout',true,..
'AdjustedForwardSpread', AdjustedForwardSpread,'PayAccruedPremium',true);
fprintf(' Payer: %.Of Receiver: %.Of \n',Payer,Receiver);

```

\section*{Payer: 92 Receiver: 66}

\section*{References}

O'Kane, D., Modelling Single-name and Multi-name Credit Derivatives, Wiley, 2008.

\author{
See Also \\ cdsoptprice | cdsrpv01 | cdsspread \\ \section*{Related Examples}
}
- "Credit Default Swap (CDS)"

\section*{Wrong Way Risk with Copulas}

This example shows an approach to modeling wrong-way risk for Counterparty Credit Risk using a Gaussian copula.

A basic approach to Counterparty Credit Risk (CCR) (see Counterparty Credit Risk and CVA example) assumes that market and credit risk factors are independent of each other. A simulation of market risk factors drives the exposures for all contracts in the portfolio. In a separate step, Credit-Default Swap (CDS) market quotes determine the default probabilities for each counterparty. Exposures, default probabilities, and a given recovery rate are used to compute the Credit-Value Adjustment (CVA) for each counterparty, which is a measure of expected loss. The simulation of risk factors and the default probabilities are treated as independent of each other.

In practice, default probabilities and market factors are correlated. The relationship may be negligible for some types of instruments, but for others, the relationship between market and credit risk factors may be too important to be ignored when computing risk measures.

When the probability of default of a counterparty and the exposure resulting from particular contract tend to increase together we say the contract has wrong-way risk (WWR).

In this example, we show an implementation of the wrong-way risk methodology described in Garcia Cespedes et al. (see References).

\section*{Exposures Simulation}

Many financial institutions have systems that simulate market risk factors and value all the instruments in their portfolios at given simulation dates. These simulations are used to compute exposures and other risk measures. Because the simulations are computationally intensive, re-using them for subsequent risk analyses is important.

For this example, we use the data and the simulation results from the Counterparty Credit Risk and CVA example, previously saved in the ccr.mat file. The ccr.mat file contains:
- RateSpec: The rate spec when contract values were calculated
- Settle: The settle date when contract values were calculated
- simulationDates: A vector of simulation dates
- swaps: A struct containing the swap parameters
- values: The NUMDATES x NUMCONTRACT x NUMSCENARIOS cube of simulated contract values over each date/scenario

We will be looking at expected losses over a one-year time horizon only, so we crop our data after one year of simulation. Simulation dates over the first year are at a monthly frequency, so the 13th simulation date is our one-year time horizon (the first simulation date is the settle date).
```

load ccr.mat
oneYearIdx = 13;
values = values(1:oneYearIdx,:,:);
dates = simulationDates(1:oneYearIdx);
numScenarios = size(values,3);

```

We compute credit exposures from the simulated contract values. These exposures are monthly credit exposures per counterparty from the settle date to our one-year time horizon.

Since defaults can happen at any time during the one-year time period, it is common to model the exposure at default (EAD) based on the idea of expected positive exposure (EPE). We compute the time-averaged exposure for each scenario, which we call simply PE (positive exposure). The average of the PE's over all scenarios is the EPE, which can also be obtained from the exposureprofiles function.

The positive exposure matrix PE contains one row per simulated scenario and one column per counterparty. We use this as the EAD in our analysis.
```

% Compute counterparty exposures
[exposures, counterparties] = creditexposures(values,swaps.Counterparty, ...
'NettingID',swaps.NettingID);
numCP = numel(counterparties);
% Compute PE (time-averaged exposures) per scenario
intervalWeights = diff(dates) / (dates(end) - dates(1));
exposureMidpoints = 0.5 * (exposures(1:end-1,:,:) + exposures(2:end,:,:));
weightedContributions = bsxfun(@times,intervalWeights,exposureMidpoints);
PE = squeeze(sum(weightedContributions))';
% Compute total portfolio exposure per scenario
totalExp = sum(PE,2);
% Display size of PE and totalExp

```
```

whos PE totalExp

| Name | Size | Bytes | Class |
| :--- | ---: | ---: | :--- | Attributes

```

\section*{Credit Simulation}

A common approach for simulating credit defaults is based on a "one-factor model", sometimes called the "asset-value approach" (see Gupton et al., 1997). This is a very efficient way to simulate correlated defaults.

Each company \(i\) is associated to a random variable \(Y i\), such that
\[
Y_{i}=\beta_{i} Z+\sqrt{1-\beta_{i}^{2}} \epsilon_{i}
\]
where \(Z\) is the "one-factor", a standard normal random variable that represents a systematic credit risk factor whose values affect all companies. The correlation between company \(i\) and the common factor is given by beta_i, the correlation between companies \(i\) and \(j\) is beta_ \(i^{*} b e t a _j\). The idiosyncratic shock epsilon \(_i\) is another standard normal variable that may reduce or increase the effect of the systematic factor, independently of what happens with any other company.

If the default probability for company \(i\) is \(P D i\), a default occurs when
\[
\Phi\left(Y_{i}\right)<P D_{i}
\]
where \(\Phi\) is the cumulative standard normal distribution.
The \(Y i\) variable is sometimes interpreted as asset returns, or sometimes simply referred to as a latent variable.

This model is a Gaussian copula that introduces a correlation between credit defaults. Copulas offer a particular way to introduce correlation, or more generally, co-dependence between two random variables whose co-dependence is unknown.

We use CDS spreads to bootstrap the one-year default probabilities for each counterparty. The CDS quotes come from the swap-portfolio spreadsheet used in the Counterparty Credit Risk and CVA example.
```

% Import CDS market information for each counterparty

```
```

swapFile = 'cva-swap-portfolio.xls';
cds = readtable(swapFile,'Sheet','CDS Spreads');
cdsDates = datenum(cds.Date);
cdsSpreads = table2array(cds(:,2:end));
% Bootstrap default probabilities for each counterparty
zeroData = [RateSpec.EndDates RateSpec.Rates];
defProb = zeros(1, size(cdsSpreads,2));
for i = 1:numel(defProb)
probData = cdsbootstrap(zeroData, [cdsDates cdsSpreads(:,i)], ...
Settle, 'probDates', dates(end));
defProb(i) = probData(2);
end

```

We now simulate the credit scenarios. Because defaults are rare, it is common to simulate a large number of credit scenarios.

The sensitivity parameter beta is set to 0.3 for all counterparties. This value can be calibrated or tuned to explore model sensitivities. See the references for more information.
```

numCreditScen = 100000;
rng('default');
% Z is the single credit factor
Z = randn(numCreditScen,1);
% epsilon is the idiosyncratic factor
epsilon = randn(numCreditScen,numCP);
% beta is the counterparty sensitivity to the credit factor
beta = 0.3 * ones(1,numCP);
% Counterparty latent variables
Y = bsxfun(@times,beta,Z) + bsxfun(@times,sqrt(1 - beta.^2),epsilon);
% Default indicator
isDefault = bsxfun(@lt,normcdf(Y),defProb);

```

\section*{Correlating Exposure and Credit Scenarios}

Now that we have a set of sorted portfolio exposure scenarios and a set of default scenarios, we follow the approach in Garcia Cespedes et al. and use a Gaussian copula to generate correlated exposure-default scenario pairs.

We define a latent variable \(Y e\) that maps into the distribution of simulated exposures. \(Y e\) is defined as
\[
Y_{e}=\rho Z+\sqrt{1-\rho^{2}} \epsilon_{e}
\]
where \(Z\) is the systemic factor computed in the credit simulation, epsilon_e is an independent standard normal variable and rho is interpreted as a market-credit correlation parameter. By construction, \(Y e\) is a standard normal variable correlated with \(Z\) with correlation parameter rho.

The mapping between \(Y e\) and the simulated exposures requires us to order the exposure scenarios in a meaningful way, based on some sortable criterion. The criterion can be any meaningful quantity, for example, it could be an underlying risk factor for the contract values (such as an interest rate), the total portfolio exposure, etc.

In this example, we use the total portfolio exposure (totalExp) as our exposure scenario criterion. Thus we correlate the credit factor with the total exposure. If rho is negative, low values of the credit factor \(Z\) tend to get linked to high values of \(Y e\), hence high exposures. This means negative values of rho introduce WWR.

To implement the mapping between \(Y e\) and the exposure scenarios, we sort the exposure scenarios by the totalExp values. Suppose the number of exposure scenarios is \(S\) (numScenarios). Given \(Y e\), we find the value \(j\) such that
\[
\frac{j-1}{S} \leq \Phi\left(Y_{e}\right)<\frac{j}{S}
\]
and select the scenario \(j\) from the sorted exposure scenarios.
\(Y e\) is correlated to the simulated exposures and \(Z\) is correlated to the simulated defaults. The correlation rho between \(Y e\) and \(Z\) is therefore the correlation link between the exposures and the credit simulations.
```

% Sort the total exposure
[~,totalExpIdx] = sort(totalExp);
% Scenario cut points
cutPoints = 0:1/numScenarios:1;
% epsilonExp is the idiosyncratic factor for the latent variable

```
```

epsilonExp = randn(numCreditScen,1);
% Set a market-credit correlation value
rho = -0.75;
% Latent variable
Ye = rho * Z + sqrt(1 - rho^2) * epsilonExp;
% Find corresponding exposure scenario
binidx = discretize(normcdf(Ye),cutPoints);
scenIdx = totalExpIdx(binidx);
totalExpCorr = totalExp(scenIdx);
PECorr = PE(scenIdx,:);

```

The following plot shows the correlated exposure-credit scenarios for the total portfolio exposure as well as for the first counterparty. Because of the negative correlation, negative values of the credit factor \(Z\) correspond to high exposure levels (wrong-way risk).
```

% We only plot up to 10000 scenarios
numScenPlot = min(10000,numCreditScen);
figure;
scatter(Z(1:numScenPlot),totalExpCorr(1:numScenPlot))
hold on
scatter(Z(1:numScenPlot),PECorr(1:numScenPlot,1))
xlabel('Credit Factor (Z)')
ylabel('Exposure')
title(['Correlated Exposure-Credit Scenarios, \rho = ' num2str(rho)])
legend('Total Exposure','CP1 Exposure')
hold off

```


For positive values of \(r h o\), the relationship between the credit factor and the exposures is reversed (right-way risk).
```

rho = 0.75;
Ye = rho * Z + sqrt(1 - rho^2) * epsilonExp;
binidx = discretize(normcdf(Ye),cutPoints);
scenIdx = totalExpIdx(binidx);
totalExpCorr = totalExp(scenIdx);
figure;
scatter(Z(1:numScenPlot),totalExpCorr(1:numScenPlot))
xlabel('Credit Factor (Z)')
ylabel('Exposure')
title(['Correlated Exposure-Credit Scenarios, \rho = ' num2str(rho)])

```


\section*{Sensitivity to Correlation}

We can explore the sensitivity of the exposures or other risk measures to a range of values for \(r h o\).

For each value of rho, we compute the total losses per credit scenario as well as the expected losses per counterparty. We assume a \(40 \%\) recovery rate.
```

Recovery = 0.4;
rhoValues = -1:0.1:1;
totalLosses = zeros(numCreditScen,numel(rhoValues));
expectedLosses = zeros(numCP, numel(rhoValues));

```
```

fprintf(' Expected Losses\n');
fprintf(' Rho CP1 CP2 CP3 CP4 CP5\n');

```

```

for i = 1:numel(rhoValues)
rho = rhoValues(i);
% Latent variable
Ye = rho * Z + sqrt(1 - rho^2) * epsilonExp;
% Find corresponding exposure scenario
[~,binidx] = histc(normcdf(Ye),cutPoints);
scenIdx = totalExpIdx(binidx);
simulatedExposures = PE(scenIdx,:);
% Compute actual losses based on exposures and default events
losses = isDefault .* simulatedExposures * (1-Recovery);
totalLosses(:,i) = sum(losses,2);
% We compute the expected losses per counterparty
expectedLosses(:,i) = mean(losses)';
% Display expected loss
fprintf('% .1f',rho);
fprintf('%9.2f',expectedLosses(:,i));
fprintf('\n');
end
Expected Losses
Rho CP1 CP2 CP3 CP4 CP5

-1.0	604.10	260.44	194.70	1234.17	925.95
-0.9	583.67	250.45	189.02	1158.65	897.91
-0.8	560.45	245.19	183.23	1107.56	865.33
-0.7	541.08	235.86	177.16	1041.39	835.12
-0.6	521.89	228.78	170.49	991.70	803.22
-0.5	502.68	217.30	165.25	926.92	774.27
-0.4	487.15	211.29	160.80	881.03	746.15
-0.3	471.17	203.55	154.79	828.90	715.63
-0.2	450.91	197.53	149.33	781.81	688.13
-0.1	433.87	189.75	144.37	744.00	658.19
0.0	419.20	181.25	138.76	693.26	630.38

```
\begin{tabular}{rrrrrr}
0.1 & 399.36 & 174.41 & 134.83 & 650.66 & 605.89 \\
0.2 & 385.21 & 169.86 & 130.93 & 617.91 & 579.01 \\
0.3 & 371.21 & 164.19 & 124.62 & 565.78 & 552.83 \\
0.4 & 355.57 & 158.14 & 119.92 & 530.79 & 530.19 \\
0.5 & 342.58 & 152.10 & 116.38 & 496.27 & 508.86 \\
0.6 & 324.73 & 145.42 & 111.90 & 466.57 & 485.05 \\
0.7 & 319.18 & 140.76 & 108.14 & 429.48 & 465.84 \\
0.8 & 303.71 & 136.13 & 103.95 & 405.88 & 446.36 \\
0.9 & 290.36 & 131.54 & 100.20 & 381.27 & 422.79 \\
1.0 & 278.89 & 126.77 & 95.77 & 358.71 & 405.40
\end{tabular}

We can visualize the sensitivity of the Economic Capital (EC) to the market-credit correlation parameter. We define EC as the difference between a percentile \(q\) of the distribution of losses, minus the expected loss.

Negative values of rho result in higher capital requirements because of WWR.
```

pct = 99;
ec = prctile(totalLosses,pct) - mean(totalLosses);
figure;
plot(rhoValues,ec)
title('Economic Capital (99%) versus \rho')
xlabel('Rho');
ylabel('Economic Capital');

```


Final Remarks
This example implements a copula-based approach to WWR, following Garcia Cespedes et al. The methodology can efficiently reuse existing exposures and credit simulations, and the sensitivity to the market-credit correlation parameter can be efficiently computed and conveniently visualized for all correlation values.

The single-parameter copula approach presented here can be extended for a more thorough exploration of the WWR of a portfolio. For example, different types of copulas can be applied, and different criteria can be used to sort the exposure scenarios. Other extensions include simulating multiple systemic credit risk variables (a multi-factor model), or switching from a 1-year to a multi-period framework to calculate measures such as credit value adjustment (CVA), as in Rosen and Saunders (see References).

\section*{References}

1 Garcia Cespedes, J. C., "Effective Modeling of Wrong-Way Risk, Counterparty Credit Risk Capital, and Alpha in Basel II," The Journal of Risk Model Validation, Volume 4 / Number 1, pp. 71-98, Spring 2010.
2 Gupton, G., C. Finger, and M. Bathia, CreditMetrics \({ }^{\mathrm{TM}}\) - Technical Document, J.P. Morgan, New York, 1997.

3 Rosen, D., and D. Saunders, "CVA the Wrong Way," Journal of Risk Management in Financial Institutions, Vol. 5, No. 3, pp. 252-272, 2012.

\section*{See Also}
cdsbootstrap | cdsprice | cdsrpv01 | cdsspread

\section*{Related Examples}
- "First-to-Default Swaps" on page 8-25
- "Credit Default Swap Option" on page 8-37

\section*{External Websites}
- Pricing and Valuation of Credit Default Swaps (4 min 22 sec)

\section*{Interest-Rate Curve Objects}
- "Interest-Rate Curve Objects and Workflow" on page 9-2
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Creating an IRDataCurve Object" on page 9-6
- "Bootstrapping a Swap Curve" on page 9-13
- "Dual Curve Bootstrapping" on page 9-16
- "Creating an IRFunctionCurve Object" on page 9-21
- "Fitting Interest Rate Curve Functions" on page 9-32
- "Converting an IRDataCurve or IRFunctionCurve Object" on page 9-40

\section*{Interest-Rate Curve Objects and Workflow}

\author{
In this section... \\ "Class Structure" on page 9-2 \\ "Workflow Using Interest-Rate Curve Objects" on page 9-3
}

\section*{Class Structure}

Financial Instruments Toolbox class structure supports interest-rate curve objects. The class structure supports five classes.

\section*{Class Structure}
\begin{tabular}{|l|l|}
\hline Class Name & Description \\
\hline "@IRCurve" on page A-4 & \begin{tabular}{l}
Base abstract class for interest-rate curves. IRCurve \\
is an abstract class; you cannot create instances of \\
it directly. You can create IRFunctionCurve and \\
IRDataCurve objects that are derived from this class.
\end{tabular} \\
\hline \begin{tabular}{l}
"@IRDataCurve" on page \\
A-7
\end{tabular} & \begin{tabular}{l}
Creates a representation of an interest-rate curve with \\
dates and data. IRDataCurve is constructed directly \\
by specifying dates and corresponding interest rates or \\
discount factors, or you can bootstrap an IRDataCurve \\
object from market data.
\end{tabular} \\
\hline \begin{tabular}{l}
"@IRFunctionCurve" on page
\end{tabular} & \begin{tabular}{l}
Creates a representation of an interest-rate curve with \\
a function. IRFunctionCurve is constructed directly by \\
specifying a function handle, or you can fit a function to \\
market data using methods of the IRFunctionCurve \\
object.
\end{tabular} \\
\hline "@IRBootstrapOptions" on & \begin{tabular}{l}
The IRBootstrapOptions object lets you specify \\
options relating to the bootstrapping of an IRDataCurve \\
object.
\end{tabular} \\
\hline "@ge A-2 & \begin{tabular}{l}
The IRFitOptions object lets you specify options \\
relating to the fitting process for an IRFunctionCurve \\
object.
\end{tabular} \\
\hline A-11 &
\end{tabular}

\section*{Workflow Using Interest-Rate Curve Objects}

The supported workflow model for using interest-rate curve objects is:
1 Create an interest-rate curve based on an IRDataCurve object or an IRFunctionCurve object.
- To create an IRDataCurve object:
- Use vectors of dates and data with interpolation methods.
- Use bootstrapping based on market instruments.

For more information on creating an IRDataCurve object, see "Creating an IRDataCurve Object" on page 9-6.
- To create an IRFunctionCurve object:
- Specify a function handle.
- Fit a function using the Nelson-Siegel model, Svensson model, or smoothing spline model.
- Fit a custom function.

2 Use methods of the IRDataCurve or IRFunctionCurve objects to extract forward, zero, discount factor, or par yield curves for the interest-rate curve object.

3 Convert an interest-rate curve from an IRDataCurve or IRFunctionCurve object to a RateSpec structure. This RateSpec structure is identical to the RateSpec produced by the Financial Instruments Toolbox function intenvset. Using the RateSpec for an interest-rate curve object, you can then use Financial Instruments Toolbox functions to model an interest-rate structure and price.

\section*{See Also}

IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

\section*{Related Examples}
- "Creating Interest-Rate Curve Objects" on page 9-4

\section*{Creating Interest-Rate Curve Objects}

Depending on your data and purpose for analysis, you can create an interest-rate curve object by using an IRDataCurve or IRFunctionCurve object.

To create an IRDataCurve object, you can:
- Use the IRDataCurve constructor using vector of dates and data with interpolation methods.
- Use the IRDataCurve method bootstrap using market instruments.

For more information on creating an IRDataCurve object, see "Creating an IRDataCurve Object" on page 9-6.

Using an IRDataCurve object, you can use the following methods to determine:
- Forward rate curve - getForwardRates
- Zero rate curve - getZeroRates
- Discount rate curve - getDiscountFactors
- Par yield curve - getParYields

Alternatively, to create an IRFunctionCurve object, you can:
- Use the IRFunctionCurve constructor and directly specify a function handle.
- Use IRFunctionCurve methods:
- fitNelsonSiegel fits a "Fitting IRFunctionCurve Object Using Nelson-Siegel Method" on page 9-21 to market data for bonds.
- fitSvensson fits a "Fitting IRFunctionCurve Object Using Svensson Method" on page 9-23 to market data for bonds.
- fitSmoothingSpline fits a "Fitting IRFunctionCurve Object Using Smoothing Spline Method" on page 9-25 function to market data for bonds.
- fitFunction custom fits an interest-rate curve object to market data for bonds.

Using an IRFunctionCurve object, you can use the following method to determine:
- Forward rate curve - getForwardRates
- Zero rate curve - getZeroRates
- Discount rate curve - getDiscountFactors
- Par yield curve - getParYields

In addition, you can convert an IRDataCurve or IRFunctionCurve to a RateSpec structure. For more information, see "Converting an IRDataCurve or IRFunctionCurve Object" on page 9-40.

\section*{See Also}

IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

\section*{Related Examples}
- "Creating an IRDataCurve Object" on page 9-6

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{Creating an IRDataCurve Object}

To create an IRDataCurve object, see the following options:
\begin{tabular}{|l|}
\hline In this section... \\
\hline "IRDataCurve Constructor with Dates and Data" on page 9-6 \\
"IRDataCurve Bootstrapping Based on Market Instruments" on page 9-7
\end{tabular}

\section*{IRDataCurve Constructor with Dates and Data}

Use the IRDataCurve constructor with vectors of dates and data to create an interestrate curve object. When constructing the IRDataCurve object, you can also use optional inputs to define how the interest-rate curve is constructed from the dates and data.

\section*{Example}

In this example, you create the vectors for Dates and Data for an interest-rate curve:
```

Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

```

Use the IRDataCurve constructor to build interest-rate objects based on the constant and pchip interpolation methods:
```

irdc_const = IRDataCurve('Forward',today,Dates,Data,'InterpMethod','constant');
irdc_pchip = IRDataCurve('Forward',today,Dates,Data,'InterpMethod','pchip');

```

Plot the forward and zero rate curves for the two IRDataCurve objects based on constant and pchip interpolation methods:
```

PlottingDates = daysadd(today, 180:10:360*30,1);
plot(PlottingDates, getForwardRates(irdc_const, PlottingDates),'b')
hold on
plot(PlottingDates, getForwardRates(irdc_pchip, PlottingDates),'r')
plot(PlottingDates, getZeroRates(irdc_const, PlottingDates),'g')
plot(PlottingDates, getZeroRates(irdc_pchip, PlottingDates),'yellow')
legend({'Constant Forward Rates','PCHIP Forward Rates','Constant Zero Rates',...
'PCHIP Zero Rates'},'location','SouthEast')
title('Interpolation methods for IRDataCurve objects')
datetick

```

The plot demonstrates the relationship of the forward and zero rate curves.

\section*{IRDataCurve Bootstrapping Based on Market Instruments}

Use the bootstrapping method, based on market instruments, to create an interestrate curve object. When bootstrapping, you also have the option to define a range of interpolation methods (linear, spline, constant, and pchip).

\section*{Example 1}

In this example, you bootstrap a swap curve from deposits, Eurodollar Futures and swaps. The input market data for this example is hard-coded and specified as two cell arrays of data; one cell array indicates the type of instrument and the other contains the Settle, Maturity values and a market quote for the instrument. For deposits and swaps, the quote is a rate; for the EuroDollar futures, the quote is a price. Although bonds are not used in this example, a bond would also be quoted with a price.
```

InstrumentTypes = {'Deposit';'Deposit';'Deposit';'Deposit';'Deposit'; ...
'Futures';'Futures'; ...
'Futures';'Futures';'Futures'; ...
Futures';'Futures';'Futures'; ...
'Futures';'Futures';'Futures'; ...
'Futures';'Futures';'Futures'; ...
'Futures';'Futures';'Futures'; ...
'Swap';'Swap';'Swap';'Swap';'Swap';'Swap';'Swap'};

```
```

Instruments = [datenum('08/10/2007'),datenum('08/17/2007'),.0532063; ...
datenum('08/10/2007'), datenum('08/24/2007'),.0532000;
datenum('08/10/2007'), datenum('09/17/2007'),.0532000; ..
datenum('08/10/2007'), datenum('10/17/2007'),.0534000; ...
datenum('08/10/2007'), datenum('11/17/2007'),.0535866; ...
datenum('08/08/2007'), datenum('19-Dec-2007'),9485; ...
datenum('08/08/2007'), datenum('19-Mar-2008'),9502; ...
datenum('08/08/2007'), datenum('18-Jun-2008'),9509.5; ...
datenum('08/08/2007'), datenum('17-Sep-2008'),9509; ...
datenum('08/08/2007'), datenum('17-Dec-2008'),9505.5; ...
datenum('08/08/2007'), datenum('18-Mar-2009'),9501; ...
datenum('08/08/2007'), datenum('17-Jun-2009'),9494.5; ...
datenum('08/08/2007'), datenum('16-Sep-2009'),9489; ...
datenum('08/08/2007'), datenum('16-Dec-2009'),9481.5; ...
datenum('08/08/2007'), datenum('17-Mar-2010'),9478; ...
datenum('08/08/2007'), datenum('16-Jun-2010'),9474; ...
datenum('08/08/2007'), datenum('15-Sep-2010'),9469.5; ...
datenum('08/08/2007'), datenum('15-Dec-2010'),9464.5; ...
datenum('08/08/2007'), datenum('16-Mar-2011'),9462.5; ...
datenum('08/08/2007'), datenum('15-Jun-2011'),9456.5; ...
datenum('08/08/2007'), datenum('21-Sep-2011'),9454; ...
datenum('08/08/2007'), datenum('21-Dec-2011'),9449.5; ...
datenum('08/08/2007'), datenum('08/08/2014'),.0530; ...
datenum('08/08/2007'), datenum('08/08/2017'),.0545; ...
datenum('08/08/2007'), datenum('08/08/2019'),.0551; ...
datenum('08/08/2007'), datenum('08/08/2022'),.0559; ..
datenum('08/08/2007'), datenum('08/08/2027'),.0565; ...
datenum('08/08/2007'), datenum('08/08/2032'),.0566; ...
datenum('08/08/2007'), datenum('08/08/2037'),.0566];

```

The bootstrap method is called as a static method of the "@IRDataCurve" on page A-7 class. Inputs to this method include the curve Type (zero or forward), Settle date, InstrumentTypes, and Instrument data. The bootstrap method also supports optional arguments, including an interpolation method, compounding, basis, and an options structure for bootstrapping. For example, you are passing in an "@IRBootstrapOptions" on page A-2 object which includes information for the ConvexityAdjustment to forward rates.

\section*{IRsigma = .01;}

CurveSettle = datenum('08/10/2007');
bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
InstrumentTypes, Instruments,'InterpMethod','pchip',...
'Compounding', -1, 'IRBootstrapOptions',...
IRBootstrapOptions('ConvexityAdjustment', @(t) .5*IRsigma^2.*t.^2))
bootModel =
IRDataCurve
Type: Forward
Settle: 733264 (10-Aug-2007)
```

Compounding: -1
Basis: O (actual/actual)
InterpMethod: pchip
Dates: [29x1 double]
Data: [29x1 double]

```

The bootstrap method uses an Optimization Toolbox function to solve for any bootstrapped rates.

Plot the forward and zero curves:
```

PlottingDates = (CurveSettle+20:30:CurveSettle+365*25)';
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
BootstrappedForwardRates = getForwardRates(bootModel, PlottingDates);
BootstrappedZeroRates = getZeroRates(bootModel, PlottingDates);
figure
hold on
plot(TimeToMaturity,BootstrappedForwardRates,'r')
plot(TimeToMaturity,BootstrappedZeroRates,'g')
title('Bootstrapped Curve')
xlabel('Time')
legend({'Forward', 'Zero'})

```

The plot demonstrates the forward and zero rate curves for the market data.

\section*{Example 2}

In this example, you bootstrap a swap curve from deposits, Eurodollar futures, and swaps. The input market data for this example is hard-coded and specified as two cell arrays of data; one cell array indicates the type of instrument and the other cell array contains the Settle, Maturity values and a market quote for the instrument. This example of bootstrapping also demonstrates the use of an InstrumentBasis for each Instrument type:
```

InstrumentTypes = {'Deposit';'Deposit';...
'Futures';'Futures';'Futures';'Futures';'Futures';'Futures';...
'Swap';'Swap';'Swap';'Swap';};
Instruments = [datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...
datenum('08/10/2007'), datenum('11/17/2007'),.0535866; ...
datenum('08/08/2007'), datenum('19-Dec-2007'),9485; ...
datenum('08/08/2007'), datenum('19-Mar-2008'),9502; ...
datenum('08/08/2007'), datenum('18-Jun-2008'),9509.5; ...
datenum('08/08/2007'), datenum('17-Sep-2008'),9509; ...
datenum('08/08/2007'), datenum('17-Dec-2008'),9505.5; ...
datenum('08/08/2007'), datenum('18-Mar-2009'),9501; ...
datenum('08/08/2007'), datenum('08/08/2014'),.0530; ...
datenum('08/08/2007'), datenum('08/08/2019'),.0551; ...
datenum('08/08/2007'), datenum('08/08/2027'),.0565; ...
datenum('08/08/2007'), datenum('08/08/2037'),.0566];
CurveSettle = datenum('08/10/2007');

```

The bootstrap method is called as a static method of the "@IRDataCurve" on page A-7 class. Inputs to this method include the curve Type (zero or forward), Settle date, InstrumentTypes, and Instrument data. The bootstrap method also supports optional arguments, including an interpolation method, compounding, basis, and an options structure for bootstrapping. In this example, you are passing an additional Basis value for each instrument type:
```

bootModel=IRDataCurve.bootstrap('Forward',CurveSettle,InstrumentTypes, ...
bootModel =
IRDataCurve
Type: Forward
Settle: 733264 (10-Aug-2007)
Compounding: 2
Basis: 0 (actual/actual)
InterpMethod: pchip
Dates: [12x1 double]

```
Instruments,'InterpMethod','pchip','InstrumentBasis', [repmat (2, 8, 1); repmat (0,4,1)])

\section*{Data: [12x1 double]}

The bootstrap method uses an Optimization Toolbox function to solve for any bootstrapped rates.

Plot the par yields curve using the getParYields method:
```

PlottingDates = (datenum('08/11/2007'):30:CurveSettle+365*25)';
plot(PlottingDates, getParYields(bootModel, PlottingDates),'r')
datetick

```

The plot demonstrates the par yields curve for the market data.

\section*{See Also}

IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

\section*{Related Examples}
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Bootstrapping a Swap Curve" on page 9-13
- "Dual Curve Bootstrapping" on page 9-16
- "Creating an IRFunctionCurve Object" on page 9-21

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{External Websites}
- Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
- Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30 min 00 sec)

\section*{Bootstrapping a Swap Curve}

This example shows how to bootstrap an interest-rate curve, often referred to as a swap curve, using the IRDataCurve object. The static bootstrap method takes as inputs a cell array of market instruments (which can be deposits, interest rate futures, swaps, and bonds) and bootstraps an interest rate curve of either the forward or the zero curve. It is also possible to specify multiple interpolation methods, including piecewise constant, linear, and Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

\section*{Obtain Data}

A curve is bootstrapped from market data. In this example, we will bootstrap a swap curve from deposits, Eurodollar Futures and swaps.

For this example, we have hard-coded the input market data, which is simply specified as 2 cell arrays of data, one which indicates the type of instrument and a second cell array containing the Settle, Maturity, and Market Quote for the instrument. For deposits and swaps, the quote is a rate and for the EuroDollar Futures, the quote is a price. Although bonds are not used in this example, a bond would be quoted with a price.
```

InstrumentTypes = {'Deposit';'Deposit';'Deposit';'Deposit';'Deposit'; ...
'Futures';'Futures'; ...
'Futures';'Futures';'Futures'; ...
'Futures';'Futures';'Futures'; ...
'Futures';'Futures';'Futures'; ...
'Futures';'Futures';'Futures'; ...
'Futures';'Futures';'Futures'; ...
'Swap';'Swap';'Swap';'Swap';'Swap';'Swap';'Swap'};
Instruments = [datenum('08/10/2007'), datenum('08/17/2007'),.0532063; ...
datenum('08/10/2007'), datenum('08/24/2007') , 0532000;
datenum('08/10/2007'), datenum('09/17/2007'),.0532000; ...
datenum('08/10/2007'), datenum('10/17/2007'),.0534000; ...
datenum('08/10/2007'), datenum('11/17/2007'),.0535866; ...
datenum('08/08/2007'), datenum('19-Dec-2007'),9485; ...
datenum('08/08/2007'), datenum('19-Mar-2008'),9502; ...
datenum('08/08/2007'), datenum('18-Jun-2008'),9509.5; ...
datenum('08/08/2007'), datenum('17-Sep-2008'), 9509; ...
datenum('08/08/2007'), datenum('17-Dec-2008'),9505.5; ...
datenum('08/08/2007'), datenum('18-Mar-2009'), 9501; ...
datenum('08/08/2007'), datenum('17-Jun-2009'),9494.5; ...
datenum('08/08/2007'), datenum('16-Sep-2009'),9489; ...
datenum('08/08/2007'), datenum('16-Dec-2009'),9481.5; ...

```
```

datenum('08/08/2007'), datenum('17-Mar-2010'),9478; ...
datenum('08/08/2007'), datenum('16-Jun-2010'),9474; ...
datenum('08/08/2007'), datenum('15-Sep-2010'),9469.5; ...
datenum('08/08/2007'), datenum('15-Dec-2010'),9464.5; ...
datenum('08/08/2007'), datenum('16-Mar-2011'),9462.5; ...
datenum('08/08/2007'), datenum('15-Jun-2011'),9456.5; ...
datenum('08/08/2007'), datenum('21-Sep-2011'),9454; ...
datenum('08/08/2007'), datenum('21-Dec-2011'),9449.5; ....
datenum('08/08/2007'), datenum('08/08/2014'),.0530; ...
datenum('08/08/2007'), datenum('08/08/2017'),.0545; ...
datenum('08/08/2007'), datenum('08/08/2019'),.0551; ...
datenum('08/08/2007'), datenum('08/08/2022'),.0559; ...
datenum('08/08/2007'), datenum('08/08/2027'),.0565; ...
datenum('08/08/2007'), datenum('08/08/2032'),.0566; ...
datenum('08/08/2007'), datenum('08/08/2037'),.0566];

```

\section*{Construct the Curve via Bootstrapping}

The bootstrap method is called as a static method of the IRDataCurve class. Inputs to this method include the curve type (Zero or Forward), settle date, instrument types, instrument data and optional arguments including an interpolation method, compounding and an options structure for bootstrapping. Note that in this example, we are passing in an IRBootstrapOptions object which includes information for the convexity adjustment to forward rates.
```

IRsigma = .01;
CurveSettle = datenum('08/10/2007');
bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
InstrumentTypes, Instruments,'InterpMethod','pchip',...
'Compounding',-1,'IRBootstrapOptions',...
IRBootstrapOptions('ConvexityAdjustment',@(t) .5*IRsigma^2.*t.^2));

```

\section*{Plot}

We can now plot both the forward and zero curves
```

PlottingDates = (CurveSettle+20:30:CurveSettle+365*25)';
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
BootstrappedForwardRates = bootModel.getForwardRates(PlottingDates);
BootstrappedZeroRates = bootModel.getZeroRates(PlottingDates);

```
figure
hold on
plot(TimeToMaturity, BootstrappedForwardRates, 'r')
```

plot(TimeToMaturity,BootstrappedZeroRates,'g')
title('Bootstrapped Curve')
xlabel('Time')
legend({'Forward','Zero'})

```

Bootstrapped Curve

\section*{Bibliography}

This example draws from the following papers and journal articles:
[1] Hagan, P., West, G. (2006), "Interpolation Methods for Curve Construction", Applied Mathematical Finance, Vol 13, No. 2
[2] Ron, Uri(2000), "A Practical Guide to Swap Curve Construction", Working Papers 00-17, Bank of Canada.

\section*{Dual Curve Bootstrapping}

This example shows how to bootstrap a forward curve using a different curve for discounting.

\section*{Define the Data}

Data is needed for both the forward and discount curve. For this particular example, it is assumed that the data is provided for EONIA (the discount curve) and EURIBOR (the forward curve). However, this approach can be used in any case where the curve to be built is different than the curve used for discounting cash flows. While the data in this example is hardcoded, it could also be imported into MATLAB with Datafeed Toolbox \({ }^{\text {TM }}\) or Database Toolbox \({ }^{\mathrm{TM}}\).
```

Settle = datenum('20-Aug-2013');
% Deposit data
EONIADepositRates = [.0007 .00067]';
EONIADepositMat = datenum({'3-Sep-2013', '20-Sep-2013'});
EONIADepositBasis = 2; % act/360
EONIADepositPeriod = 0;
% FRA
EONIAFRARates = [.00025 .0003 .00043 .00054]';
EONIAFRAStartDate = datenum({'11-Sep-2013', '9-Oct-2013', '13-Nov-2013', '11-Dec-2013'});
EONIAFRAEndDate = datenum({'9-0ct-2013','13-Nov-2013','11-Dec-2013','11-Jan-2014'});
EONIAFRABasis = 2; % act/360
EONIAFRAPeriod = 0;
% Swap data
EONIASwapRates =[[.0003.001 .002 .004 .008 .012 .0155 .018 .0193 .02]';
EONIASwapMat = datemnth(Settle,12*[2:5 7 10 15 20 25 30]');
EONIASwapBasis = 5; % 30/360 ISDA
EONIASwapPeriod = 1;
% EURIBOR Deposit data
EURIBORDepositRates = [.0022 .0021 .002 .0019]';
EURIBORDepositMat = datenum({'3-Sep-2013','20-Sep-2013','21-0ct-2013','20-Nov-2013'});
EURIBORDepositBasis = 2; % act/360
EURIBORDepositPeriod = 0;
% EURIBOR Futures
EURIBORFRARates = [9982 9978 9976 9975]';
EURIBORFRAStartDate = datenum({'18-Dec-2013', '19-Mar-2014', '18-Jun-2014', '17-Sep-2014'});
EURIBORFRAEndDate = datenum({'18-Mar-2014',''19-Jun-2014', '18-Sep-2014', '17-Dec-2014'});
EURIBORFRABasis = 2; % act/360
EURIBORFRAPeriod = 4;
% EURIBOR Swap data
EURIBORSwapRates = [l.0026 .0044 .0062 .0082 .012 .015 .018 .02 .021 .0215]';
EURIBORSwapMat = datemnth(Settle,12*[2:5 7 10 15 20 25 30]');
EURIBORSwapBasis = 5; % 30/360 ISDA
EURIBORSwapPeriod = 1;

```

\section*{Construct a EONIA Discount Curve}

Build the EONIA curve. This is essentially the same as the single curve case.
```

CurveType = 'zero';
CurveCompounding = 1;
CurveBasis = 3; % act/365
nEONIADeposits = length(EONIADepositMat);
nEONIAFRA = length(EONIAFRAEndDate);
nEONIASwaps = length(EONIASwapMat);
EONIAInstrumentTypes = [repmat({'deposit'},nEONIADeposits,1);
repmat({'fra'},nEONIAFRA,1);repmat({'swap'},nEONIASwaps,1)];
EONIAPeriod = [repmat(EONIADepositPeriod,nEONIADeposits,1);
repmat(EONIAFRAPeriod,nEONIAFRA,1);repmat(EONIASwapPeriod,nEONIASwaps,1)];
EONIABasis = [repmat(EONIADepositBasis,nEONIADeposits,1);
repmat(EONIAFRABasis,nEONIAFRA,1);repmat(EONIASwapBasis,nEONIASwaps,1)];
EONIAInstrumentData = [[repmat(Settle,[nEONIADeposits 1]);EONIAFRAStartDate;repmat(Settle,[nEONIASwaps 1])] ...
[EONIADepositMat;EONIAFRAEndDate;EONIASwapMat] ...
[EONIADepositRates;EONIAFRARates;EONIASwapRates]];
EONIACurve = IRDataCurve.bootstrap(CurveType,Settle,EONIAInstrumentTypes,...
EONIAInstrumentData,'Compounding',CurveCompounding,'Basis',CurveBasis, ...
'InstrumentPeriod',EONIAPeriod,'InstrumentBasis', EONIABasis)
EONIACurve =
Type: zero
Settle: 735466 (20-Aug-2013)
Compounding: 1
Basis: 3 (actual/365)
InterpMethod: linear
Dates: [16x1 double]
Data: [16x1 double]

```

\section*{Construct a EURIBOR Forward Curve}

\section*{The EURIBOR forward curve is built first using a single curve approach.}
```

nEURIBORDeposits = length(EURIBORDepositMat);
nEURIBORFRA = length(EURIBORFRAEndDate);
nEURIBORSwaps = length(EURIBORSwapMat);
EURIBORInstrumentTypes = [repmat({'deposit'},nEURIBORDeposits,1);
repmat({'futures'},nEURIBORFRA,1);repmat({'swap'}, nEURIBORSwaps,1)];
EURIBORPeriod = [repmat(EURIBORDepositPeriod,nEURIBORDeposits,1);
repmat(EURIBORFRAPeriod,nEURIBORFRA,1);repmat(EURIBORSwapPeriod,nEURIBORSwaps,1)];
EURIBORBasis = [repmat(EURIBORDepositBasis,nEURIBORDeposits,1);
repmat(EURIBORFRABasis,nEURIBORFRA,1);repmat(EURIBORSwapBasis,nEURIBORSwaps,1)];

```
```

EURIBORInstrumentData = [repmat(Settle,size(EURIBORInstrumentTypes)) ...
[EURIBORDepositMat;EURIBORFRAEndDate;EURIBORSwapMat] ..
[EURIBORDepositRates;EURIBORFRARates;EURIBORSwapRates]];
EURIBORCurve_Single = IRDataCurve.bootstrap(CurveType,Settle,EURIBORInstrumentTypes,...
EURIBORInstrumentData, 'Compounding',CurveCompounding,'Basis',CurveBasis,...
'InstrumentPeriod', EURIBORPeriod,'InstrumentBasis', EURIBORBasis)
EURIBORCurve_Single =
Type: zero
Settle: 735466 (20-Aug-2013)
Compounding: 1
Basis: 3 (actual/365)
InterpMethod: linear
Dates: [18x1 double]
Data: [18\times1 double]

```

\section*{Build the EURIBOR Curve with the EONIA Curve}

Next, build a curve using the EONIA curve as a discounting curve. To do this, specify the EONIA curve as an optional input argument.
```

EURIBORCurve = IRDataCurve.bootstrap(CurveType,Settle,EURIBORInstrumentTypes,...
EURIBORInstrumentData, 'DiscountCurve', EONIACurve,'Compounding',...
CurveCompounding,'Basis',CurveBasis,'InstrumentPeriod',EURIBORPeriod,...
'InstrumentBasis',EURIBORBasis)
EURIBORCurve =
Type: zero
Settle: 735466 (20-Aug-2013)
Compounding: 1
Basis: 3 (actual/365)
InterpMethod: linear
Dates: [18\times1 double]
Data: [18\times1 double]

```

\section*{Plot the Results}

Plot the results to compare the curves.
```

PlottingDates = (Settle+20:30:Settle+365*30)';
TimeToMaturity = yearfrac(Settle,PlottingDates);
figure
plot(TimeToMaturity, getZeroRates(EONIACurve, PlottingDates),'b')
hold on
plot(TimeToMaturity, getZeroRates(EURIBORCurve_Single, PlottingDates),'r')
plot(TimeToMaturity, getZeroRates(EURIBORCurve, PlottingDates),'g')
title('Comparison of Single Curve and Dual Curve Bootstrapping')
legend({'EONIA','EURIBOR','EURIBOR w/ EONIA Discounting'},'location','southeast')

```


As expected, the difference between the two different EURIBOR curves is small but nontrivial.

\section*{Bibliography}

This example draws from the following papers and journal articles:
[1] Ametrano, F, and Bianchetti, M.,Everything You Always Wanted to Know About Multiple Interest Rate Curve Bootstrapping but Were Afraid to Ask (April 2, 2013), available at: http://ssrn.com/abstract=2219548.
[2] Bianchetti, M., Two Curves, One Price, Risk Magazine, pages 74-80, August 2010.
[3] Fujii, M, Shimada, Y, Takahashi, A.,A Note on Construction of Multiple Swap Curves with and without Collateral (January 2, 2010), CARF Working Paper Series No. CARF-F-154, available at: http://ssrn.com/abstract=1440633.
[4] Mercurio, Fabio, Interest Rates and The Credit Crunch: New Formulas and Market Models (February 5, 2009), Bloomberg Portfolio Research Paper No. 2010-01FRONTIERS.
[5] Nashikkar, A., Understanding OIS Discounting, Barclays Capital Interest Rate Strategy, February 24, 2011.
```

See Also
bootstrap | floatbyzero | getZeroRates | IRDataCurve | swapbyzero

```

\section*{Related Examples}
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Bootstrapping a Swap Curve" on page 9-13

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{External Websites}
- Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
- Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30 min 00 sec)

\section*{Creating an IRFunctionCurve Object}

To create an IRFunctionCurve object, see the following options:
```

In this section...
"Fitting IRFunctionCurve Object Using a Function Handle" on page 9-21
"Fitting IRFunctionCurve Object Using Nelson-Siegel Method" on page 9-21
"Fitting IRFunctionCurve Object Using Svensson Method" on page 9-23
"Fitting IRFunctionCurve Object Using Smoothing Spline Method" on page 9-25
"Using fitFunction to Create Custom Fitting Function" on page 9-28

```

\section*{Fitting IRFunctionCurve Object Using a Function Handle}

You can use the constructor IRFunctionCurve with a MATLAB function handle to define an interest-rate curve. For more information on defining a function handle, see the MATLAB Programming Fundamentals documentation.

\section*{Example}

This example uses a FunctionHandle argument with a value @(t) t.^2 to construct an interest-rate curve:
```

rr = IRFunctionCurve('Zero',today,@(t) t.^2)
rr =
Properties:
FunctionHandle: @(t)t.^2
Type: 'Zero'
Settle: 733600
Compounding: 2
Basis: 0

```

\section*{Fitting IRFunctionCurve Object Using Nelson-Siegel Method}

Use the method, fitNelsonSiegel, for the Nelson-Siegel model that fits the empirical form of the yield curve with a prespecified functional form of the spot rates which is a function of the time to maturity of the bonds.

The Nelson-Siegel model represents a dynamic three-factor model: level, slope, and curvature. However, the Nelson-Siegel factors are unobserved, or latent, which allows for measurement error, and the associated loadings have economic restrictions (forward rates are always positive, and the discount factor approaches zero as maturity increases). For more information, see "Zero-coupon yield curves: technical documentation," BIS Papers, Bank for International Settlements, Number 25, October 2005.

\section*{Example}

This example uses IRFunctionCurve to model the default-free term structure of interest rates in the United Kingdom.

Load the data:
load ukdata20080430
Convert repo rates to be equivalent zero coupon bonds:
RepoCouponRate \(=\operatorname{repmat}(0\), size (RepoRates)) ;
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);
Aggregate the data:
```

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat (2,31,1)];
CurveSettle = datenum('30-Apr-2008');

```

The IRFunctionCurve object provides the capability to fit a Nelson-Siegel curve to observed market data with the fitNelsonSiegel method. The fitting is done by calling the Optimization Toolbox function lsqnonlin. This method has required inputs of Type, Settle, and a matrix of instrument data.
```

NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',CurveSettle,...
Instruments,'Compounding', -1,'InstrumentPeriod',InstrumentPeriod);

```

Plot the Nelson-Siegel interest-rate curve for forward rates:
```

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
NSForwardRates = getForwardRates(NSModel, PlottingDates);

```
```

plot(TimeToMaturity,NSForwardRates)

```
title('Nelson Siegel model of UK instantaneous nominal forward curve')

\section*{Fitting IRFunctionCurve Object Using Svensson Method}

Use the method, fitSvensson, for the Svensson model to improve the flexibility of the curves and the fit for a Nelson-Siegel model. In 1994, Svensson extended Nelson and Siegel's function by adding a further term that allows for a second "hump." The extra precision is achieved at the cost of adding two more parameters, \(\beta 3\) and \(\tau 2\), which have to be estimated.

\section*{Example}

In this example of using the fitSvensson method, an IRFitOptions structure, previously defined using the IRFitOptions constructor, is used. Thus, you must specify FitType, InitialGuess, UpperBound, LowerBound, and the OptOptions optimization parameters for lsqnonlin.

Load the data:

Convert repo rates to be equivalent zero coupon bonds:
RepoCouponRate \(=\) repmat(0,size(RepoRates));
RepoPrice \(=\) bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);
Aggregate the data:
```

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

```

Define OptOptions for the IRFitOptions constructor:
```

OptOptions = optimoptions('lsqnonlin','MaxFunEvals',1000);
fIRFitOptions = IRFitOptions([5.82 -2.55 -. .87 0.45 3.9 0.44],...
'FitType','durationweightedprice','OptOptions',OptOptions,...
'LowerBound',[0 - Inf -Inf -Inf 0 0],'UpperBound',[Inf Inf Inf Inf Inf Inf]);

```

Fit the interest-rate curve using a Svensson model:
```

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',CurveSettle,...
Instruments,'IRFitOptions', fIRFitOptions, 'Compounding',-1,···
'InstrumentPeriod ',InstrumentPeriod)
Local minimum possible.
lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the default value of the function tolerance.
SvenssonModel =
Type: Zero
Settle: 733528 (30-Apr-2008)
Compounding: -1
Basis: O (actual/actual)

```

The status message, output from lsqnonlin, indicates that the optimization to find parameters for the Svensson equation terminated successfully.

Plot the Svensson interest-rate curve for forward rates:
```

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);

```

SvenssonForwardRates = getForwardRates(SvenssonModel, PlottingDates);
plot (TimeToMaturity, SvenssonForwardRates)
title('Svensson model of UK instantaneous nominal forward curve')

\section*{Fitting IRFunctionCurve Object Using Smoothing Spline Method}

Use the method, fitSmoothingSpline, to model the term structure with a spline, specifically, the term structure represents the forward curve with a cubic spline.

Note: You must have a license for Curve Fitting Toolbox software to use the fitSmoothingSpline method.

\section*{Example}

The IRFunctionCurve object is used to fit a smoothing spline representation of the forward curve with a penalty function. Required inputs are Type, Settle, the matrix of Instruments, and Lambdafun, a function handle containing the penalty function

Load the data:

Convert repo rates to be equivalent zero coupon bonds:
```

RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

```

Aggregate the data:
```

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

```

Choose parameters for Lambdafun:
L = 9.2;
S = -1;
mu \(=1\);
Define the Lambdafun penalty function:
```

lambdafun = @(t) exp(L - (L-S)*exp(-t/mu));
t = 0:.1:25;
y = lambdafun(t);
figure
semilogy(t,y);
title('Penalty Function for VRP Approach')
ylabel('Penalty')
xlabel('Time')

```


Use the fitSmoothinSpline method to fit the interest-rate curve and model the Lambdafun penalty function:

VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,...
Instruments, lambdafun, 'Compounding', -1, 'InstrumentPeriod', InstrumentPeriod);
Plot the smoothing spline interest-rate curve for forward rates:
PlottingDates \(=\) CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
VRPForwardRates = getForwardRates(VRPModel, PlottingDates);
plot(TimeToMaturity, VRPForwardRates)
title('Smoothing Spline model of UK instantaneous nominal forward curve')

\section*{Using fitFunction to Create Custom Fitting Function}

When using an IRFunctionCurve object, you can create a custom fitting function with the fitFunction method. To use fitFunction, you must define a FunctionHandle. In addition, you must also use the constructor IRFitOptions to define IRFitOptionsObj to support an InitialGuess for the parameters of the curve function.

\section*{Example}

The following example demonstrates the use of fitFunction with a FunctionHandle and an IRFitOptionsObj:
```

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];

```
CleanPrice \(=[100.1 ; 100.1 ; 100.8 ; 96.6 ; 103.3 ; 96.3]\);
CouponRate \(=\) [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
CurveSettle = datenum('30-Apr-2008');

Define the FunctionHandle:
functionHandle = @(t,theta) polyval(theta,t);
Define the OptOptions for IRFitOptions:
OptOptions = optimoptions('lsqnonlin','display','iter');

\section*{Define fitFunction:}

CustomModel = IRFunctionCurve.fitFunction('Zero', CurveSettle, ...
functionHandle, Instruments, IRFitOptions([.05 . 05 .05],'FitType','price',... 'OptOptions',OptOptions));
\begin{tabular}{|c|c|c|c|c|c|}
\hline Iteration & Func-count & f(x) & Norm of step & First-order optimality & CG-iterations \\
\hline 0 & 4 & 38036.7 & & \(4.92 \mathrm{e}+04\) & \\
\hline 1 & 8 & 38036.7 & 10 & \(4.92 \mathrm{e}+04\) & 0 \\
\hline 2 & 12 & 38036.7 & 2.5 & \(4.92 \mathrm{e}+04\) & 0 \\
\hline 3 & 16 & 38036.7 & 0.625 & \(4.92 \mathrm{e}+04\) & 0 \\
\hline 4 & 20 & 38036.7 & 0.15625 & \(4.92 \mathrm{e}+04\) & 0 \\
\hline 5 & 24 & 30741.5 & 0.0390625 & \(1.72 \mathrm{e}+05\) & 0 \\
\hline 6 & 28 & 30741.5 & 0.078125 & \(1.72 \mathrm{e}+05\) & 0 \\
\hline 7 & 32 & 30741.5 & 0.0195312 & \(1.72 \mathrm{e}+05\) & 0 \\
\hline 8 & 36 & 28713.6 & 0.00488281 & \(2.33 \mathrm{e}+05\) & 0 \\
\hline 9 & 40 & 20323.3 & 0.00976562 & \(9.47 \mathrm{e}+05\) & 0 \\
\hline 10 & 44 & 20323.3 & 0.0195312 & \(9.47 \mathrm{e}+05\) & 0 \\
\hline 11 & 48 & 20323.3 & 0.00488281 & \(9.47 \mathrm{e}+05\) & 0 \\
\hline 12 & 52 & 20323.3 & 0.0012207 & \(9.47 \mathrm{e}+05\) & 0 \\
\hline 13 & 56 & 19698.8 & 0.000305176 & \(1.08 \mathrm{e}+06\) & 0 \\
\hline 14 & 60 & 17493 & 0.000610352 & \(7 \mathrm{e}+06\) & 0 \\
\hline 15 & 64 & 17493 & 0.0012207 & \(7 \mathrm{e}+06\) & 0 \\
\hline 16 & 68 & 17493 & 0.000305176 & \(7 \mathrm{e}+06\) & 0 \\
\hline 17 & 72 & 15455.1 & 7.62939e-05 & \(2.25 \mathrm{e}+07\) & 0 \\
\hline 18 & 76 & 15455.1 & 0.000177499 & \(2.25 \mathrm{e}+07\) & 0 \\
\hline 19 & 80 & 13317.1 & \(3.8147 \mathrm{e}-05\) & \(3.18 \mathrm{e}+07\) & 0 \\
\hline 20 & 84 & 12865.3 & 7.62939e-05 & \(7.83 \mathrm{e}+07\) & 0 \\
\hline 21 & 88 & 11779.8 & 7.62939e-05 & \(7.58 \mathrm{e}+06\) & 0 \\
\hline 22 & 92 & 11747.6 & 0.000152588 & \(1.45 \mathrm{e}+05\) & 0 \\
\hline 23 & 96 & 11720.9 & 0.000305176 & \(2.33 \mathrm{e}+05\) & 0 \\
\hline 24 & 100 & 11667.2 & 0.000610352 & \(1.48 \mathrm{e}+05\) & 0 \\
\hline 25 & 104 & 11558.6 & 0.0012207 & \(3.55 \mathrm{e}+05\) & 0 \\
\hline 26 & 108 & 11335.5 & 0.00244141 & \(1.57 \mathrm{e}+05\) & 0 \\
\hline 27 & 112 & 10863.8 & 0.00488281 & \(6.36 \mathrm{e}+05\) & 0 \\
\hline 28 & 116 & 9797.14 & 0.00976562 & \(2.53 \mathrm{e}+05\) & 0 \\
\hline 29 & 120 & 6882.83 & 0.0195312 & \(9.18 \mathrm{e}+05\) & 0 \\
\hline 30 & 124 & 6882.83 & 0.0373993 & \(9.18 \mathrm{e}+05\) & 0 \\
\hline 31 & 128 & 3218.45 & 0.00934981 & \(1.96 \mathrm{e}+06\) & 0 \\
\hline 32 & 132 & 612.703 & 0.0186996 & \(3.01 \mathrm{e}+06\) & 0 \\
\hline 33 & 136 & 13.0998 & 0.0253882 & \(3.05 \mathrm{e}+06\) & 0 \\
\hline 34 & 140 & 0.0762922 & 0.00154002 & \(5.05 \mathrm{e}+04\) & 0 \\
\hline 35 & 144 & 0.0731652 & 3.61102e-06 & 29.9 & 0 \\
\hline 36 & 148 & 0.0731652 & 6.32335e-08 & 0.063 & 0 \\
\hline
\end{tabular}
lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the default value of the function tolerance.

Plot the custom function that is defined using fitFunction:
```

Yields = bndyield(CleanPrice,CouponRate,Settle(1),Maturity);

```
```

scatter(Maturity,Yields);
PlottingPoints = min(Maturity):30:max(Maturity);
hold on;
plot(PlottingPoints, getParYields(CustomModel, PlottingPoints),'r');
datetick
legend('Market Yields','Fitted Yield Curve')
title('Custom Function fit to Market Data')

```


\section*{See Also}

IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

\section*{Related Examples}
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Bootstrapping a Swap Curve" on page 9-13
- "Dual Curve Bootstrapping" on page 9-16
- "Creating an IRDataCurve Object" on page 9-6
- "Converting an IRDataCurve or IRFunctionCurve Object" on page 9-40
- "Analysis of Inflation Indexed Instruments"
- "Fitting Interest Rate Curve Functions" on page 9-32

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{External Websites}
- Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
- Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30 min 00 sec)

\section*{Fitting Interest Rate Curve Functions}

This example shows how to use objects to model the term structure of interest rates (also referred to as the yield curve). This can be contrasted with modeling the term structure with vectors of dates and data and interpolating between the points (which can currently be done with the function PRBYZERO).

The term structure can refer to at least three different curves: the discount curve, zero curve, or forward curve.

The new object IRFunctionCurve allows the user to model an interest rate curve as a function.

This example will explore using IRFunctionCurve to model the default-free term structure of interest rates in the United Kingdom. Three different forms for the term structure will be implemented, which will be discussed in more detail later:
- Nelson-Siegel
- Svensson
- Smoothing Cubic Spline with a so-called Variable Roughness Penalty (VRP)

\section*{Choosing the Data}

The first question in modeling the yield curve is what data should be used. To model a default-free yield curve, default-free, option-free market instruments must be used. The most significant component of the data set will be UK Government Bonds (known as Gilts). Historical data was retrieved from the following site:
http://www.dmo.gov.uk
Repo data will be used to construct the short end of the curve. Repo data was retrieved from the following site:
http://www.bba.org.uk
Note also that the data must be specified as a matrix where the columns are Settle, Maturity, CleanPrice and CouponRate -- and that instruments must be bonds or synthetically converted to bonds.

Market data for a close date of April 30, 2008, has been downloaded and saved to the following data file, which can be loaded into MATLAB® with the following command
```

% Load the data
load ukdata20080430
% Convert repo rates to be equivalent zero coupon bonds
RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);
% Aggregate the data
Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

```

\section*{Fit Nelson-Siegel Model to Market Data}

The Nelson-Siegel model proposes that the instantaneous forward curve can be modeled with the following:
\[
f=\beta_{0}+\beta_{1} e^{\frac{-m}{\tau}}+\beta_{2} e^{\frac{-m}{\tau}} \frac{m}{\tau}
\]

This can be integrated to derive an equation for the zero curve (see [6] for more information on the equations and the derivation):
\[
s=\beta_{0}+\left(\beta_{1}+\beta_{2}\right) \frac{\tau}{m}\left(1-e^{\frac{-m}{\tau}}\right)-\beta_{2} e^{\frac{m}{\tau}}
\]

See [1] for more information.
The IRFunctionCurve object provides the capability to fit a Nelson Siegel curve to observed market data with the FITNELSONSIEGEL method. The fitting is done by calling the Optimization Toolbox \({ }^{\mathrm{TM}}\) function LSQNONLIN.

This method has required inputs: Curve Type, Curve Settle, and a matrix of instrument data.

Optional input arguments, specified in parameter value pairs, are:
- IRFitOptions structure: Provides capability to choose which quantity to be minimized (price, yield, or duration weighted price) and other optimization parameters (e.g.: upper and lower bounds for parameters)
- Curve Compounding and Basis (Day Count Convention)
- Additional instrument parameters, Period, Basis, FirstCouponDate, etc.
```

NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',CurveSettle,...

```
 Instruments, 'InstrumentPeriod', InstrumentPeriod);

\section*{Fit Svensson Model}

A very similar model to the Nelson-Siegel is the Svensson model, which adds two additional parameters to account for greater flexibility in the term structure. This model proposes that the forward rate can be modeled with the following form:
\[
f=\beta_{0}+\beta_{1} e^{\frac{-m}{\tau_{1}}}+\beta_{2} e^{\frac{-m}{\tau_{1}}} \frac{m}{\tau_{1}}+\beta_{3} e^{\frac{-m}{\tau_{2}}} \frac{m}{\tau_{2}}
\]

As above, this can be integrated to derive an equation for the zero curve:
\[
s=\beta_{0}+\beta_{1}\left(1-e^{\frac{-m}{\tau_{1}}}\right)\left(-\frac{\tau_{1}}{m}\right)+\beta_{2}\left(\left(1-e^{\frac{-m}{\tau_{1}}}\right) \frac{\tau_{1}}{m}-e^{\frac{m}{\tau_{1}}}\right)+\beta_{3}\left(\left(1-e^{\frac{-m}{\tau_{2}}}\right) \frac{\tau_{2}}{m}-e^{\frac{m}{\tau_{2}}}\right)
\]

See [2] for more information.
Fitting the parameters to this model proceeds in a similar fashion to the Nelson-Siegel model.
```

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',CurveSettle,...
Instruments,'InstrumentPeriod', InstrumentPeriod);

```

\section*{Fit Smoothing Spline}

The term structure can also be modeled with a spline -- specifically, one way to model the term structure is by representing the forward curve with a cubic spline. To ensure that the spline is sufficiently smooth, a penalty is imposed relating to the curvature (second derivative) of the spline:
\[
\sum_{i=1}^{N}\left[\frac{P_{i}-\hat{P}_{i}(f)}{D_{i}}\right]^{2}+\int_{0}^{M} \lambda_{t}(m)\left[f^{\prime \prime}(m)\right]^{2} d m
\]
where the first term is the difference between the observed price P and the predicted price, P_hat, (weighted by the bond's duration, D) summed over all bonds in our data set and the second term is the penalty term (where lambda is a penalty function and \(f\) is the spline)

See [3], [4], [5] below.
There have been different proposals for the specification of the penalty function lambda. One approach, advocated by [4], and currently used by the UK Debt Management Office, is a penalty function of the following form:
\[
\log (\lambda(m))=L-(L-S) e^{\frac{-m}{\mu}}
\]

The parameters L, S, and mu are typically estimated from historical data.
The IRFunctionCurve object can be used to fit a smoothing spline representation of the forward curve with a penalty function.

Required inputs, like for methods above, are a Curve Type, Curve Settle, Instrument matrix, and new for this method, a function handle containing the penalty function

Optional parameters are similar to FITNELSONSIEGEL and FITSVENSSON
```

% Parameters chosen to be roughly similar to [4] below.
L = 9.2;
S = -1;
mu = 1;
lambdafun = @(t) exp(L - (L-S)*exp(-t/mu)); % Construct penalty function
t = 0:.1:25; % Construct data to plot penalty function
y = lambdafun(t);
figure
semilogy(t,y);
title('Penalty Function for VRP Approach')
ylabel('Penalty')
xlabel('Time')
VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,...
Instruments,lambdafun,'Compounding',-1,···.
'InstrumentPeriod',InstrumentPeriod);

```


\section*{Use Fitted Curves and Plot Results}

Once a curve has been constructed, methods can be called to extract the Forward and Zero Rates and the Discount Factors. This curve can also be converted into a RateSpec structure, to be used with functions in the Financial Instruments Toolbox \({ }^{\text {TM }}\)
```

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);

```
NSForwardRates = NSModel.getForwardRates(PlottingDates);
SvenssonForwardRates = SvenssonModel.getForwardRates(PlottingDates);
VRPForwardRates = VRPModel.getForwardRates(PlottingDates);
figure
```

hold on
plot(TimeToMaturity,NSForwardRates,'r')
plot(TimeToMaturity,SvenssonForwardRates,'g')
plot(TimeToMaturity,VRPForwardRates,'b')
title('UK instantaneous nominal forward curve')
xlabel('Years ahead')
legend({'Nelson Siegel','Svensson','VRP'})

```

UK instantaneous nominal forward curve

\section*{Compare with this Link}

This link provides a live look at the derived yield curve published by the UK
http://www.bankofengland.co.uk

\section*{Bibliography}

This example is based on the following papers and journal articles:
[1] Nelson, C.R., Siegel, A.F., (1987), "Parsimonious modelling of yield curves", Journal of Business, 60, pp 473-89
[2] Svensson, L.E.O. (1994), "Estimating and interpreting forward interest rates: Sweden 1992-4", International Monetary Fund, IMF Working Paper, 1994/114
[3] Fisher, M., Nychka, D., Zervos, D. (1995), "Fitting the term structure of interest rates with smoothing splines", Board of Governors of the Federal Reserve System, Federal Reserve Board Working Paper 95-1
[4] Anderson, N., Sleath, J. (1999), "New estimates of the UK real and nominal yield curves", Bank of England Quarterly Bulletin, November, pp 384-92
[5] Waggoner, D. (1997), "Spline Methods for Extracting Interest Rate Curves from Coupon Bond Prices", Federal Reserve Board Working Paper 97-10
[6] "Zero-coupon yield curves: technical documentation", BIS Papers No. 25 October 2005
[7] Bolder, D.J., Gusba,S (2002), "Exponentials, Polynomials, and Fourier Series: More Yield Curve Modelling at the Bank of Canada," Working Papers 02-29, Bank of Canada
[8] Bolder, D.J., Streliski, D (1999), "Yield Curve Modelling at the Bank of Canada," Technical Reports 84, Bank of Canada

\section*{See Also}

IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

\section*{Related Examples}
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Bootstrapping a Swap Curve" on page 9-13
- "Dual Curve Bootstrapping" on page 9-16
- "Creating an IRDataCurve Object" on page 9-6
- "Converting an IRDataCurve or IRFunctionCurve Object" on page 9-40
- "Analysis of Inflation Indexed Instruments"

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{External Websites}
- Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
- Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30 min 00 sec)

\section*{Converting an IRDataCurve or IRFunctionCurve Object}
\begin{tabular}{|l}
\hline In this section... \\
"Introduction" on page 9-40 \\
"Using the toRateSpec Method" on page 9-40 \\
"Using Vector of Dates and Data Methods" on page 9-42 \\
\hline
\end{tabular}

\section*{Introduction}

The IRDataCurve and IRFunctionCurve objects for interest-rate curves support conversion to:
- A RateSpec structure. The RateSpec generated from an IRDataCurve or IRFunctionCurve object, using the toRateSpec method, is identical to the RateSpec structure created with intenvset using Financial Instruments Toolbox software.
- A vector of dates and data from an IRDataCurve object acceptable to prbyzero, bkcall, bkput, tfutbyprice, and tfutbyyield or any function that requires a term structure of interest rates.

\section*{Using the toRateSpec Method}

To convert an IRDataCurve or IRFunctionCurve object to a RateSpec structure, you must first create an interest-rate curve object. Then, use the toRateSpec method for an IRDataCurve object or thetoRateSpec method for an IRFunctionCurve object.

\section*{Example}

Create a data vector from the following data: http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml:
```

Data = [1.85 1.84 1.91 2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(today,[30 90 180 360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],2);
scatter(Dates,Data)
datetick

```


Create an IRDataCurve interest-rate curve object:
rr = IRDataCurve('Zero',today,Dates,Data);
Convert to a RateSpec:
toRateSpec(rr, today+30:30:today+365)
ans =
```

            FinObj: 'RateSpec'
    Compounding: 2
                Disc: [12x1 double]
                    Rates: [12x1 double]
                EndTimes: [12\times1 double]
        StartTimes: [12x1 double]
            EndDates: [12\times1 double]
            StartDates: 733569
                    ValuationDate: 733569
            Basis: 0
    EndMonthRule: 1
    ```

\section*{Using Vector of Dates and Data Methods}

You can use the getZeroRates method for an IRDataCurve object with a Dates property to create a vector of dates and data acceptable for prbyzero in Financial Toolbox software and bkcall, bkput, tfutbyprice, and tfutbyyield in Financial Instruments Toolbox software.

\section*{Example}

This is an example of using the IRDataCurve method getZeroRates with prbyzero:
```

Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);
irdc = IRDataCurve('Zero',today,Dates,Data,'InterpMethod','pchip');
Maturity = daysadd(today,8*360,1);
CouponRate = .055;
ZeroDates = daysadd(today,180:180:8*360,1);
ZeroRates = getZeroRates(irdc, ZeroDates);
BondPrice = prbyzero([Maturity CouponRate], today, ZeroRates, ZeroDates)
BondPrice =
113.9250

```

\section*{See Also}

IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

\section*{Related Examples}
- "Creating an IRFunctionCurve Object" on page 9-21
- "Dual Curve Bootstrapping" on page 9-16
- "Analysis of Inflation Indexed Instruments"
- "Fitting Interest Rate Curve Functions" on page 9-32

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{Numerix Workflows}
- "Working with Simple Numerix Trades" on page 10-2
- "Working with Advanced Numerix Trades" on page 10-5
- "Use Numerix to Price Cash Deposits" on page 10-10
- "Use Numerix for Interest-Rate Risk Assessment" on page 10-12
- "Numerix CAIL Interface Workflow Example Using Matrix, Data, and Call Objects" on page 10-15

\section*{Working with Simple Numerix Trades}

This example shows how to price a callable reverse floater using Numerix CAIL.

\section*{Initialize Numerix environment.}
```

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;
n = numerix('i:\NumeriX_java_10_3_0\data')
n =
Path: 'i:\NumeriX_java_10_3_0\data'
RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
Repository: [1x1 com.numerix.integ}r\mathrm{ - ation.implementation.FileSystemRepository]
Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
Parameters: [1\times1 com.numerix.integ

```

Create a market.
```

quotes = java.util.HashMap;
quotes.put('IR.USD-LIBOR-3M.SWAP-1Y.MID', 0.0066056);
quotes.put('IR.USD-LIBOR-3M.SWAP-10Y.MID', 0.022465005);
quotes.put('IR.USD-LIBOR-3M.SWAP-20Y.MID', 0.027544995);
market = Market('EOD_14-NOV-2011', DateExtensions.date('14-Nov-2011'), quotes.entrySet);

```

Define a trade instance for a callable reverse floater based on instrument template located in the Repository.
```

tradeDescriptor = 'TRADE.IR.CALLABLEREVERSEFLOATER';
tradeParameters = java.util.HashMap;
tradeParameters.put('Trade ID','1001');
tradeParameters.put('Quote Type', 'MID');
tradeParameters.put('Currency', 'USD');
tradeParameters.put('Notional', 1000000.0);
tradeParameters.put('Effective Date', DateExtensions.date('1-Dec-2011'));
tradeParameters.put('Termination Date', DateExtensions.date('1-Dec-2021'));
tradeParameters.put('IR Index', 'LIBOR');
tradeParameters.put('IR Index Tenor', '3M');
tradeParameters.put('Structured Freq', '3M');
tradeParameters.put('Structured Side', 'Receive');
tradeParameters.put('Structured Coupon Floor', 0.0);
tradeParameters.put('Structured Coupon UpBd', 0.08);
tradeParameters.put('StructuredCoupon Multiplier', 1.4);
tradeParameters.put('Structured Coupon Cap', 0.05);
tradeParameters.put('Structured Basis', 'ACT/360');
tradeParameters.put('Funding Freq', '3M');
tradeParameters.put('Funding Side', 'Pay');

```
```

tradeParameters.put('Funding Spread', 0.003);
tradeParameters.put('Funding Basis', 'ACT/360');
tradeParameters.put('Call Start Date', DateExtensions.date('1-Dec-2013'));
tradeParameters.put('Call End Date', DateExtensions.date('1-Dec-2020'));
tradeParameters.put('Option Side', 'Short');
tradeParameters.put('Option Type', 'Right to Terminate');
tradeParameters.put('Call Frequency', '3M');
tradeParameters.put('Model', 'IR.USD-LIBOR-3M.MID.DET');
tradeParameters.put('Method', 'BackwardAnalytic');

```

Create the trade instance.
trade = RepositoryExtensions.createTradeInstance(n.Repository, tradeDescriptor, tradeParameters)
Price the trade.
results \(=\) CalculationContextExtensions.calculate(n.Context, trade, market, Request.getAll);
Parse the results for MATLAB and display.
```

r = n.parseResults(results)
disp([r.Name r.Category r.Currency r.Data])
r=
Category: {13x1 cell}
Currency: {13x1 cell}
Name: {13x1 cell}
Data: {13x1 cell}

| 'Reporting Currency' | 'Price' | '' | USD ' |
| :---: | :---: | :---: | :---: |
| 'Structured Cashflow Log' | 'Cashflow' | ' | \{41x20 cell $\}$ |
| 'Structured Leg PV Accrued' | 'Price' | 'USD ' | $0]$ |
| 'PV' | 'Price' | 'USD' | [ 6.4133e+04] |
| 'Structured Leg PV Clean' | 'Price' | 'USD ' | [ 4.2637e+05] |
| 'Option PV' | 'Price' | 'USD' | [-1.3220e+05] |
| 'Funding Cashflow Log' | 'Cashflow' |  | \{41x20 cell\} |
| 'Structured Leg PV' | 'Price' | 'USD ' | [ 4.2637e+05] |
| 'Funding Leg PV' | 'Price' | 'USD' | [-2.3004e+05] |
| 'Funding Leg PV Accrued' | 'Price' | 'USD' |  |
| 'Funding Leg PV Clean' | 'Price' | 'USD' | [-2.3004e+05] |
| 'Yield Risk Report' | '' | '' | \{ $4 \times 30$ cell\} |
| 'Messages' | 1 | , | \{ $4 \times 1$ cell\} |

```

\section*{See Also}
numerix | numerixCrossAsset | parseResults

\section*{Related Examples}
- "Working with Advanced Numerix Trades" on page 10-5
- "Use Numerix to Price Cash Deposits" on page 10-10
- "Use Numerix for Interest-Rate Risk Assessment" on page 10-12

\section*{External Websites}
- http://www.numerix.com/cail

\section*{Working with Advanced Numerix Trades}

This example shows how to price multiple trades from MATLAB using Numerix CAIL.
Initialize Numerix environment.
```

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;
n = numerix('i:\NumeriX_java_10_3_0\data')
n =
Path: 'i:\NumeriX_java_10_3_0\data'
RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

```

Specify the hybrid model for multiple trades.
```

hySpec = HybridModelSpecification;
hySpec.addHW1F('IR-USD', 'USD', 'LIBOR', '3M', 'MeanReversion(0.5),DiagonalSwaption(ATM, 10Y)');
hySpec.addHW1F('IR-EUR', 'EUR', 'EURIBOR', '6M', 'MeanReversion(0.5),DiagonalSwaption(ATM, 10Y)');
hySpec.addFXBlack('FX-USDEUR', 'USD', 'EUR', 'LIBOR', '3M', 'EURIBOR', '6M', 'StrikeFXEuropean(ATM, 10Y)');
% 5 Specify the factor correlations.
hyCorrelations = HybridModelCorrelationMatrix(hySpec);
hyCorrelations.add('IR-USD', 'IR-EUR', 0.5);
hyCorrelations.add('IR-USD', 'FX-USDEUR', 0.25);
hyCorrelations.add('IR-EUR', 'FX-USDEUR', 0.25);
% Specify the model parameters.
hybridModelParameters = java.util.HashMap;
hybridModelParameters.put('Quote Type', 'MID');
hybridModelParameters.put('Payout Currency', 'USD');
hybridModelParameters.put('Specification', hySpec);
hybridModelParameters.put('Correlations', hyCorrelations);

```

Specify exposure calculation parameters.
```

observationDates = CustomObservationSchedule;
observationDates.add(DateExtensions.date(2011, 12, 1));
for y = 2012:2013
for m = 1:12
observationDates.add(DateExtensions.date(y, m, 1));
end
end
exposureParameters = java.util.HashMap;
exposureParameters.put('Model ID', 'HYBRID');
exposureParameters.put('Observation Dates', observationDates);

```

Define the first trade instance.
tradeParameters1 = java.util.HashMap;
tradeParameters1.put('Trade ID', 'RVFL1001');
tradeParameters1.put('Quote Type', 'MID');
tradeParameters1.put('Currency', 'USD');
tradeParameters1.put('Notional', 1000000.0);
tradeParameters1.put('Effective Date', DateExtensions.date('1-Dec-2011'));
tradeParameters1.put('Termination Date', DateExtensions.date('1-Dec-2021'));
tradeParameters1.put('IR Index', 'LIBOR');
tradeParameters1.put('IR Index Tenor', '3M');
tradeParameters1.put('Structured Freq', '3M');
tradeParameters1.put('Structured Side', 'Receive');
tradeParameters1.put('Structured Coupon Floor', 0.0);
tradeParameters1.put('Structured Coupon UpBd', 0.08);
tradeParameters1.put('StructuredCoupon Multiplier', 1.4);
tradeParameters1.put('Structured Coupon Cap', 0.05);
tradeParameters1.put('Structured Basis', 'ACT/360');
tradeParameters1.put('Funding Freq', '3M');
tradeParameters1.put('Funding Side', 'Pay');
tradeParameters1.put('Funding Spread', 0.003);
tradeParameters1.put('Funding Basis', 'ACT/360');
tradeParameters1.put('Call Start Date', DateExtensions.date('1-Dec-2013'));
tradeParameters1.put('Call End Date', DateExtensions.date('1-Dec-2020'));
tradeParameters1.put('Option Side', 'Short');
tradeParameters1.put('Option Type', 'Right to Terminate');
tradeParameters1.put('Call Frequency', '3M');
tradeParameters1.put('Model', 'HYBRID');
tradeParameters1.put('Method', 'BackwardMC');
tradeInstance1 = RepositoryExtensions.createTradeInstance(n.Repository, 'TRADE.IR.CALLABLEREVERSEFLOATER', tradeParameters

\section*{Define the second trade instance.}
tradeParameters2 = java.util.HashMap;
tradeParameters2.put('Trade ID', 'CASHDEP1001');
tradeParameters2.put('Quote Type', 'MID');
tradeParameters2.put('Currency', 'USD');
tradeParameters2.put('Coupon Rate', 0.05);
tradeParameters2.put('Yield', 0.044);
tradeParameters2.put('Notional', 100.0);
tradeParameters2.put('Effective Date', DateExtensions.date('1-Apr-2012'));
tradeParameters2.put('Maturity', DateExtensions.date('1-Apr-2013'));
tradeParameters2.put('IR Index', 'LIBOR');
tradeParameters2.put('IR Index Tenor', '3M');
tradeParameters2.put('Model', 'HYBRID');
tradeParameters2.put('Method', 'BACKWARDMC');
tradeInstance2 = RepositoryExtensions.createTradeInstance(n.Repository, 'IR.CASHDEPOSIT', tradeParameters2);

\section*{Create the third trade instance.}
tradeParameters3 = java.util.HashMap;
tradeParameters3.put('Trade ID', 'FXFWD1001');
tradeParameters3.put('Quote Type', 'MID');
tradeParameters3.put('Base Currency', 'USD');
tradeParameters3.put('Term Currency', 'EUR');
tradeParameters3.put('Delivery Date', DateExtensions.date('1-Jun-2012'));
tradeParameters3.put('Contract FX Forward Rate', 80.5);
tradeParameters3.put('Base Notional', 10000000.0);
tradeParameters3.put('Base IR Index', 'LIBOR');
tradeParameters3.put('Term IR Index', 'EURIBOR');
tradeParameters3.put('Base IR Index Tenor', '3m');
tradeParameters3.put('Term IR Index Tenor', '6m');
tradeParameters3.put('Calendar', 'NewYork Target');
```

tradeParameters3.put('Spot Lag', '2bd');
tradeParameters3.put('Model', 'HYBRID');
tradeParameters3.put('Method', 'BACKWARDMC');
tradeInstance3 = RepositoryExtensions.createTradeInstance(n.Repository, 'FX.FXFORWARD', tradeParameters3);
Set tradeInstances for all three trade instances.

```
tradeInstances = java.util.ArrayList;
tradeInstances.add(tradeInstance1);
tradeInstances.add(tradeInstance2);
tradeInstances.add(tradeInstance3);
n. Parameters.setInstances(tradeInstances);

Add a custom lookup so these trade instances reference the hybrid model.
```

n.Parameters.getLookups.add(0,ExactLookupRule('HYBRID', 'MODEL.HYBRID',hybridModelParameters.entrySet));

```

Add another custom lookup so that exposure report has parameters defined.
```

n.Parameters.getLookups.add(1,ExactLookupRule('RISK.REPORT.EXPOSURE','REPORT.EXPOSURE',exposureParameters.entrySet));

```

Perform the calculation.
```

results = n.Context.calculate(n.Parameters, Request.getExposure);

```

Parse the results for MATLAB and display.
```

r = n.parseResults(results)
disp([r.Trade(2) r.Market(2)])
disp([r.Results{2}.Name r.Results{2}.Category r.Results{2}.Currency r.Results{2}.Data])
disp([r.Results{2}.Name{1}])
disp([r.Results{2}.Data{1}])
r =
Trade: {3x1 cell}
Market: {3x1 cell}
Results: {3x1 cell}
CASHDEP1001
EOD'

| 'Exposure' | $'$ | $'$ | $\{21 \times 501$ |
| :--- | :--- | :--- | :--- |
| cell $\}$ |  |  |  |
| 'Exposure.Discount Factors' | $'$ | $'$ | $\{21 \times 501$ |
| cell $\}$ |  |  |  |
| 'Messages' | $'$, | $'$ | $\{12 \times 1$ |
| cell $\}$ |  |  |  |

```

\section*{Exposure}
```

Columns 1 through 3

```

\section*{DATE '}

Tue May 01 13:00:00 EDT 2012'
Fri Jun 01 13:00:00 EDT 2012'
'Sun Jul 01 13:00:00 EDT 2012'
'Wed Aug 01 13:00:00 EDT 2012'
Sat Sep 01 13:00:00 EDT 2012'
'Mon Oct 01 13:00:00 EDT 2012'
'Thu Nov 01 13:00:00 EDT 2012'
Sat Dec 01 12:00:00 EST 2012'
'Tue Jan 01 12:00:00 EST 2013'
'VALUE \(1^{\prime}\)
\([104.198166609924]\)
\([104.09953599675]\)
\([105.524567506006]\)
\([105.787455961524]\)
\([104.417483614373]\)
\([104.692275556824]\)
\([104.443818312902]\)
\([104.736646932343]\)
\([104.577562970494]\)
'VALUE 2'
[103.386222783828]
[102.117465067435]
[100.055731577867]
[100.318762976796]
[100.764337265155]
[100.980213613911]
[101.478508725115]
[101.679769557039]
[102.423339265735]
\begin{tabular}{lllll}
'Fri Feb 01 12:00:00 EST 2013' & {\([104.28994278039]\)} & {\([103.117326879887]\)} \\
'Fri Mar 01 12:00:00 EST 2013' & {\([104.70469459715]\)} & {\([104.232180198939]\)} \\
'Mon Apr 01 13:00:00 EDT 2013' & {\([105.07334321718]\)} & {\([105.05089338769]\)} \\
'Wed May 01 13:00:00 EDT 2013' & {\([\)} & \(0]\) & {\([\)} & \(0]\) \\
'Sat Jun 01 13:00:00 EDT 2013' & {\([\)} & \(0]\) & {\([\)} & \(0]\) \\
'Mon Jul 01 13:00:00 EDT 2013' & {\([\)} & \(0]\) & {\([\)} & \(0]\) \\
'Thu Aug 01 13:00:00 EDT 2013' & {\([\)} & \(0]\) \\
'Sun Sep 01 13:00:00 EDT 2013' & {\([\)} & {\([\)} & \(0]\) \\
'Tue Oct 01 13:00:00 EDT 2013' & {\([\)} & \(0]\) \\
'Fri Nov 01 13:00:00 EDT 2013' & {\([\)} & {\([\)} & \(0]\) \\
'Sun Dec 01 12:00:00 EST 2013' & {\([\)} & \(0]\) & {\([\)} & \(0]\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Columns 499 through 501} \\
\hline 'VALUE 498' & 'VALUE 499' & 'VALUE 500' \\
\hline [105.36273206453] & [104.335982034187] & [104.141595030057] \\
\hline [105.904822463264] & [104.238089023172] & [104.276676080686] \\
\hline [103.893060436208] & [103.613968079212] & [106.188617261199] \\
\hline [103.183889382889] & [105.499763150412] & [105.440275818983] \\
\hline [103.310404527817] & [105.233622768447] & [105.267337892552] \\
\hline [103.274239052394] & [104.716952177783] & [104.33099834332] \\
\hline [103.583983117053] & [104.710250522521] & [105.501004542869] \\
\hline [103.379982561438] & [105.146939039653] & [104.681616459661] \\
\hline [103.821169954095] & [105.567274949306] & [104.835971977691] \\
\hline [104.016530403399] & [105.254054161819] & [104.842156238753] \\
\hline [104.481475787501] & [105.197179985119] & [104.962752610848] \\
\hline [105.061984636083] & [105.077227736476] & [105.077766765965] \\
\hline [0] & \(0]\) & \(0]\) \\
\hline \(0]\) & [0] & \(0]\) \\
\hline [0] & [0] & [0] \\
\hline [0] & [0] & \(0]\) \\
\hline [0] & [0] & [0] \\
\hline \(0]\) & [0] & [0] \\
\hline \(0]\) & [0] & [0] \\
\hline \(0]\) & [0] & \(0]\) \\
\hline
\end{tabular}

Plot the results for the second trade instance, CASHDEP1001, with the corresponding Exposure Discount Factors.
```

figure('Tag','NumerixAdvancedRiskExample');
for ii=1:3
% Get dates
dates = cell2mat(r.Results{ii}.Data{expIndex}(2:end,1));
dates = dates(:,4:end);
dates = floor(datenum(dates));
% Get exposures
mtm = cell2mat(r.Results{ii}.Data{expIndex}(2:end,2:end))';
exposures = max (0,mtm); % Exposure at contract level, no netting
EE = mean(exposures); % Expected Exposure
PFE = prctile(exposures,95); % Potential Future Exposure
subplot(3,1,ii)
plot(dates,EE,dates,PFE)
title(r.Trade{ii})
datetick

```


FXFWD1001

\section*{See Also}
numerix \| numerixCrossAsset \| parseResults

\section*{Related Examples}
- "Working with Simple Numerix Trades" on page 10-2
- "Use Numerix to Price Cash Deposits" on page 10-10
- "Use Numerix for Interest-Rate Risk Assessment" on page 10-12

\section*{External Websites}
- http://www.numerix.com/cail

\section*{Use Numerix to Price Cash Deposits}

This example shows how to use the Numerix CAIL API to price a cash deposit from MATLAB. The trade parameters are read from the Cashdeposit1.csv in the Numerix Data Trades folder.

Initialize Numerix environment.
```

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;
n = numerix('i:\NumeriX_java_10_3_0\data')
n =
Path: 'i:\NumeriX_java_10_3_0\data'
RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
Repository: [1x1 com.numerix.integ}r\mathrm{ - (1ation.implementation.FileSystemRepository]
Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
LookupsPath: 'i:\NumeriX java 10 3 0\data\Data\LookupRules'
MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

```

Create a market.
```

market = Market('EOD_16-APR-2012', DateExtensions.date('16-APR-2012'), []);

```

Read the Cashdeposit1.csv file from the Numerix Trades folder.
```

[~,~,tradeInfo] = xlsread([n.TradesPath '\Cashdeposit1.csv'])
tradeInfo =

```
\begin{tabular}{llll}
'Template' & 'String' & \multicolumn{2}{l}{ 'TRADE.IR.CASHDEPOSIT' } \\
'Trade ID' & 'ID' & 'CASHDEP1001' & \\
'Quote Type' & 'String' & 'MID' \\
'Effective Date' & 'Date' & '4/1/2012' & \\
'Maturity' & 'Date' & '4/1/2013' & \\
'Notional' & 'Double' & [& \(100]\) \\
'Currency' & 'Currency' & 'USD' & \\
'Coupon Rate' & 'Double' & [& \(0.0500]\) \\
'Yield' & 'Double' & [& \(0.0440]\) \\
IR Index' & 'String' & 'Libor' & \\
IR Index Tenor' & 'Tenor' & '3m' &
\end{tabular}

Define a trade instance from the imported CASHDEP1001 instrument.
```

tradeDescriptor = tradeInfo{1,3};
tradeParameters = java.util.HashMap;
numTradeInfoFields = size(tradeInfo,1);
for i = 2:numTradeInfoFields
switch tradeInfo{i,2}
case {'DATE','Date'}

```
```

        tradeParameters.put(tradeInfo{i,1},DateExtensions.date(datestr(tradeInfo{i,3},'dd-mmm-yyyy')));
        otherwise
        tradeParameters.put(tradeInfo{i,1},tradeInfo{i,3});
    end
    end

```

Create the trade instance.
trade \(=\) RepositoryExtensions.createTradeInstance(n.Repository, tradeDescriptor, tradeParameters);
Price the trade.
```

results = CalculationContextExtensions.calculate(n.Context, trade, market, Request.getAll);

```

Parse the results for MATLAB and display.
```

r = n.parseResults(results)
disp([r.Name r.Category r.Currency r.Data])

```
\(r=\)
Category: \(\{9 \times 1\) cell \(\}\)
Currency: \(\{9 \times 1\) cell \(\}\)
Name: \(\{9 \times 1\) cell \(\}\)
Data: \(\{9 \times 1\) cell \(\}\)
'Modified Duration'
Accrued Interest
Reporting Currency
'PV'
'Instrument 'Price' ' USD
 0.9349]0.2083]
'Price Clean Price' Convexity
YTM Price 'Price Price Messages \({ }^{\prime}\)

\section*{See Also}
numerix \| numerixCrossAsset \| parseResults

\section*{Related Examples}
- "Working with Simple Numerix Trades" on page 10-2
- "Working with Advanced Numerix Trades" on page 10-5
- "Use Numerix for Interest-Rate Risk Assessment" on page 10-12

\section*{External Websites}
- http://www.numerix.com/cail

\section*{Use Numerix for Interest-Rate Risk Assessment}

This example shows how to use the Numerix CAIL API for interest-rate curve stripping for risk assessment.

Initialize Numerix environment.
```

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;
n = numerix('i:\Numerix_java_10_3_0\data')
n =
Path: 'i:\NumeriX_java_10_3_0\data'
Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

```

Specify the current market associated with the Numerix CAIL environment.
```

markets = get(n.Parameters,'Markets');
currentMarket = markets.get(0);
outInstance = RefObject(currentMarket);

```

Define the interest-rate curve key IR.USD-LIBOR-3M.MID.
```

n.Context.tryResolveId('IR.USD-LIBOR-3M.MID',outInstance);
currentInstance = outInstance.argvalue;

```

Set the instance and market.
```

n.Parameters.setMarkets(java.util.Arrays.asList(currentMarket));
n.Parameters.setInstances(java.util.Arrays.asList(currentInstance));

```

Calculate the interest-rate curve stripping.
results \(=\) n.Context.calculate(n.Parameters, Request.getAll);
The calculation returns the results from stripping the interest-rate curve for IR.USD-LIBOR-3M.MID. Parse the results for MATLAB and display.
```

% IR.USD-LIBOR-3M.MID.
r = n.parseResults(results)
disp([r.Instance r.Market])

```
```

disp([r.Results{1}.Name r.Results{1}.Category r.Results{1}.Currency r.Results{1}.Data])
disp([r.Results{1}.Name{1}])
disp([r.Results{1}.Data{1}])
r =
Instance: {'IR.USD-LIBOR-3M.MID'}
Market: {'EOD'}
Results: {[1x1 struct]}
'IR.USD-LIBOR-3M.MID' 'EOD'

```
\begin{tabular}{llll}
'Curve Info' & \('\) & \('\) & \(\{30 \times 3\) cell \(\}\) \\
'Messages' & \('\) & \(' 1\) & \(\{7 \times 1\) cell \(\}\)
\end{tabular}

Curve Info
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{'KEY'} \\
\hline CASH & RATE & 16-APR-2012 & 17-APR-2012 \({ }^{\prime}\) \\
\hline CASH & RATE & 16-APR-2012 & 18-APR-2012' \\
\hline ' CASH & RATE & 16-APR-2012 & 23-APR-2012' \\
\hline ' CASH & RATE & 16-APR-2012 & 30-APR-2012' \\
\hline 'CASH & RATE & 16-APR-2012 & 16-MAY-2012' \\
\hline ' CASH & RATE & 16-APR-2012 & 18-JUN-2012' \\
\hline ' CASH & RATE & 16-APR-2012 & 16-JUL-2012' \\
\hline ' CASH & RATE & 18-MAY-2012 & 12-AUG-2012' \\
\hline ' CASH & RATE & 20-JUN-2012 & 20-SEP-2012' \\
\hline ' CASH & RATE & 18-JUL-2012 & 18-OCT-2012' \\
\hline ' CASH & RATE & 15-AUG-2012 & 15-NOV-2012' \\
\hline ' CASH & RATE & 19-SEP-2012 & 19-DEC-2012' \\
\hline 'CASH & RATE & 17-OCT-2012 & 17-JAN-2013' \\
\hline ' CASH & RATE & 19-DEC-2012 & 19-MAR-2013' \\
\hline 'SWAP & RATE & 18-APR-2012 & 19-APR-2016' \\
\hline ' SWAP & RATE & 18-APR-2012 & 18-APR-2017' \\
\hline 'SWAP & RATE & 18-APR-2012 & 18-APR-2018' \\
\hline 'SWAP & RATE & 18-APR-2012 & 18-APR-2019' \\
\hline 'SWAP & RATE & 18-APR-2012 & 21 -APR-2020 \({ }^{\prime}\) \\
\hline 'SWAP & RATE & 18-APR-2012 & 19-APR-2021' \\
\hline 'SWAP & RATE & 18-APR-2012 & 19-APR-2022' \\
\hline 'SWAP & RATE & 18-APR-2012 & 18-APR-2023 \({ }^{\prime}\) \\
\hline ' SWAP & RATE & 18-APR-2012 & 18-APR-2024' \\
\hline ' SWAP & RATE & 18-APR-2012 & 19-APR-2027 \({ }^{\prime}\) \\
\hline 'SWAP & RATE & 18-APR-2012 & 20-APR-2032 \({ }^{\prime}\) \\
\hline 'SWAP & RATE & 18-APR-2012 & 20-APR-2037' \\
\hline 'SWAP & RATE & 18-APR-2012 & 21-APR-2042 \({ }^{\prime}\) \\
\hline 'SWAP & RATE & 18-APR-2012 & 18-APR-2052' \\
\hline SWAP & RATE & 18-APR-2012 & 18-APR-2062' \\
\hline
\end{tabular}

\section*{See Also}
numerix | numerixCrossAsset | parseResults

\section*{Related Examples}
- "Working with Simple Numerix Trades" on page 10-2
- "Working with Advanced Numerix Trades" on page 10-5
- "Use Numerix to Price Cash Deposits" on page 10-10

\section*{External Websites}
- http://www.numerix.com/cail

\section*{Numerix CAIL Interface Workflow Example Using Matrix, Data, and Call Objects}

This example shows how to use the Numerix CAIL API to create and price a vanilla European option.

Construct a numerixCrossAsset object.
\(c=\) numerixCrossAsset
\(\mathrm{c}=\)
numerixCrossAsset with properties:
Application: [1x1 com.numerix.pro.Application]
ApplicationWarning: [1x1 com.numerix.pro.ApplicationWarning]
Create and register data as a Matrix with the Numerix Cross Asset Integration Layer Application using the applicationMatrix method.
```

rowData = [41992, 42020, 42449, 42905, 43115];
colData = [390, 395, 400, 405];
volData = [0.35778, 0.35132, 0.34394, 0.33582;..
0.33405, 0.32819, 0.32669, 0.31904;...
0.31576, 0.31235, 0.30371, 0.30261;···
0.29391, 0.29366, 0.28962, 0.28932;..
0.28787, NaN, 0.28347, NaN ];
applicationMatrix(c, 'BYSTRIKEVOLDATA', rowData,colData,volData);

```

Create and register the yield curve data with the Application object. Use a table for optimal display purposes. Dates must be relative to '01/01/1900' and the Numerix Cross Asset Integration Layer API supports date number representation only. MATLAB datetime's get converted automatically, otherwise date numbers must be input and based relative to '01/01/1900'.

Define the corresponding discount factors.
```

discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385; ...
0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
0.922223;0.888128;0.852291;0.816462;0.781228;0.746677;...
0.712892;0.680462;0.592285;0.474003;0.383493;0.312617; ...

```
```

0.213809;0.152345];

```

Supported Numerix Cross Asset Integration Layer API names are DATE and DISCOUNTFACTOR for the creation of the data.
```

curveData = table(dates,discountFactors,'VariableNames',{'DATE','DISCOUNTFACTOR'});
applicationData(c,'USD_3MLIBOR_CURVE',curveData);

```

Define the headers for registering the RATESPEC and DIVSPEC call objects.
```

headers = {'ID','LOCAL ID','TIMER','TIMER CPU','UPDATED'};

```

Data is required to create dividend curve. Create and register the DIVSPEC call object using name-value pairs in this example.
```

applicationCall(c,headers,'ID','DIVSPEC','OBJECT','MARKET DATA','TYPE','DIVIDEND',...
'COMMENT','Comments here','SKIP',false,'NOWDATE',41688,...
'CURRENCY', 'USD', 'RATE/DIVIDEND',0, 'BASIS', 'ACT/360');

```

Create the EQUITYVOLSPEC call object. BYSTRIKEVOLDATA denotes the volatility matrix object created previously, using an array of names and an array of values in this example.
```

applicationCall(c,headers,{'ID','OBJECT','TYPE','COMMENT','SKIP','NOWDATE','CURRENCY','VOLATILITYBASIS',...
'DATA','INTERPMETHOD','INTERPVARIABLE','EXTRAPOLATION '},...
{'EQVOLSPEC','MARKET DATA','EQ VOL','Comments here',...
false,41688,'USD','ACT/360','BYSTRIKEVOLDATA',...
'LINEAR','VOL', 'FLAT EXTRAPOLATION'});

```

Create the RATESPEC call object. USD_3MLIBOR_CURVE denotes yield curve data object created previously using name-value pairs.
```

applicationCall(c,headers,'ID','RATESPEC','OBJECT','MARKET DATA','TYPE','YIELD','COMMENT','Comments here',...
'SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF',...
'CURRENCY','USD', 'DATA', 'USD_3MLIBOR_CURVE', 'BASIS', 'ACT/360');

```

Create the EuropeanOptionEQ instrument. Create the STOCKSPEC call object using the applicationCall method.
```

applicationCall(c,headers,'ID','STOCKSPEC','OBJECT','INSTRUMENT','TYPE','EQ EUROPEAN',...
COMMENT','Comments here','SKIP',false,'FLAVOR','PUT',...
CURRENCY','USD','ENDDATE',43976,'SETTLEMENTDATE',43976, ...
'STRIKE',112,'SIGMA1',0.2,'NOTIONAL',100);

```

Price the portfolio by creating and registering call object to run pricing analytics.
Create the OPTIONSPEC_CLOSEFORM call object headers for registering the OPTIONSPEC_CLOSEFORM call object.
```

headers = {'ATM','DELTA','DELTA TRADER','FORWARD DELTA','FORWARD DELTA TRADER', ...
'FUTURES DELTA','FUTURES DELTA TRADER','GAMMA','GAMMA TRADER', ...
'ID','LOCAL ID','NOTIONAL','PRICE','PV','RHO','RHO TRADER', ...
SIGMA1','STRIKE','THETA','TIMER','TIMER CPU','UPDATED','VANNA'', ...
'VANNA TRADER','VEGA','VEGA TRADER','VOLGA','VOLGA TRADER'};

```
```

applicationCall(c,headers,'ID','OPTIONSPEC_CLOSEFORM','OBJECT','ANALYTIC',...
'TYPE','EUROPEAN OPTION','COMMENT','Comments here',...
'SKIP',false,'NOWDATE',41688,'OPTION ','STOCKSPEC' ,....
'DIVIDENDCURVE','DIVSPEC','DOMESTICYIELDCURVE','RATESPEC',...
'SPOTPRICE',112,'SPOTDATE',41688,'MODEL','BLACK');

```

Create an output structure in MATLAB from the Application object using the getdata method.
```

appData = getdata(c);

```

Display the results.
[appData.OPTIONSPEC_CLOSEFORM.OUTPUT_HEADERS appData.OPTIONSPEC_C̄LOSEFORM.OUTPUT_V̄ALUES]
```

ans =
28*2 cell array

```
 'PRICE'
 PV'
 DELTA
 FORWARD DELTA
 FUTURES DELTA'
 GAMMA
 VEGA'
 VOLGA'
 VANNA'
 'DELTA TRADER'
 'FORWARD DELTA TRADER
 FUTURES DELTA TRADER
 GAMMA TRADER
 VEGA TRADER
 VOLGA TRADER'
 'VANNA TRADER'
 'SIGMA1
 STRIKE'
 NOTIONAL
 'RHO'
 THETA'
 RHO TRADER'
 ATM'
 'UPDATED'
 ID' 12 @ 01:37:24 PM
 OPTIONSPEC_CLOSEFORM
 TIMER'
 'TIMER CPU'
 'LOCAL ID
\begin{tabular}{|c|c|c|}
\hline [& & \(1467.24]\) \\
\hline [& & \(1467.24]\) \\
\hline [& & -30.54] \\
\hline [& & -30.54] \\
\hline [& & -26.83] \\
\hline [& & 0.62] \\
\hline [& & \(9827.91]\) \\
\hline [& & \(205.45]\) \\
\hline [& & -1.44] \\
\hline [& & -34.20] \\
\hline [& & -34.20] \\
\hline [& & -30.05] \\
\hline [& & 0.78] \\
\hline [& & 98.28] \\
\hline [& & 0.02] \\
\hline [& & -0.02] \\
\hline [& & 0.20] \\
\hline [& & 112.00] \\
\hline [& & \(100.00]\) \\
\hline [& & -30638.08] \\
\hline [& & -0.15] \\
\hline [& & -3.06] \\
\hline [& & 127.48] \\
\hline \multicolumn{3}{|l|}{'12 @ 01:37:24 PM'} \\
\hline \multicolumn{3}{|l|}{'OPTIONSPEC_CLOSEFORM'} \\
\hline [& & \(0.17]\) \\
\hline [& & 0.06] \\
\hline \multicolumn{3}{|r|}{OPTIONSPEC CLOSEFORM'} \\
\hline
\end{tabular}

Close the numerixCrossAsset object.
cloce (c)

\section*{See Also}
applicationCall | applicationData | applicationMatrix | close | getdata | numerixCrossAsset

\section*{External Websites}
- http://www.numerix.com/cail

\section*{Class Reference}

\section*{@IRBootstrapOptions}

Create specific options for bootstrapping an interest-rate curve object
```

In this section...
"Hierarchy" on page A-2
"Constructor" on page A-2
"Public Read-Only Properties" on page A-2
"Methods" on page A-3

```

\section*{Hierarchy}

Superclasses: None
Subclasses: None

\section*{Constructor}

\section*{IRBootstrapOptions}

\section*{Public Read-Only Properties}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline ConvexityAdjustment & \begin{tabular}{l}
Controls the convexity adjustment to interest \\
rate futures. This can be specified as a \\
function handle that takes time to maturity \\
as an input and returns a value which is \\
ConvexityAdjustment. Alternatively, you can \\
define ConvexityAdjustment as an N-by-1 vector \\
of values, where N is the number of interest rate \\
futures. In either case, the ConvexityAdjustment \\
is subtracted from the futures rate.
\end{tabular} \\
& \begin{tabular}{l}
For more information on defining a function handle, \\
see the MATLAB Programming Fundamentals \\
documentation.
\end{tabular} \\
\hline
\end{tabular}

\section*{Methods}

There are no methods.
```

See Also bootstrap | IRDataCurve

```

\section*{Related Examples}
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Creating an IRDataCurve Object" on page 9-6
- "IRDataCurve Constructor with Dates and Data" on page 9-6
- "IRDataCurve Bootstrapping Based on Market Instruments" on page 9-7
- "Bootstrapping a Swap Curve" on page 9-13
- "Dual Curve Bootstrapping" on page 9-16

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{@IRCurve}

Base abstract class for interest-rate curve objects
```

In this section...
"Hierarchy" on page A-4
"Description" on page A-4
"Constructor" on page A-4
"Public Read-Only Properties" on page A-4
"Methods" on page A-5

```

\section*{Hierarchy}

\section*{Superclasses: None}

Subclasses: @IRDataCurve, @IRFunctionCurve

\section*{Description}

IRCurve is an abstract class; you cannot create instances of it directly. You can create IRDataCurve and IRFunctionCurve objects that are derived from this class.

\section*{Constructor}
@IRCurve is an abstract class. To construct an IRCurve object, use one of the subclass constructors, IRDataCurve or IRFunctionCurve.

\section*{Public Read-Only Properties}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline Type & Type of interest-rate curve: zero, forward, or discount. \\
\hline Settle & Scalar for the Settle date of the curve. \\
\hline Compounding & \begin{tabular}{l}
Scalar that sets the compounding frequency per year for the \\
IRCurve object:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Name & Description \\
\hline & \begin{tabular}{l}
- -1 = Continuous compounding \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding (default) \\
- \(3=\) Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- \(12=\) Monthly compounding
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
Day-count basis of the interest-rate curve. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- \(3=\) actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/actual (ISDA) \\
- 13 = BUS/252
\end{tabular} \\
\hline
\end{tabular}

\section*{Methods}

Classes that inherit from the IRCurve abstract class must implement the following methods.
\begin{tabular}{|l|l|}
\hline Method & Description \\
\hline getForwardRates & Returns forward rates for input dates. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Method & Description \\
\hline getZeroRates & Returns zero rates for input dates. \\
\hline getDiscountFactors & Returns discount factors for input dates. \\
\hline getParYields & Returns par yields for input dates. \\
\hline toRateSpec & \begin{tabular}{l}
Converts to be a RateSpec object. This is identical \\
to the RateSpec structure produced by the Financial \\
Instruments Toolbox function intenvset.
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

IRDataCurve | IRFunctionCurve

\section*{Related Examples}
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Creating an IRDataCurve Object" on page 9-6
- "Creating an IRFunctionCurve Object" on page 9-21

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{@IRDataCurve}

Represent interest-rate curve object based on vector of dates and data
```

In this section...
"Hierarchy" on page A-7
"Description" on page A-7
"Constructor" on page A-7
"Public Read-Only Properties" on page A-7
"Methods" on page A-9

```

\section*{Hierarchy}

Superclasses: @IRCurve
Subclasses: None

\section*{Description}

IRDataCurve is a representation of an interest-rate curve object with dates and data. You can construct this object directly by specifying dates and corresponding interest rates or discount factors; alternatively, you can bootstrap the object from market data. After an interest-rate curve object is constructed, you can:
- Calculate forward and zero rates and determine par yields.
- Extract the discount factors.
- Convert to a RateSpec structure that is identical to the RateSpec structure produced by the Financial Instruments Toolbox function intenvset.

\section*{Constructor}

\section*{IRDataCurve}

\section*{Public Read-Only Properties}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline Type & Type of interest-rate curve: zero, forward, or discount. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Name & Description \\
\hline Settle & Scalar for the Settle date of the curve. \\
\hline Compounding & \begin{tabular}{l}
Scalar that sets the compounding frequency per year for the IRCurve object: \\
- \(-1=\) Continuous compounding \\
- \(0=\) Simple interest (no compounding) \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding (default) \\
- \(3=\) Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
Day-count basis of the financial curve. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual \(/ 360\) \\
- 3 = actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- 8 = actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/actual (ISDA) \\
- 13 = BUS/252
\end{tabular} \\
\hline Dates & Dates corresponding to rate data. \\
\hline Data & Interest-rate data or discount factors for the curve object. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline InterpMethod & Values are: \\
& • 'linear' — Linear interpolation (default). \\
& • 'constant' — Piecewise constant interpolation. \\
& • 'pchip' — Piecewise cubic Hermite interpolation. \\
& • 'spline' — Cubic spline interpolation. \\
\hline
\end{tabular}

\section*{Methods}

The following table contains links to methods with supporting reference pages, including examples.
\begin{tabular}{|l|l|}
\hline Method & Description \\
\hline getForwardRates & Returns forward rates for input dates. \\
\hline getZeroRates & Returns zero rates for input dates. \\
\hline getDiscountFactors & Returns discount factors for input dates. \\
\hline getParYields & Returns par yields for input dates. \\
\hline toRateSpec & \begin{tabular}{l}
Converts to be a RateSpec object. This structure is \\
identical to the RateSpec produced by the Financial \\
Instruments Toolbox function intenvset.
\end{tabular} \\
\hline bootstrap & Bootstraps an interest rate curve from market data. \\
\hline
\end{tabular}

\section*{See Also}
bootstrap | getDiscountFactors | getForwardRates | getParYields | getZeroRates | IRBootstrapOptions | IRFunctionCurve | toRateSpec

\section*{Related Examples}
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Creating an IRDataCurve Object" on page 9-6
- "IRDataCurve Constructor with Dates and Data" on page 9-6
- "IRDataCurve Bootstrapping Based on Market Instruments" on page 9-7
- "Bootstrapping a Swap Curve" on page 9-13
- "Dual Curve Bootstrapping" on page 9-16
- "Converting an IRDataCurve or IRFunctionCurve Object" on page 9-40
- "Using the toRateSpec Method" on page 9-40
- "Using Vector of Dates and Data Methods" on page 9-42
- "Analysis of Inflation Indexed Instruments"

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{@IRFitOptions}

Object to specify fitting options for an IRFunctionCurve interest-rate curve object
```

In this section...
"Hierarchy" on page A-11
"Description" on page A-11
"Constructor" on page A-11
"Public Read-Only Properties" on page A-11
"Methods" on page A-12

```

\section*{Hierarchy}

Superclasses: None
Subclasses: None

\section*{Description}

The IRFitOptions object allows you to specify options relating to the fitting process for an IRFunctionCurve object. Input arguments are specified in parameter/value pairs. The IRFitOptions structure provides the capability to choose which quantity to be minimized and other optimization parameters.

\section*{Constructor}

IRFitOptions

\section*{Public Read-Only Properties}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline FitType & \begin{tabular}{l}
Price, Yield, or DurationWeightedPrice determines \\
which is minimized in the curve fitting process. \\
DurationWeightedPrice is the default.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline InitialGuess & Initial guess for the parameters of the curve function. \\
\hline UpperBound & Upper bound for the parameters of the curve function. \\
\hline LowerBound & Lower bound for the parameters of the curve function. \\
\hline OptOptions & \begin{tabular}{l}
Optimization structure based on the output from \\
the Optimization Toolbox function optimset or \\
optimoptions. This optimization structure is evaluated \\
by lsqnonlin.
\end{tabular} \\
\hline A & \begin{tabular}{l}
Inequality constraint for parameters, ignored if \\
OptimFunction is set to lsqnonlin.
\end{tabular} \\
\hline b & \begin{tabular}{l}
Inequality constraint for parameters, ignored if \\
OptimFunction is set to lsqnonlin.
\end{tabular} \\
\hline OptimFunction & \begin{tabular}{l}
Optimization function used to fit function, either \\
lsqnonlin or fmincon.
\end{tabular} \\
\hline
\end{tabular}

\section*{Methods}

There are no methods.

\section*{See Also}

IRFunctionCurve

\section*{Related Examples}
- "Fitting Interest Rate Curve Functions" on page 9-32
- "Using fitFunction to Create Custom Fitting Function" on page 9-28

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{@ IRFunctionCurve}

Represent an interest-rate curve object using a function
```

In this section...
"Hierarchy" on page A-13
"Description" on page A-13
"Constructor" on page A-13
"Public Read-Only Properties" on page A-13
"Methods" on page A-15

```

\section*{Hierarchy}

\section*{Superclasses: @IRCurve}

\author{
Subclasses: None
}

\section*{Description}

IRFunctionCurve is a representation of an interest-rate curve object. You can construct this object directly by specifying a function handle or a function can be fit to market data using methods of the object. After an interest-rate curve object is constructed; you can:
- Calculate forward and zero rates and determine par yields.
- Extract the discount factors.
- Convert to a RateSpec structure; this is identical to the RateSpec structure produced by the Financial Instruments Toolbox function intenvset.

\section*{Constructor}

IRFunctionCurve

\section*{Public Read-Only Properties}
\begin{tabular}{|ll|}
\hline Name & Description \\
\hline Type & Type of interest-rate curve: zero, forward, or discount. \\
\hline Settle & Scalar for the Settle date of the curve. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Name & Description \\
\hline Compounding & \begin{tabular}{l}
Scalar that sets the compounding frequency per year for the IRCurve object: \\
- \(-1=\) Continuous compounding \\
- 1 = Annual compounding \\
- \(2=\) Semiannual compounding (default) \\
- \(3=\) Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
Day-count basis of the interest-rate curve. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/ 360 \\
- 3 = actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/actual (ISDA) \\
- 13 = BUS/252
\end{tabular} \\
\hline FunctionHandle & Function handle that defines the interest-rate curve. For more information on defining a function handle, see the MATLAB Programming Fundamentals documentation. \\
\hline Parameters & Fitted parameters for function. \\
\hline
\end{tabular}

\section*{Methods}

The following table contains links to methods with supporting reference pages, including examples.
\begin{tabular}{|l|l|}
\hline Method & Description \\
\hline getForwardRates & Returns forward rates for input dates. \\
\hline getZeroRates & Returns zero rates for input dates. \\
\hline getDiscountFactors & Returns discount factors for input dates. \\
\hline getParYields & Returns par yields for input dates. \\
\hline toRateSpec & \begin{tabular}{l}
Converts to be a RateSpec object. This is \\
identical to the RateSpec structure produced \\
by the Financial Instruments Toolbox function \\
intenvset.
\end{tabular} \\
\hline fitSvensson & Fits a Svensson function to market data. \\
\hline fitNelsonSiegel & Fits a Nelson-Siegel function to market data. \\
\hline fitSmoothingSpline & Fits a smoothing spline function to market data. \\
\hline fitFunction & Fits a custom function to market data. \\
\hline
\end{tabular}

\section*{See Also}
fitFunction | fitNelsonSiegel | fitSmoothingSpline | fitSvensson | getDiscountFactors | getForwardRates | getParYields | getZeroRates | IRDataCurve | IRFitOptions | toRateSpec

\section*{Related Examples}
- "Creating an IRFunctionCurve Object" on page 9-21
- "Fitting Interest Rate Curve Functions" on page 9-32
- "Fitting IRFunctionCurve Object Using a Function Handle" on page 9-21
- "Fitting IRFunctionCurve Object Using Nelson-Siegel Method" on page 9-21
- "Fitting IRFunctionCurve Object Using Svensson Method" on page 9-23
- "Fitting IRFunctionCurve Object Using Smoothing Spline Method" on page 9-25
- "Using fitFunction to Create Custom Fitting Function" on page 9-28
- "Converting an IRDataCurve or IRFunctionCurve Object" on page 9-40
- "Analysis of Inflation Indexed Instruments"

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2
- "Creating Interest-Rate Curve Objects" on page 9-4

\section*{External Websites}
- Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
- Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30 min 00 sec)

\section*{Functions - Alphabetical List}

\section*{asianbycrr}

Price Asian option from Cox-Ross-Rubinstein binomial tree

\section*{Syntax}

Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline CRRTree & Stock tree structure created by crrtree. \\
\hline OptSpec & NINST-by-1 list of values 'Call' or 'Put '. \\
\hline Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values. Each row is the \\
schedule for one option.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
NINST-by-1 vector of Settle dates. The settle date for every \\
Asian option is set to the valuation date of the stock tree. The \\
Asian argument Settle is ignored.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l}
For a European option (AmericanOpt = 0): \\
NINST-by-1 vector of exercise dates. Each row is the schedule \\
for one option. For a European option, there is only one \\
exercise date, the option expiry date.
\end{tabular} \\
\begin{tabular}{l}
For an American option (AmericanOpt \(=1\)):
\end{tabular} \\
\begin{tabular}{l}
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any tree date \\
between or including the pair of dates on that row. If only one \\
non-NaN date is listed, or if ExerciseDates is NINST-by-1, \\
the option can be exercised between the valuation date of the \\
stock tree and the single listed exercise date.
\end{tabular} \\
\hline AmericanOpt & \begin{tabular}{l}
(Optional) If AmericanOpt = 0, NaN, or is unspecified, \\
the option is a European option. If AmericanOpt = 1, the \\
option is an American option.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline AvgType & \begin{tabular}{l}
(Optional) Values are 'arithmetic' for arithmetic average \\
(default) or 'geometric' for geometric average.
\end{tabular} \\
\hline AvgPrice & \begin{tabular}{l}
(Optional) Scalar representing the average price of the \\
underlying asset at Settle. This argument is used when \\
AvgDate < Settle. Default is the current stock price.
\end{tabular} \\
\hline AvgDate & \begin{tabular}{l}
(Optional) Scalar representing the date on which the \\
averaging period begins. Default = Settle.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) calculates the value of fixed- and floating-strike Asian options. To compute the value of a floatingstrike Asian option, specify Strike as NaN. Fixed-strike Asian options are also known as average price options. Floating-strike Asian options are also known as average strike options.

Price is a NINST-by- 1 vector of expected prices at time 0 .
Asian options are priced using Hull-White (1993). So, for these options only the root node contains a unique price.

\section*{Examples}

\section*{Price a Floating-Strike Asian Option Using a CRR Binomial Tree}

This example shows how to price a floating-strike Asian option using a CRR binomial tree using the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat;
OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';
Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ...

```

\section*{ExerciseDates)}

Price \(=\)
1.2177
- "Pricing Asian Options"
- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Supported Equity Derivatives" on page 3-24

\section*{More About}
- "Asian Option" on page 3-41

\section*{References}

Hull, J., and A. White. "Efficient Procedures for Valuing European and American PathDependent Options." Journal of Derivatives. Vol. 1, pp. 21-31.

\author{
See Also \\ crrtree | instasian \\ Introduced before R2006a
}

\section*{asianbyeqp}

Price Asian option from Equal Probabilities binomial tree

\section*{Syntax}

Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline EQPTree & Stock tree structure created by eqptree. \\
\hline OptSpec & NINST-by-1 list of values 'Call' or 'Put '. \\
\hline Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values. Each row is the \\
schedule for one option.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
NINST-by-1 vector of Settle dates. The settle date for every \\
Asian option is set to the valuation date of the stock tree. The \\
Asian argument Settle is ignored.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l}
For a European option (AmericanOpt = 0): \\
NINST-by-1 vector of exercise dates. Each row is the schedule \\
for one option. For a European option, there is only one \\
exercise date, the option expiry date.
\end{tabular} \\
\begin{tabular}{l}
For an American option (AmericanOpt = 1): \\
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any tree date \\
between or including the pair of dates on that row. If only one \\
non-NaN date is listed, or if ExerciseDates is NINST-by-1, \\
the option can be exercised between the valuation date of the \\
stock tree and the single listed exercise date.
\end{tabular} \\
\hline AmericanOpt & \begin{tabular}{l}
(Optional) If AmericanOpt = 0, NaN, or is unspecified, the \\
option is a European option. If AmericanOpt = 1, the option \\
is an American option.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline AvgType & \begin{tabular}{l}
(Optional) Values are 'arithmetic' for arithmetic average \\
(default) or 'geometric' for geometric average.
\end{tabular} \\
\hline AvgPrice & \begin{tabular}{l}
(Optional) Scalar representing the average price of the \\
underlying asset at Settle. This argument is used when \\
AvgDate < Settle. Default is the current stock price.
\end{tabular} \\
\hline AvgDate & \begin{tabular}{l}
(Optional) Scalar representing the date on which the \\
averaging period begins.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) calculates the value of fixed- and floating-strike Asian options. To compute the value of a floatingstrike Asian option, specify Strike as NaN. Fixed-strike Asian options are also known as average price options. Floating-strike Asian options are also known as average strike options.

Price is a NINST-by-1 vector of expected prices at time 0 . Pricing of Asian options is done using Hull-White (1993). Consequently, for these options there are no unique prices on the tree nodes with the exception of the root node.

\section*{Examples}

\section*{Price a Floating-Strike Asian Option Using an EQP Equity Tree}

This example shows how to price a floating-strike Asian option using an EQP equity tree by loading the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat;
OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';
Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates)

```

\section*{Price =}
1.2724

\section*{More About}
- "Asian Option" on page 3-41
- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J., and A. White. "Efficient Procedures for Valuing European and American PathDependent Options." Journal of Derivatives. Vol. 1, pp. 21-31.

\author{
See Also \\ eqptree | instasian
}

Introduced before R2006a

\section*{asianbyitt}

Price Asian options using implied trinomial tree (ITT)

\section*{Syntax}

Price = asianbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ITTTree & Stock tree structure created by itttree. \\
\hline OptSpec & NINST-by-1 list of values 'call' or 'put '. \\
\hline Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values. Each row represents \\
the schedule for one option.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
NINST-by-1 vector of Settle dates. The settle date for every \\
Asian option is set to the valuation date of the stock tree. The \\
Asian argument Settle is ignored.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l}
For a European option (AmericanOpt = 0): \\
NINST-by-1 vector of exercise dates. Each row is the schedule \\
for one option. For a European option, there is only one \\
exercise date which is the option expiry date.
\end{tabular} \\
\begin{tabular}{l}
For an American option (AmericanOpt = 1): \\
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any tree date \\
between or including the pair of dates on that row. If only one \\
non-NaN date is listed, or if ExerciseDates is NINST-by-1, \\
the option can be exercised between the valuation date of the \\
stock tree and the single listed exercise date.
\end{tabular} \\
\hline AmericanOpt & \begin{tabular}{l}
(Optional) If AmericanOpt = 0, NaN, or is unspecified, the \\
option is a European option. If AmericanOpt = 1, the option \\
is an American option.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline AvgType & \begin{tabular}{l}
(Optional) Values are 'arithmetic' for arithmetic average \\
(default) or 'geometric' for geometric average.
\end{tabular} \\
\hline AvgPrice & \begin{tabular}{l}
(Optional) Scalar representing the average price of the \\
underlying asset at Settle. This argument is used when \\
AvgDate < Settle. Default is the current stock price.
\end{tabular} \\
\hline AvgDate & \begin{tabular}{l}
(Optional) Scalar representing the date on which the \\
averaging period begins.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = asianbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) calculates the value of fixed- and floating-strike Asian options. To compute the value of a floatingstrike Asian option, specify Strike as NaN. Fixed-strike Asian options are also known as average price options. Floating-strike Asian options are also known as average strike options.

Price is a NINST-by-1 vector of expected prices at time 0 . Pricing of Asian options is done using Hull-White (1993). Consequently, for these options there are no unique prices on the tree nodes with the exception of the root node.

Note: The Settle date for every Asian option is set to the ValuationDate of the stock tree. The Asian argument, Settle, is ignored.

\section*{Examples}

\section*{Price a Floating-Strike Asian Option Using an ITT Equity Tree}

This example shows how to price a floating-strike Asian option using an ITT equity tree by loading the file deriv.mat, which provides ITTTree. The ITTTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat;
OptSpec = 'put';
Strike = NaN;

```
```

Settle = '01-Jan-2006';
ExerciseDates = '01-Jan-2007';
Price = asianbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)
Price =
1.0778

```

\section*{More About}
- "Asian Option" on page 3-41
- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J., and A. White. "Efficient Procedures for Valuing European and American PathDependent Options." Journal of Derivatives. Vol. 1, pp. 21-31.

\author{
See Also \\ instasian | itttree
}

Introduced in R2007a

\section*{asianbyls}

Price European or American Asian option using Longstaff-Schwartz model

\section*{Syntax}
```

Price = asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
Price = asianbyls(___,Name,Value)
[Price,Paths,Times,Z] = asianbyls(RateSpec,StockSpec,OptSpec,Strike,
Settle,
ExerciseDates)
[Price,Paths,Times,Z] = asianbyls(

```
\(\qquad\)
``` ,Name, Value)
```


Description

Price = asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates) returns fixed- and floating-strike Asian option prices using the Longstaff-Schwartz model. asianbyls computes prices of European and American Asian options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium. To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Fixed-strike Asian options are also known as average price options and floating-strike Asian options are also known as average strike options.

Price = asianbyls(\qquad , Name, Value) returns fixed- and floating-strike Asian option prices using optional name-value pair arguments and the Longstaff-Schwartz model. asianbyls computes prices of European and American Asian options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium. To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Fixed-strike Asian options are also known as average price options and floating-strike Asian options are also known as average strike options.

```
[Price,Paths,Times,Z] = asianbyls(RateSpec,StockSpec,OptSpec,Strike,
Settle,
```

ExerciseDates) returns fixed- and floating-strike Asian option Price, Paths, Times, and Z values using the Longstaff-Schwartz model. asianbyls computes prices of European and American Asian options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium. To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Fixed-strike Asian options are also known as average price options and floating-strike Asian options are also known as average strike options.
[Price,Paths,Times,Z] = asianbyls(\qquad , Name, Value) returns fixed and floating strike Asian option Price, Paths, Times, and Z values using optional namevalue pair arguments and the Longstaff-Schwartz model. asianbyls computes prices of European and American Asian options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium. To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Fixed-strike Asian options are also known as average price options and floating-strike Asian options are also known as average strike options.

Examples

Compute the Price of an Asian Option Using the Longstaff-Schwartz Model

Define the RateSpec.

```
Rates = 0.05;
StartDate = 'Jan-1-2013';
EndDate = 'Jan-1-2014';
RateSpec =
    struct with fields:
            FinObj: 'RateSpec'
            Compounding: -1
                Disc: 0.9512
            Rates: 0.0500
            EndTimes: 1
            StartTimes: 0
            EndDates: 735600
```

RateSpec $=$ intenvset('ValuationDate', StartDate, 'StartDates', StartDate, ...
'EndDates', EndDate,'Compounding', -1, 'Rates', Rates)

StartDates: 735235

ValuationDate: 735235

Basis: 0
EndMonthRule: 1

Define the StockSpec for the asset.

```
AssetPrice = 100;
Sigma = 0.2;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
    struct with fields:
            FinObj: 'StockSpec'
                        Sigma: 0.2000
            AssetPrice: 100
            DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
```

Define the Asian 'call' option.

```
Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';
Strike = 110;
OptSpec = 'call';
```

Compute the price for the European arithmetic average price for the Asian option using the Longstaff-Schwartz model.

```
NumTrials = 10000;
NumPeriods = 100;
AvgType = 'arithmetic';
Antithetic= true;
Price= asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, ...
'NumTrials', NumTrials, 'NumPeriods', NumPeriods,'Antithetic', Antithetic, 'AvgType',
Price =
```

- "Pricing Asian Options"

Input Arguments

RateSpec - Interest-rate term structure

structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

StockSpec - Stock specification for underlying asset

structure
Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, stocks, stock indices, and commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0 .

Data Types: struct

OptSpec - Definition of option

character vector with a value of 'call' or 'put'
Definition of option, specified as 'call' or 'put' using a character vector
Data Types: char

Strike - Option strike price value

nonnegative scalar integer
Option strike price value, specified with a nonnegative scalar integer. To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Floatingstrike Asian options are also known as average strike options.

Data Types: double

Settle - Settlement or trade date

date character vector | nonnegative scalar integer
Settlement or trade date for the Asian option, specified as a nonnegative scalar integer or date character vector.

Data Types: double | char

ExerciseDates - Option exercise dates

date character vector | nonnegative scalar integer
Option exercise dates, specified as a nonnegative scalar integer or date character vector:

- For a European option, use a 1-by-1 vector of dates. For a European option, there is only one ExerciseDates on the option expiry date.
- For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date numbers or cell array of date character vectors, the option can be exercised between Settle and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: Price = asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates, 'NumTrials',

'AmericanOpt' - Option type

0 European (default) | scalar with value [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:

- 0 - European
- 1 -American

Data Types: single | double

'AvgType' - Average types

arithmetic (default) | character vector with values of arithmetic or geometric
Average types, specified as arithmetic for arithmetic average, or geometric for geometric average.

Data Types: char

```
'AvgPrice' - Average price of underlying asset at Settle
scalar
```

Average price of underlying asset at Settle, specified as a scalar.

Note: Use this argument when AvgDate < Settle.

Data Types: double

'AvgDate' - Date averaging period begins
 scalar

Date averaging period begins, specified as a scalar.
Data Types: double

```
'NumTrials' - Simulation trials
1000 (default) | scalar
```

Simulation trials, specified as a scalar number of independent sample paths.
Data Types: double

```
' NumPeriods' - Simulation periods per trial
100 (default) | scalar
```

Simulation periods per trial, specified as a scalar number. NumPeriods is considered only when pricing European Asian options. For American Asian options, NumPeriod is equal to the number of exercise days during the life of the option.

Data Types: double

' Z' - Dependent random variates
 scalar | nonnegative integer

Dependent random variates used to generate the Brownian motion vector (that is, Wiener processes) that drive the simulation, specified as a NumPeriods-by-2-by-NumTrials 3-D time series array.

Data Types: single | double

'Antithetic ' - Indicator for antithetic sampling
 false (default) | logical flag with value of true or false

Logical flag to indicate antithetic sampling, specified with a value of true or false.

Data Types: logical

Output Arguments

Price - Expected price of Asian option

scalar
Expected price of the Asian option, returned as a 1-by-1 scalar.

Paths - Simulated paths of correlated state variables vector

Simulated paths of correlated state variables, returned as a (NumPeriods + 1)-by-1-by-NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector $X(t)$ at time t for a given trial.

Times - Observation times associated with simulated paths
 vector

Observation times associated with the simulated paths, returned as a (NumPeriods + 1)-by-1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.

Z - Dependent random variates
 vector

Dependent random variates, returned, if Z is specified as an optional input argument, the same value is returned. Otherwise, Z contains the random variates generated internally.

More About

- "Asian Option" on page 3-41
- "Supported Equity Derivatives" on page 3-24

See Also

asianbycrr | asianbykv | asianbylevy | asiansensbyls | intenvset | stockspec

Introduced in R2013b

asianbystt

Price Asian options using standard trinomial tree

Syntax

Price = asianbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbystt(\qquad ,AmericanOpt,AvgType,AvgPrice,AvgDate)

Description

Price = asianbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates) prices Asian options using a standard trinomial (STT) tree.

Price = asianbystt(\qquad ,AmericanOpt,AvgType,AvgPrice,AvgDate) prices Asian options using a standard trinomial (STT) tree with optional arguments for AmericanOpt, AvgType, AvgPrice, and AvgDate.

Examples

Price an Asian Option Using the Standard Trinomial Tree Model

Create a RateSpec.

```
StartDates = 'Jan-1-2009';
EndDates = 'Jan-1-2013';
Rates = 0.035;
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)
RateSpec =
    struct with fields:
```

 FinObj: 'RateSpec'
    ```
        Compounding: -1
            Disc: 0.8694
            Rates: 0.0350
            EndTimes: 4
    StartTimes: 0
        EndDates: 735235
    StartDates: 733774
ValuationDate: 733774
        Basis: 1
    EndMonthRule: 1
Create a StockSpec.
AssetPrice = 85;
Sigma = 0.15;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
    struct with fields:
            FinObj: 'StockSpec'
                    Sigma: 0.1500
        AssetPrice: 85
        DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
Create an STTTree.
```

```
NumPeriods = 4;
```

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)
STTTree =
struct with fields:
FinObj: 'STStockTree'
StockSpec: [1\times1 struct]
TimeSpec: [1\times1 struct]

```
```

RateSpec: [1×1 struct]
tObs: [[0 1 1 2 3 4]
dObs: [733774 734139 734504 734869 735235]
STree: {1\times5 cell}
Probs: {[3\times1 double] [3\times3 double] [}3\times5\mathrm{ double] [}3\times7\mathrm{ double]}

```

Define the Asian option and compute the price.
```

Settle = '01-Jan-2009';
ExerciseDates = [datenum('1/1/12');datenum('1/1/13')];
OptSpec = 'call';
Strike = 100;
Price = asianbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates)
Price =

```
    1.6905
    2.6203

\section*{Input Arguments}

\section*{STTTree - Stock tree structure for standard trinomial tree}
structure
Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

\section*{OptSpec - Definition of option}
character vector with value 'call' or 'put'
Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

\section*{Strike - Option strike price value}
matrix of nonnegative integers
Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix of strike price values. To compute the value of a floating-strike Asian option,

Strike should be specified as NaN. Floating-strike Asian options are also known as average strike options.

Data Types: double

\section*{Settle - Settlement date or trade date \\ nonnegative integer | date character vector}

Settlement date or trade date for the Asian option, specified as a NINST-by-1 matrix of settlement or trade dates using nonnegative integers or date character vectors.

Note: The Settle date for every Asian option is set to the ValuationDate of the stock tree. The Asian argument, Settle, is ignored.

\section*{Data Types: double | char}

\section*{ExerciseDates - Option exercise dates}
nonnegative integer | date character vector
Option exercise dates, specified as a nonnegative scalar integer or date character vector:
- For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one ExerciseDates on the option expiry date.
- For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or cell array of character vectors, the option can be exercised between ValuationDate of the stock tree and the single listed ExerciseDates.

\section*{Data Types: double | char}

\section*{AmericanOpt - Option type}

0 European (default) | scalar with values [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European
- 1 -American

Data Types: single | double

\section*{AvgType - Average types}
arithmetic (default) | character vector with values of arithmetic or geometric
Average types, specified as arithmetic for arithmetic average, or geometric for geometric average.

Data Types: char
AvgPrice - Average price of underlying asset at Settle scalar

Average price of underlying asset at Settle, specified as a scalar.

Note: Use this argument when AvgDate < Settle.

Data Types: double
AvgDate - Date averaging period begins
scalar
Date averaging period begins, specified as a scalar.
Data Types: double

\section*{Output Arguments}

Price - Expected prices for Asian options at time 0
matrix
Expected prices for Asian options at time 0, returned as a NINST-by-1 matrix. Pricing of Asian options is done using Hull-White (1993). Consequently, for these options there are no unique prices on the tree nodes with the exception of the root node.

\section*{More About}
- "Asian Option" on page 3-41
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J., and A. White. "Efficient Procedures for Valuing European and American PathDependent Options." Journal of Derivatives. Vol. 1, pp. 21-31.

\author{
See Also \\ instasian | sttprice | sttsens | stttimespec | stttree \\ Introduced in R2015b
}

\section*{asiansensbyls}

Calculate European or American Asian option prices or sensitivities using LongstaffSchwartz model

\section*{Syntax}

PriceSens = asiansensbyls(RateSpec,StockSpec,OptSpec,StrikeSettle, ExerciseDates)
PriceSens = asiansensbyls( \(\qquad\) ,Name, Value)
[PriceSens,Path,Times,Z] = asiansensbyls(RateSpec,StockSpec,OptSpec, StrikeSettle, ExerciseDates)
[PriceSens,Path,Times,Z] = asiansensbyls( \(\qquad\) , Name, Value)

\section*{Description}

PriceSens = asiansensbyls(RateSpec,StockSpec,OptSpec,StrikeSettle, ExerciseDates) returns Asian option prices or sensitivities for fixed- and floatingstrike Asian options using the Longstaff-Schwartz model. asiansensbyls supports European and American Asian options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium. To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Fixed-strike Asian options are also known as average price options and floating-strike Asian options are also known as average strike options.

PriceSens = asiansensbyls( \(\qquad\) , Name, Value) returns Asian option prices or sensitivities for fixed- and floating-strike Asian options using optional name-value pair arguments and the Longstaff-Schwartz model. asiansensbyls supports European and American Asian options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium. To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Fixed-strike Asian options are also known as average price options and floating-strike Asian options are also known as average strike options.
[PriceSens,Path,Times,Z] = asiansensbyls(RateSpec,StockSpec,OptSpec, StrikeSettle,

ExerciseDates) returns Asian option prices or sensitivities (PriceSens, Path, Times, and \(Z\) ) for fixed- and floating-strike Asian options using the Longstaff-Schwartz model. asiansensbyls supports European and American Asian options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium. To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Fixed-strike Asian options are also known as average price options and floating-strike Asian options are also known as average strike options.
[PriceSens, Path,Times, Z] = asiansensbyls( ___ , Name, Value) returns Asian option prices or sensitivities (PriceSens, Path, Times, and Z) for fixed- and floatingstrike Asian options using optional name-value pair arguments and the LongstaffSchwartz model. asiansensbyls supports European and American Asian options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium. To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Fixed-strike Asian options are also known as average price options and floating-strike Asian options are also known as average strike options.

\section*{Examples}

Compute the Price and Sensitivities of an Asian Option Using the Longstaff-Schwartz Model
Define the RateSpec.
```

Rates = 0.05;
StartDate = 'Jan-1-2013';
EndDate = 'Jan-1-2014';
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9512
Rates: 0.0500
EndTimes: 1
StartTimes: 0
EndDates: 735600

```
RateSpec \(=\) intenvset('ValuationDate', StartDate, 'StartDates', StartDate, ...
'EndDates', EndDate,'Compounding', -1, 'Rates', Rates)
```

 StartDates: 735235
 ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Define the StockSpec for the asset.
```

AssetPrice = 100;
Sigma = 0.2;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2000
AssetPrice: 100
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the Asian 'call' option.
```

Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';
Strike = 110;
OptSpec = 'call';

```

Compute the price for the European arithmetic average price and sensitivities for the Asian option using the Longstaff-Schwartz model.
```

NumTrials = 10000;
NumPeriods = 100;
AvgType = 'arithmetic';
Antithetic= true;
OutSpec = {'Price', 'Delta', 'Gamma'};
PriceSens = asiansensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates,
'NumTrials', NumTrials, 'NumPeriods', NumPeriods,'Antithetic', Antithetic, 'AvgType',
AvgType,'OutSpec',OutSpec)

```

\section*{PriceSens =}
1.9693
- "Pricing Asian Options"

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, stocks, stock indices, and commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0 .
Data Types: struct

\section*{OptSpec - Definition of option}
character vector with value 'call' or 'put'
Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

\section*{Strike - Option strike price value \\ nonnegative scalar integer}

Option strike price value, specified with a nonnegative scalar integer. To compute the value of a floating-strike Asian option, Strike should be specified as NaN. Floatingstrike Asian options are also known as average strike options.

\section*{Data Types: double}

\section*{Settle - Settlement date or trade date \\ nonnegative scalar integer | date character vector}

Settlement date or trade date for the Asian option, specified as a nonnegative scalar integer or date character vector.

Data Types: double | char

\section*{ExerciseDates - Option exercise dates}
nonnegative integer | date character vector
Option exercise dates, specified as a nonnegative scalar integer or date character vector:
- For a European option, use a 1-by-1 vector of dates. For a European option, there is only one ExerciseDates on the option expiry date.
- For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1 -by- 1 vector of serial date numbers or cell array of character vectors, the option can be exercised between Settle and the single listed ExerciseDates.

\section*{Data Types: double | char}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: PriceSens = asiansensbyls(RateSpec, StockSpec, OptSpec,Strike, Settle, ExerciseDates, 'NumTrial NumPeriods,'Antithetic',Antithetic,'AvgType',AvgType, 'OutSpec', \{'All'\})

\section*{'AmericanOpt ' - Option type}

0 European (default) | scalar with values [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European
- 1 -American

Data Types: single | double

\section*{'AvgType ' - Average types}
arithmetic (default) | character vector with values of arithmetic or geometric
Average types, specified as arithmetic for arithmetic average, or geometric for geometric average.

Data Types: char
'AvgPrice ' - Average price of underlying asset at Settle
scalar
Average price of underlying asset at Settle, specified as a scalar.

Note: Use this argument when AvgDate < Settle.

\section*{Data Types: double}

\section*{'AvgDate ' - Date averaging period begins \\ scalar}

Date averaging period begins, specified as a scalar.
Data Types: double
```

'NumTrials' - Simulation trials
1000 (default) | scalar

```

Simulation trials, specified as a scalar number of independent sample paths.

\section*{Data Types: double}

\section*{' NumPeriods ' - Simulation periods per trial 100 (default) | scalar}

Simulation periods per trial, specified as a scalar number. NumPeriods is considered only when pricing European Asian options. For American Asian options, NumPeriod is equal to the number of exercise days during the life of the option.

\section*{Data Types: double}

\section*{' Z' - Dependent random variates \\ scalar | nonnegative integer}

Dependent random variates used to generate the Brownian motion vector (that is, Wiener processes) that drive the simulation, specified as a NumPeriods-by-2-by-NumTrials 3-D time series array.

Data Types: single | double

\section*{'Antithetic' - Indicates antithetic sampling \\ false (default) | logical flag with value of true or false}

Indicates antithetic sampling, specified with a value of true or false.
Data Types: logical
```

'OutSpec' - Define outputs
{'Price'} (default)| character vector with values 'Price','Delta', 'Gamma',
'Vega','Lambda','Rho','Theta', and 'All' | cell array of character vectors with
values 'Price','Delta','Gamma', 'Vega','Lambda','Rho','Theta', and 'All'

```

Define outputs specifying NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:

Example: OutSpec =
\{'delta','gamma','vega','lambda','rho','theta','price'\}
Data Types: char | cell

\section*{Output Arguments}

PriceSens - Expected price or sensitivities of Asian option
scalar
Expected price or sensitivities (defined by OutSpec) of the Asian option, returned as a 1-by-1 array.

\section*{Path - Simulated paths of correlated state variables vector}

Simulated paths of correlated state variables, returned as a (NumPeriods +1 )-by-2-by-NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector \(X(t)\) at time \(t\) for a given trial.

\section*{Times - Observation times associated with simulated paths}
vector
Observation times associated with simulated paths, returned as a (NumPeriods +1 )-by- 1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.

\section*{Z - Dependent random variates}

\section*{vector}

Dependent random variates, returned, if \(Z\) is specified as an optional input argument, the same value is returned. Otherwise, \(Z\) contains the random variates generated internally.

\section*{More About}
- "Asian Option" on page 3-41
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
asianbycrr | asianbykv | asianbylevy | asianbyls | intenvset | stockspec

\section*{Introduced in R2013b}

\section*{asianbykv}

Prices European geometric Asian options using Kemna-Vorst model

\section*{Syntax}

Price = asianbykv(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates)

\section*{Description}

Price = asianbykv(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates) returns prices of European geometric Asian options using the KemnaVorst model.

\section*{Examples}

\section*{Compute the Price of an Asian Option Using the Kemna-Vorst Model}

Define the RateSpec.
```

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.035;
Basis = 1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates,'Rates', Rates, 'Compounding', -1, 'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9656
Rates: 0.0350
EndTimes: 1

```
```

 StartTimes: 0
 EndDates: 735600
 StartDates: 735235
 ValuationDate: 735235
Basis: 1
EndMonthRule: 1

```

Define the StockSpec for the asset.
```

AssetPrice = 100;
Sigma = 0.15;
DivType = 'continuous';
DivAmounts = 0.03;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.1500
AssetPrice: 100
DividendType: {'continuous'}
DividendAmounts: 0.0300
ExDividendDates: []

```

Define the Asian 'call' and 'put' options.
```

Strike = 102;
OptSpec = {'put'; 'call'};
Settle = 'Jan-1-2013';
Maturity = 'Apr-1-2013';

```

Compute the European geometric Average Price for the Asian option using the KemnaVorst model.

Price = asiansensbykv(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price =
2.8881

\subsection*{0.9210}
- "Pricing Asian Options"

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}

\author{
structure
}

The annualized continuously compounded interest-rate term structure specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset structure}

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, stocks, stock indices and commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0 .

Data Types: struct

\section*{OptSpec - Definition of option}
character vector with value 'call' or 'put ' | cell array of character vectors
Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.

Data Types: cell | char

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers
Option strike price values, specified with nonnegative integers using a NINST-by-1 vector.

Data Types: single | double

\section*{Settle - Settlement dates or trade dates \\ nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors}

Settlement dates or trade dates for the Asian option, specified as a character vector or as nonnegative integers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

\section*{ExerciseDates - European option exercise dates}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

European option exercise dates, specified as nonnegative integers or date character vectors using a NINST-by-1 vector or cell array of character vector dates. For a European option, there is only one ExerciseDates on the option expiry date.
```

Data Types: double | char | cell

```

\section*{Output Arguments}

Price - Expected prices of an Asian option
vector
Expected prices of the Asian option, returned as an NINST-by-1 vector.

\section*{More About}
- "Asian Option" on page 3-41
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
asianbycrr | asianbylevy | asianbyls | asiansensbykv | intenvset | stockspec

Introduced in R2013b

\section*{asiansensbykv}

Calculate prices or sensitivities of European geometric Asian options using Kemna-Vorst model

\section*{Syntax}

PriceSens = asiansensbykv(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates)
PriceSens = asiansensbykv( \(\qquad\) , Name, Value)

\section*{Description}

PriceSens = asiansensbykv(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates) returns prices or sensitivities of European geometric Asian options using Kemna-Vorst model.

PriceSens = asiansensbykv(__, Name, Value) returns prices or sensitivities of European geometric Asian options using optional name-value pairs for the Kemna-Vorst model.

\section*{Examples}

\section*{Compute the Price and Sensitivities of an Asian Option Using the Kemna-Vorst Model}

Define the RateSpec.
```

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.035;
Basis = 1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates,'Rates', Rates, 'Compounding', -1, 'Basis', Basis)
RateSpec =

```
```

struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9656
Rates: 0.0350
EndTimes: 1
StartTimes: 0
EndDates: 735600
StartDates: 735235
ValuationDate: 735235
Basis: 1
EndMonthRule: 1

```

Define the StockSpec for the asset.
```

AssetPrice = 100;
Sigma = 0.15;
DivType = 'continuous';
DivAmounts = 0.03;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.1500
AssetPrice: 100
DividendType: {'continuous'}
DividendAmounts: 0.0300
ExDividendDates: []

```

Define the Asian 'call' and 'put' options.
```

Strike = 102;

```
OptSpec = \{'put'; 'call'\};
Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';

Compute the European geometric Average Price and sensitivities for the Asian option using the Kemna-Vorst model.
```

OutSpec = {'Price', 'Delta', 'Gamma'};
PriceSens = asiansensbykv(RateSpec, StockSpec, OptSpec, Strike,...
Settle, ExerciseDates,'OutSpec', OutSpec)

```
PriceSens =
4.3871
2.5163
- "Pricing Asian Options"

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
The annualized continuously compounded interest-rate term structure specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

\section*{Data Types: struct}

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, stocks, stock indices and commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0 .

Data Types: struct

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put ' | cell array of character vectors
Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.

Data Types: cell | char

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers
Option strike price values, specified with nonnegative integers using a NINST- by-1 vector.

Data Types: single | double

\section*{Settle - Settlement dates or trade dates}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement dates or trade dates for the Asian option, specified as nonnegative integers or date character vectors using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

\section*{ExerciseDates - Option exercise dates}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

European option exercise dates, specified as nonnegative integers or date character vectors using a NINST-by- 1 vector or cell array of character vector dates. For a European option, there is only one ExerciseDates on the option expiry date.
Data Types: double | char | cell

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.
Example: PriceSens = asiansensbykv(RateSpec, StockSpec,OptSpec, Strike, Settle, ExerciseDates, 'OutSpec' \{'All'\})
'OutSpec ' - Define outputs
\{'Price'\} (default) | character vector with values: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta' and 'All'. | cell array of character vectors with values: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta' and 'All'.

Define outputs specifying NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec \(=\) \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as:

\section*{Example: OutSpec =}
\{'delta','gamma','vega','lambda','rho','theta','price'\}
Data Types: char | cell

\section*{Output Arguments}

PriceSens - Expected prices or sensitivities of the Asian option
vector
Expected prices or sensitivities (defined by OutSpec) of the Asian option, returned as an 1 -by- 1 vector. If the OutSpec is not specified only price is returned.

\section*{More About}
- "Asian Option" on page 3-41
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ asianbycrr | asianbykv | asianbylevy | asianbyls | intenvset | stockspec \\ Introduced in R2013b
}

\section*{asianbylevy}

Price of European arithmetic Asian options using Levy model

\section*{Syntax}

Price = asianbylevy(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates)

\section*{Description}

Price = asianbylevy (RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates) returns European arithmetic average pricing for Asian options using the Levy model.

\section*{Examples}

\section*{Compute the Price of an Asian Option Using the Levy Model}

Define the RateSpec.
```

Rates = 0.07;
StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
EndDates, 'Rates', Rates, 'Compounding', -1)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9324
Rates: 0.0700
EndTimes: 1

```
RateSpec \(=\) intenvset('ValuationDate', StartDates, 'StartDates', StartDates, 'EndDates'
```

 StartTimes: 0
 EndDates: 735600
 StartDates: 735235
 ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Define the StockSpec for the asset.
```

AssetPrice = 6.8;
Sigma = 0.14;
DivType = 'continuous';
DivAmounts = 0.09;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.1400
AssetPrice: 6.8000
DividendType: {'continuous'}
DividendAmounts: 0.0900
ExDividendDates: []

```

Define two options for 'call' and 'put'.
Settle = 'Jan-1-2013';
```

Maturity = 'July-1-2013';

```
Strike = 6.9;
OptSpec = \{'call'; 'put'\};

Compute the European arithmetic average price for the Asian option using the Levy model.

Price= asianbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price =
0.0944
- "Pricing Asian Options"

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset structure}

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, stocks, stock indices, and commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0 .

Data Types: struct

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put' | cell array of character vectors
Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.
Data Types: char | cell

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers
Option strike price values, specified with nonnegative integers as a NINST-by-1 vector.
Data Types: single | double

\section*{Settle - Settlement dates or trade dates}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement dates or trade dates for the Asian option, specified as nonnegative integers or date character vectors using a NINST-by- 1 vector or cell array of character vector dates.
Data Types: double | char | cell

\section*{ExerciseDates - Option exercise dates}

\section*{nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors}

Option exercise dates, specified as nonnegative integers or date character vectors using a NINST-by- 1 vector or cell array of character vector dates. For a European option, there is only one ExerciseDates on the option expiry date.

Data Types: double | char | cell

\section*{Output Arguments}

Price - Expected prices of Asian option
vector
Expected prices of the Asian option, returned as a NINST-by-1 vector.

\section*{More About}
- "Asian Option" on page 3-41
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
asianbycrr | asianbykv | asianbyls | asiansensbylevy | intenvset | stockspec

Introduced in R2013b

\section*{asiansensbylevy}

Calculate prices or sensitivities of European arithmetic Asian options using Levy model

\section*{Syntax}
```

PriceSens = asiansensbylevy(RateSpec,StockSpec,OptSpec,StrikeSettle,
ExerciseDates)
PriceSens = asiansensbylevy(___ ,Name,Value)

```

\section*{Description}

PriceSens = asiansensbylevy(RateSpec,StockSpec,OptSpec,StrikeSettle, ExerciseDates) returns European average pricing or sensitivities for arithmetic Asian options using the Levy model.

PriceSens = asiansensbylevy( \(\qquad\) , Name, Value) returns European average pricing or sensitivities for arithmetic Asian options using the Levy model with optional name-value pair arguments.

\section*{Examples}

\section*{Compute the Price and Sensitivities of an Asian Option Using the Levy Model}

Define the RateSpec.
```

Rates = 0.07;
StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
RateSpec =
struct with fields:

```
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, 'EndDates'
EndDates, 'Rates', Rates, 'Compounding', -1)
```

 FinObj: 'RateSpec'
 Compounding: -1
 Disc: 0.9324
 Rates: 0.0700
 EndTimes: 1
 StartTimes: 0
 EndDates: 735600
 StartDates: 735235
 ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Define the StockSpec for the asset.
```

AssetPrice = 6.8;
Sigma = 0.14;
DivType = 'continuous';
DivAmounts = 0.09;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.1400
AssetPrice: 6.8000
DividendType: {'continuous'}
DividendAmounts: 0.0900
ExDividendDates: []

```

Define two options for a 'call' and 'put'.
```

Settle = 'Jan-1-2013';

```
ExerciseDates = 'Jan-1-2014';
Strike = 6.9;
OptSpec = \{'call'; 'put'\};

Compute the European arithmetic average price and sensitivities for the Asian option using the Levy model.
```

OutSpec = {'Price', 'Delta', 'Gamma'};

```

PriceSens = asiansensbylevy(RateSpec, StockSpec, OptSpec, Strike,... Settle, ExerciseDates,'OutSpec', OutSpec)

PriceSens =
0.1358
0.2921
- "Pricing Asian Options"

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, stocks, stock indices, and commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0 .
Data Types: struct

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put ' | cell array of character vectors
Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.

Data Types: char | cell

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers
Option strike price values, specified with nonnegative integers using a NINST-by-1 vector.

Data Types: single | double

\section*{Settle - Settlement dates or trade dates}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement dates or trade dates for the Asian option, specified as nonnegative integers or date character vectors using a NINST-by- 1 vector or cell array of character vector dates.

Data Types: double | char | cell

\section*{ExerciseDates - Option exercise dates}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Option exercise dates, specified as nonnegative integers or date character vectors using a NINST-by- 1 vector or cell array of character vector dates. For a European option, there is only one ExerciseDates on the option expiry date.

Data Types: double | char | cell

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: PriceSens = asiansensbylevy (RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, 'OutSpe \{'All'\})

\section*{'OutSpec' - Define outputs}
\{'Price'\} (default) | character vector with values: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'. | cell array of character vectors with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs specifying NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec \(=\) \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:

Example: OutSpec =
```

{'delta','gamma','vega','lambda','rho','theta','price'}

```

Data Types: char | cell

\section*{Output Arguments}

PriceSens - Expected prices or sensitivities of Asian option
vector
Expected prices or sensitivities (defined by OutSpec) of the Asian option, returned as an 1 -by- 1 vector. If the OutSpec is not specified only the price is returned.

\section*{More About}
- "Asian Option" on page 3-41
- "Supported Equity Derivatives" on page 3-24
```

See Also
asianbycrr | asianbykv | asianbykv | asianbyls | intenvset | stockspec
Introduced in R2013b

```

\section*{assetbybls}

Determine price of asset-or-nothing digital options using Black-Scholes model

\section*{Syntax}

Price = assetbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 cell array of character vectors with values of \\
'call ' or ' put '.
\end{tabular} \\
\hline Strike & NINST-by-1 vector of payoff strike price values. \\
\hline
\end{tabular}

\section*{Description}

Price = assetbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike) computes asset-or-nothing option prices using the Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

\section*{Examples}

\section*{Compute Asset-Or-Nothing Digital Option Prices Using the Black-Scholes Option Pricing Model}

Consider two asset-or-nothing put options on a nondividend paying stock with a strike of 95 and 93 and expiring on January 30, 2009. On November 3, 2008 the stock is trading at 97.50. Using this data, calculate the price of the asset-or-nothing put options if the riskfree rate is \(4.5 \%\) and the volatility is \(22 \%\). First, create the RateSpec.
```

Settle = 'Nov-3-2008';
Maturity = 'Jan-30-2009';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9893
Rates: 0.0450
EndTimes: 0.2391
StartTimes: 0
EndDates: 733803
StartDates: 733715
ValuationDate: 733715
Basis: 0
EndMonthRule: 1
Define the StockSpec.

```
```

AssetPrice = 97.50;

```
AssetPrice = 97.50;
Sigma = .22;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
StockSpec =
    struct with fields:
```

 struct with fields:
    ```
```

 FinObj: 'StockSpec'
 Sigma: 0.2200
 AssetPrice: 97.5000
 DividendType: []
 DividendAmounts: 0
ExDividendDates: []

```

Define the put options.
OptSpec = \{'put'\};
Strike = [95;93];
Calculate the price.
Paon = assetbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

\section*{Paon \(=\)}
33.7666
26.9662
- "Pricing Using the Black-Scholes Model" on page 3-142

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
assetsensbybls | cashbybls | gapbybls | supersharebybls

\section*{Introduced in R2009a}

\section*{assetsensbybls}

Determine price or sensitivities of asset-or-nothing digital options using Black-Scholes model

\section*{Syntax}

PriceSens = assetsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
PriceSens = assetsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, OutSpec)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline RateSpec & The annualized, continuously compounded rate term structure. For information on the interest rate specification, see intenvset. \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & NINST-by- 1 cell array of character vectors with values of 'call' or 'put'. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline OutSpec & \begin{tabular}{l}
(Optional) All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. You can specify parameter name/value pairs in any order. Names are case-insensitive and partial matches are allowed provided no ambiguities exist. Valid parameter names are: \\
- NOUT-by-1 or 1-by-NOUT cell array of character vectors indicating the nature and order of the outputs for the function. Possible values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.
\end{tabular} \\
\hline
\end{tabular}
\(\left\lvert\,\)\begin{tabular}{l} 
For example, OutSpec = \{'Price'; 'Lambda'; \\
'Rho'\} specifies that the output should be Price, Lambda, \\
and Rho, in that order.
\end{tabular}\(\quad\)\begin{tabular}{l} 
To invoke from a function: [Price, Lambda, Rho] \\
= assetsensbybls (..., 'OutSpec', \{'Price', \\
'Lambda', 'Rho'\}) \\
\begin{tabular}{l} 
OutSpec = \{'All'\} specifies that the output should be \\
Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, \\
in that order. This is the same as specifying OutSpec as \\
OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', \\
'Rho', 'Theta', 'Price'\};. \\
Default is OutSpec =\{'Price'\}.
\end{tabular} \\
\hline
\end{tabular}\right.

\section*{Description}

PriceSens = assetsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike) computes asset-or-nothing option prices using the Black-Scholes option pricing model.

PriceSens = assetsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, OutSpec) includes the parameter/value pairs defined for OutSpec, and computes asset-or-nothing option prices or sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices or sensitivities.

\section*{Examples}

\section*{Compute Asset-Or-Nothing Digitial Option Prices and Sensitivities Using the Black-Scholes Option Pricing Model}

Consider two asset-or-nothing put options on a nondividend paying stock with a strike of 95 and 93 and expiring on January 30, 2009. On November 3, 2008 the stock is trading at 97.50 . Using this data, calculate the price and sensitivity of the asset-or-nothing put options if the risk-free rate is \(4.5 \%\) and the volatility is \(22 \%\). First, create the RateSpec.
```

Settle = 'Nov-3-2008';
Maturity = 'Jan-30-2009';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9893
Rates: 0.0450
EndTimes: 0.2391
StartTimes: 0
EndDates: 733803
StartDates: 733715
ValuationDate: 733715
Basis: 0
EndMonthRule: 1
Define the StockSpec.
AssetPrice = 97.50;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2200
AssetPrice: 97.5000
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the put options.
```

OptSpec = {'put'};
Strike = [95;93];

```

Calculate the delta, price, and gamma.
OutSpec = \{ 'delta';'price';'gamma'\}; [Delta, Price, Gamma] = assetsensbybls(RateSpec, StockSpec, Settle,... Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta =
\(-3.0833\)
-2.8337

Price \(=\)
33.7666
26.9662

Gamma =
0.0941
0.1439
- "Pricing Using the Black-Scholes Model" on page 3-142

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
assetbybls | cashbybls | gapbybls | supersharebybls

\section*{Introduced in R2009a}

\section*{barrierbycrr}

Price barrier option from Cox-Ross-Rubinstein binomial tree

\section*{Syntax}
[Price, PriceTree] = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline CRRTree & Stock tree structure created by crrtree. \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 list of character vector values for 'Call' or \\
'Put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
NINST-by-1 vector of strike price values. Each row is the \\
schedule for one option.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
NINST-by-1 vector of Settle dates. The settle date for every \\
barrier option is set to the valuation date of the stock tree. \\
The barrier argument Settle is ignored.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l} 
For a European option (AmericanOpt = 0): \\
NINST-by-1 vector of exercise dates. Each row is the schedule \\
for one option. For a European option, there is only one \\
exercise date, the option expiry date.
\end{tabular} \\
\begin{tabular}{l} 
For an American option (AmericanOpt = 1): \\
NINST-by-2 vector of exercise date boundaries. For each
\end{tabular} \\
instrument, the option can be exercised on any tree date \\
between or including the pair of dates on that row. If only one \\
non-NaN date is listed, or if ExerciseDates is NINST-by-1, \\
the option can be exercised between the valuation date of the \\
stock tree and the single listed exercise date.
\end{tabular}
\begin{tabular}{|c|c|}
\hline AmericanOpt & If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If AmericanOpt \(=1\), the option is an American option. \\
\hline BarrierSpec & List of character vector values: ' UI ' - Up Knock In ' UO ' - Up Knock Out ' DI ' — Down Knock In ' DO ' - Down Knock Out \\
\hline Barrier & Vector of barrier values. \\
\hline Rebate & (Optional) NINST-by-1 matrix of rebate values. Default \(=0\). For Knock-in options, the rebate is paid at expiry. For Knockout options, the rebate is paid when the barrier is reached. \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

See instbarrier for a description of barrier contract arguments.

\section*{Description}
[Price, PriceTree] = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options) computes the price of barrier options using a CRR binomial tree.

Price is a NINST-by- 1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

\section*{Price a Barrier Option Using a CRR Binomial Tree}

This example shows how to price a barrier option using a CRR binomial tree by loading the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat;
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 102;
Price = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)

```
Price \(=\)
    12.1272
- "Computing Prices Using CRR" on page 3-120
- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Pricing European Call Options Using Different Equity Models"

\section*{More About}
- "Barrier Option" on page 3-25
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Derman, E., I. Kani, D. Ergener and I. Bardhan. "Enhanced Numerical Methods for Options with Barriers." Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65-74.

\author{
See Also \\ crrtree | instbarrier \\ Introduced before R2006a
}

\section*{barrierbyeqp}

Price barrier option from Equal Probabilities binomial tree

\section*{Syntax}
[Price, PriceTree] = barrierbyeqp(EQPTree, OptSpec, Strike, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline EQPTree & Stock tree structure created by eqptree. \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 list of character vector values for 'Call' or \\
'Put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
NINST-by-1 vector of strike price values. Each row is the \\
schedule for one option.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
NINST-by-1 vector of Settle dates. The settle date for every \\
barrier option is set to the valuation date of the stock tree. \\
The barrier argument Settle is ignored.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l} 
For a European option (AmericanOpt = 0): \\
NINST-by-1 vector of exercise dates. Each row is the schedule \\
for one option. For a European option, there is only one \\
exercise date, the option expiry date.
\end{tabular} \\
\begin{tabular}{l} 
For an American option (AmericanOpt = 1): \\
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any tree date \\
between or including the pair of dates on that row. If only one \\
non-NaN date is listed, or if ExerciseDates is NINST-by-1, \\
the option can be exercised between the valuation date of the \\
stock tree and the single listed exercise date.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline AmericanOpt & If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If AmericanOpt \(=1\), the option is an American option. \\
\hline BarrierSpec & List of character vector values: ' UI ' — Up Knock In 'UO ' - Up Knock Out ' DI ' — Down Knock In ' DO ' - Down Knock Out \\
\hline Barrier & Vector of barrier values. \\
\hline Rebate & (Optional) NINST-by-1 matrix of rebate values. Default \(=0\). For Knock-in options, the rebate is paid at expiry. For Knockout options, the rebate is paid when the barrier is reached. \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

See instbarrier for a description of barrier contract arguments.

\section*{Description}
[Price, PriceTree] = barrierbyeqp(EQPTree, OptSpec, Strike, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options) computes the price of barrier options using an equal probabilities binomial tree.

Price is a NINST-by- 1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

\section*{Price a Barrier Option Using an EQP Equity Tree}

This example shows how to price a barrier option using an EQP equity tree by loading the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat;
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 102;
Price = barrierbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)

```

\section*{Price =}
12.2632
- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Pricing European Call Options Using Different Equity Models"

\section*{More About}
- "Barrier Option" on page 3-25
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Derman, E., I. Kani, D. Ergener and I. Bardhan. "Enhanced Numerical Methods for Options with Barriers." Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65-74.

\author{
See Also \\ eqptree \| instbarrier \\ Introduced before R2006a
}

\section*{barrierbyfd}

Calculate barrier option prices using finite difference method

\section*{Syntax}
```

[Price,PriceGrid,AssetPrices,Times] = barrierbyfd(RateSpec,
StockSpec,
OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[Price,PriceGrid,AssetPrices,Times] = barrierbyfd(___Name,Value)

```

\section*{Description}
[Price,PriceGrid,AssetPrices,Times] = barrierbyfd(RateSpec, StockSpec, OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier) calculates barrier option prices on a single underlying asset using the finite difference method. barrierbyfd assumes that the barrier is continuously monitored. barrierbyfd does not support American knock-in barrier options.
[Price,PriceGrid,AssetPrices,Times] = barrierbyfd( \(\qquad\) Name, Value) adds optional name-value pair arguments. barrierbyfd assumes that the barrier is continuously monitored. barrierbyfd does not support American knock-in barrier options.

\section*{Examples}

\section*{Price a Barrier Down and Out Call Option Using Finite Difference Method}

Create a RateSpec.
AssetPrice \(=50\);
Strike = 45;
Rate \(=0.035\);
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
```

Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity,'Rates', Rate, 'Compounding', -1, 'Basis', Basis)
RateSpec =
struct with fields:
Fin0bj: 'RateSpec'
Compounding: -1
Disc: 0.9656
Rates: 0.0350
EndTimes: 1
StartTimes: 0
EndDates: 736330
StartDates: 735965
ValuationDate: 735965
Basis: 1
EndMonthRule: 1
Create a StockSpec.
StockSpec = stockspec(Volatility, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3000
AssetPrice: 50
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Calculate the price of a European Down and Out call option using Finite Difference.
Barrier = 40;
BarrierSpec = 'DO';
OptSpec = 'Call';

Price = barrierbyfd(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity,... BarrierSpec, Barrier)

Price =
8.5021

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is StockSpec.DividendAmounts.

\section*{Data Types: struct}

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put ' | string object with values 'call' or 'put'

Definition of an option as 'call' or 'put', specified as a character vector or string object with values 'call' or 'put'.

Data Types: char | double

\section*{Strike - Option strike price value \\ integer}

Option strike price value, specified as an integer.
Data Types: double

\section*{Settle - Settlement or trade date nonnegative integer | date character vector | datetime object}

Settlement or trade date for the barrier option, specified as a nonnegative integer, a date character vector, or a datetime object.

Data Types: double | char

\section*{ExerciseDates - Option exercise dates}
date character vector | nonnegative scalar integer | datetime object
Option exercise dates, specified as a date character vector, a nonnegative scalar integer, or datetime object:
- For a European option, use a 1-by-1 vector of dates. For a European option, there is only one ExerciseDates on the option expiry date which is the maturity of the instrument.
- For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1 -by- 1 vector of serial date numbers or a cell array of date character vectors, the option can be exercised between Settle and the single listed date in ExerciseDates.

Data Types: double | char

\section*{BarrierSpec - Barrier option type}
character vector with values: 'UI', 'UO', 'DI', 'DO'
Barrier option type, specified as a character vector with the following values:
- 'UI ' - Up Knock In

This option becomes effective when the price of the underlying asset passes above the barrier level. It gives the option holder the right, but not the obligation, to buy/sell (call/put) the underlying security at the strike price if the underlying asset goes above the barrier level during the life of the option. Note, barrierbyfd does not support American knock-in barrier options.
- 'UO' - Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying security at the strike price as long as the underlying asset does not go above the barrier level during the life of the option. This option terminates when the price of the underlying asset passes above the barrier level. Usually, with an up-and-out option, the rebate is paid if the spot price of the underlying reaches or exceeds the barrier level.
- 'DI ' - Down Knock In

This option becomes effective when the price of the underlying stock passes below the barrier level. It gives the option holder the right, but not the obligation, to buy/ sell (call/put) the underlying security at the strike price if the underlying security goes below the barrier level during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the underlying does not reach the barrier level during the life of the option. Note, barrierbyfd does not support American knock-in barrier options.
- 'DO ' - Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying asset at the strike price as long as the underlying asset does not go below the barrier level during the life of the option. This option terminates when the price of the underlying security passes below the barrier level. Usually the option holder receives a rebate amount if the option expires worthless.
\begin{tabular}{|l|l|ll|}
\hline Option & Barrier Type & Payoff if Barrier Crossed & Payoff if Barrier not Crossed \\
\hline Call/Put & Down Knock-out & Worthless & Standard Call/Put \\
\hline Call/Put & Down Knock-in & Call/Put & Worthless \\
\hline Call/Put & Up Knock-out & Worthless & Standard Call/Put \\
\hline Call/Put & Up Knock-in & Standard Call/Put & Worthless \\
\hline
\end{tabular}

Data Types: char

\section*{Barrier - Barrier value}
scalar integer
Barrier value, specified as a scalar integer.
Data Types: double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.
Example: Price = barrierbyfd(RateSpec,StockSpec,OptSpec, Strike, Settle, Maturity, BarrierSpec, Barr

\author{
'Rebate' - Rebate value
}

0 (default) | scalar integer
Rebate value, specified as a scalar integer. For Knock In options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the barrier is reached.

Data Types: double

\section*{'AssetGridSize' - Size of asset grid used for a finite difference grid 400 (default) | positive scalar}

Size of the asset grid used for finite difference grid, specified as a positive scalar.
Data Types: double

\section*{'TimeGridSize' - Size of time grid used for finite difference grid 100 (default) | positive scalar}

Size of the time grid used for the finite difference grid, specified as a positive scalar.
Data Types: double

\section*{Output Arguments}

\section*{Price - Expected prices for barrier options}
matrix
Expected prices for barrier options, returned as a NINST-by-1 matrix.
PriceGrid - Grid containing prices calculated by finite difference method grid

Grid containing prices calculated by the finite difference method, returned as a grid that is two-dimensional with size PriceGridSize*length(Times). The number of columns does not have to be equal to the TimeGridSize, because ex-dividend dates in the StockSpec are added to the time grid. The price for \(t=0\) is contained in PriceGrid(:, end).

\section*{AssetPrices - Prices of asset defined by StockSpec}
vector
Prices of the asset defined by the StockSpec corresponding to the first dimension of PriceGrid, returned as a vector.

\section*{Times - Times corresponding to second dimension of PriceGrid vector}

Times corresponding to the second dimension of the PriceGrid, returned as a vector.

\section*{Limitations}
barrierbyfd does not support American knock-in barrier options.

\section*{More About}

\section*{Barrier Option}

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has been reached or not reached. The payoff for this type of option depends on whether the underlying asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of the option.
- "Barrier Option" on page 3-25
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J. Options, Futures, and Other Derivatives. Fourth Edition. Prentice Hall. 2000, pp. 646-649.

Aitsahlia, F., L. Imhof, and T.L. Lai. "Pricing and hedging of American knock-in options." The Journal of Derivatives. Vol. 11.3, 2004, pp. 44-50.

Rubinstein M. and E. Reiner. "Breaking down the barriers." Risk. Vol. 4(8), 1991, pp. 2835.
```

See Also
barrierbybls | barrierbyls | barriersensbybls | barriersensbyfd | barriersensbyls

```

Introduced in R2016b

\section*{barriersensbyfd}

Calculate barrier option prices or sensitivities using finite difference method

\section*{Syntax}
[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd(RateSpec, StockSpec,OptSpec,Strike,Settle, ExerciseDates, BarrierSpec, Barrier) [PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd( \(\qquad\) Name, Value)

\section*{Description}
[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd(RateSpec, StockSpec,OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier) calculates barrier option prices or sensitivities of a single underlying asset using the finite difference method. barrierbyfd assumes that the barrier is continuously monitored. barriersesbyfd does not support American knock-in barrier options.
[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd( \(\qquad\)
Name, Value) adds optional name-value pair arguments. barriersesbyfd assumes that the barrier is continuously monitored. barriersensbyfd does not support American knock-in barrier options.

\section*{Examples}

\section*{Calculate Price and Sensitivities for a Barrier Down and Out Call Option Using Finite Difference Method}

\author{
Create a RateSpec.
}
```

AssetPrice = 50;

```
Strike = 45;
Rate \(=0.035\);
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
```

Basis = 1;
RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',...
Maturity,'Rates',Rate,'Compounding', -1,'Basis',Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9656
Rates: 0.0350
EndTimes: 1
StartTimes: 0
EndDates: 736330
StartDates: 735965
ValuationDate: 735965
Basis: 1
EndMonthRule: 1
Create a StockSpec.
StockSpec = stockspec(Volatility,AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3000
AssetPrice: 50
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Calculate the Price, Delta, and Theta of a European Down and Out call option using the finite difference method.

Barrier = 40;
BarrierSpec = 'DO';
```

OptSpec = 'Call';
OutSpec = {'price';'delta';'theta'};
[Price, Delta, Theta] = barriersensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,...
Maturity, BarrierSpec,Barrier,'Outspec',OutSpec)
Price =
8.5021
Delta =
0.8568
Theta =
-1.8501

```

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}

\author{
structure
}

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

\section*{Data Types: struct}

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is StockSpec.DividendAmounts.

Data Types: struct

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put' | string object with values 'call' or 'put'

Definition of an option as 'call' or 'put', specified as a character vector or string object with values 'call' or 'put'.

Data Types: char | double

\section*{Strike - Option strike price value \\ integer}

Option strike price value, specified as an integer.
Data Types: double

\section*{Settle - Settlement or trade date}
nonnegative integer | date character vector | datetime object
Settlement or trade date for the barrier option, specified as a nonnegative integer, a date character vector, or a datetime object.

Data Types: double | char

\section*{ExerciseDates - Option exercise dates}
nonnegative scalar integer | date character vector | datetime object
Option exercise dates, specified as a nonnegative scalar integer, a date character vector, or datetime object:
- For a European option, use a 1-by-1 vector of dates. For a European option, there is only one ExerciseDates on the option expiry date which is the maturity of the instrument.
- For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date numbers or a cell array of date character vectors, the option can be exercised between Settle and the single listed date in ExerciseDates.

Data Types: double | char

\section*{BarrierSpec - Barrier option type}
character vector with values: 'UI', 'UO', 'DI ', 'DO'

Barrier option type, specified as a character vector with the following values:
- 'UI ' - Up Knock In

This option becomes effective when the price of the underlying asset passes above the barrier level. It gives the option holder the right, but not the obligation, to buy/sell (call/put) the underlying security at the strike price if the underlying asset goes above the barrier level during the life of the option. Note, barrierbyfd does not support American knock-in barrier options.
- 'UO' - Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying security at the strike price as long as the underlying asset does not go above the barrier level during the life of the option. This option terminates when the price of the underlying asset passes above the barrier level. Usually, with an up-and-out option, the rebate is paid if the spot price of the underlying reaches or exceeds the barrier level.
- 'DI' - Down Knock In

This option becomes effective when the price of the underlying stock passes below the barrier level. It gives the option holder the right, but not the obligation, to buy/ sell (call/put) the underlying security at the strike price if the underlying security goes below the barrier level during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the underlying does not reach the barrier level during the life of the option. Note, barrierbyfd does not support American knock-in barrier options.
- 'DO ' - Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying asset at the strike price, as long as the underlying asset does not go below the barrier level during the life of the option. This option terminates when the price of the underlying security passes below the barrier level. Usually the option holder receives a rebate amount if the option expires worthless.
\begin{tabular}{|l|l|l|l|}
\hline Option & Barrier Type & Payoff if Barrier Crossed & Payoff if Barrier not Crossed \\
\hline Call/Put & Down Knock-out & Worthless & Standard Call/Put \\
\hline Call/Put & Down Knock-in & Call/Put & Worthless \\
\hline Call/Put & Up Knock-out & Worthless & Standard Call/Put \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Option & Barrier Type & Payoff if Barrier Crossed & Payoff if Barrier not Crossed \\
\hline Call/Put & Up Knock-in & Standard Call/Put & Worthless \\
\hline
\end{tabular}

Data Types: char

\section*{Barrier - Barrier value}
scalar integer
Barrier value, specified as a scalar integer.
Data Types: double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: PriceSens = barriersensbyfd(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity, BarrierSpec,

\section*{'Rebate' - Rebate value \\ 0 (default) | scalar integer}

Rebate value, specified as a scalar integer. For Knock In options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the barrier is reached.
Data Types: double
'OutSpec' - Define outputs
\{'Price'\} (default)| character vector with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specifying a NOUT- by-1 or a 1 -by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = \{'All'\} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity.

Example: OutSpec =
\{'delta', 'gamma', 'vega','lambda', 'rho','theta','price'\}
Data Types: char | cell

\section*{'AssetGridSize' - Size of asset grid used for finite difference grid 400 (default) | positive scalar}

Size of the asset grid used for a finite difference grid, specified as a positive scalar.

\section*{Data Types: double}

\section*{'TimeGridSize ' - Size of time grid used for finite difference grid 100 (default) | positive scalar}

Size of the time grid used for a finite difference grid, specified as a positive scalar.
Data Types: double

\section*{'AmericanOpt ' - Option type}

0 (European) (default) | scalar with values [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European
- 1 -American

Note: barriersensbyfd does not support American knock-in barrier options.

\section*{Data Types: double}

\section*{Output Arguments}

PriceSens - Expected prices or sensitivities values for barrier options matrix

Expected prices or sensitivities (defined using OutSpec) for barrier options, returned as a NINST-by- 1 matrix.

PriceGrid - Grid containing prices calculated by finite difference method grid

Grid containing prices calculated by the finite difference method, returned as a two-dimensional grid with size PriceGridSize*length(Times). The number of columns does not have to be equal to the TimeGridSize, because ex-dividend dates in the StockSpec are added to the time grid. The price for \(t=0\) is contained in PriceGrid(:, end).

\section*{AssetPrices - Prices of the asset defined by StockSpec}
vector
Prices of the asset defined by the StockSpec corresponding to the first dimension of PriceGrid, returned as a vector.

\section*{Times - Times corresponding to second dimension of PriceGrid vector}

Times corresponding to the second dimension of the PriceGrid, returned as a vector.

\section*{Limitations}
barriersensbyfd does not support American knock-in barrier options.

\section*{More About}

\section*{Barrier Option}

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has been reached or not reached. The payoff for this type of option depends on whether the underlying asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of the option.
- "Barrier Option" on page 3-25
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646-649.

Aitsahlia, F., L. Imhof, and T.L. Lai. "Pricing and hedging of American knock-in options." The Journal of Derivatives. Vol. 11.3, 2004, pp. 44-50.

Rubinstein M. and E. Reiner. "Breaking down the barriers." Risk. Vol. 4(8), 1991, pp. 2835.

\author{
See Also \\ barrierbybls | barrierbyfd | barrierbyls | barriersensbybls | barriersensbyls \\ Introduced in R2016b
}

\section*{barrierbyls}

Calculate barrier option prices using Longstaff-Schwartz model

\section*{Syntax}
```

[Price,Paths,Times,Z] = barrierbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[Price,Paths,Times,Z] = barrierbyls(___Name,Value)

```

\section*{Description}
[Price,Paths,Times, Z] = barrierbyls(RateSpec,StockSpec, OptSpec, Strike, Settle, ExerciseDates, BarrierSpec, Barrier) calculates barrier option prices on a single underlying asset using the Longstaff-Schwartz model. barrierbyls computes prices of European and American barrier options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.
[Price, Paths,Times, Z] = barrierbyls( ___ Name, Value) adds optional namevalue pair arguments. barrierbyls computes prices of European and American barrier options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.

\section*{Examples}

\section*{Price an American Barrier Down In Put Option}

Compute the price of an American down in put option using the following data:
```

Rates = 0.0325;
Settle = '01-Jan-2016';
Maturity = '01-Jan-2017';
Compounding = -1;
Basis = 1;

```

Define a RateSpec.
```

RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',Maturity,
'Rates', Rates, 'Compounding' ,Compounding, 'Basis' , Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9680
Rates: 0.0325
EndTimes: 1
StartTimes: 0
EndDates: 736696
StartDates: 736330
ValuationDate: 736330
Basis: 1
EndMonthRule: 1

```

Define a StockSpec.
```

AssetPrice = 40;
Volatility = 0.20;
StockSpec = stockspec(Volatility,AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2000
AssetPrice: 40
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Calculate the price of an American barrier down in put option.
```

Strike = 45;
OptSpec = 'put';
Barrier = 35;

```
```

BarrierSpec = 'DI';
AmericanOpt = 1;
Price = barrierbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpec,...
Barrier,'NumTrials',2000,'AmericanOpt',AmericanOpt)
Price =
4.7306

```

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}

\author{
structure
}

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is StockSpec.DividendAmounts.
Data Types: struct

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put' | string object with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or string object with values 'call' or 'put'.

Data Types: char | double

\section*{Strike - Option strike price value \\ integer}

Option strike price value, specified as an integer.
Data Types: double

\section*{Settle - Settlement or trade date \\ nonnegative integer | date character vector | datetime object}

Settlement or trade date for the barrier option, specified as a nonnegative integer, a date character vector, or a datetime object.

\section*{Data Types: double | char}

\section*{ExerciseDates - Option exercise dates \\ nonnegative scalar integer | date character vector | datetime object}

Option exercise dates, specified as a nonnegative scalar integer, a date character vector, or a datetime object:
- For a European option, use a 1-by-1 vector of dates. For a European option, there is only one ExerciseDates on the option expiry date which is the maturity of the instrument.
- For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1 -by- 1 vector of serial date numbers or a cell array of date character vectors, the option can be exercised between Settle and the single listed date in ExerciseDates.

\section*{Data Types: double | char}

\section*{BarrierSpec - Barrier option type}
character vector with values: 'UI', 'UO ', 'DI ', 'DO'
Barrier option type, specified as a character vector with the following values:
- 'UI ' - Up Knock In

This option becomes effective when the price of the underlying asset passes above the barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying asset goes above the barrier level during the life of the option.
- 'UO' - Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying security at the strike price as long as the underlying asset does not go above the barrier level during the life of the option. This option terminates when the price of the underlying asset passes above the barrier level. Usually with an up-and-out option, the rebate is paid if the spot price of the underlying reaches or exceeds the barrier level.
- 'DI ' - Down Knock In

This option becomes effective when the price of the underlying stock passes below the barrier level. It gives the option holder the right, but not the obligation, to buy/ sell (call/put) the underlying security at the strike price if the underlying security goes below the barrier level during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the underlying does not reach the barrier level during the life of the option.
- 'DO ' - Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying asset at the strike price as long as the underlying asset does not go below the barrier level during the life of the option. This option terminates when the price of the underlying security passes below the barrier level. Usually, the option holder receives a rebate amount if the option expires worthless.
\begin{tabular}{|l|l|l|l|}
\hline Option & Barrier Type & Payoff if Barrier Crossed & Payoff if Barrier not Crossed \\
\hline Call/Put & Down Knock-out & Worthless & Standard Call/Put \\
\hline Call/Put & Down Knock-in & Call/Put & Worthless \\
\hline Call/Put & Up Knock-out & Worthless & Standard Call/Put \\
\hline Call/Put & Up Knock-in & Standard Call/Put & Worthless \\
\hline
\end{tabular}

Data Types: char

\section*{Barrier - Barrier value}
scalar integer
Barrier value, specified as a scalar integer.

\section*{Data Types: double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: Price = barrierbyls(RateSpec,StockSpec,OptSpec, Strike, Settle, Maturity, BarrierSpec, Barr

\section*{'AmericanOpt' - Option type}

0 (European) (default) | scalar with values [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European
- 1 -American

Data Types: double

\section*{'Rebate' - Rebate value \\ 0 (default) | scalar integer}

Rebate value, specified as a scalar integer. For Knock In options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the barrier is reached.

\section*{Data Types: double}

\section*{'NumTrials ' - Scalar number of independent sample paths \\ 1000 (default) | nonnegative scalar integer}

Scalar number of independent sample paths (simulation trials), specified as a nonnegative integer.

Data Types: double

\section*{' NumPeriods ' - Scalar number of simulation periods per trial 100 (default) | nonnegative scalar integer}

Scalar number of simulation periods per trial, specified as a nonnegative integer.

\section*{Data Types: double}

\section*{'Z' - Time series array of dependent random variates vector}

Time series array of dependent random variates, specified as a NumPeriods-by-1-by-NumTrials 3-D time series array. The \(Z\) value generates the Brownian motion vector (that is, Wiener processes) that drives the simulation.

Data Types: double
```

'Antithetic' - Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false

```

Indicator for antithetic sampling, specified with a value of true or false.
Data Types: logical

\section*{Output Arguments}

Price - Expected prices for barrier options
matrix
Expected prices for barrier options, returned as a NINST-by-1 matrix.

\section*{Paths - Simulated paths of correlated state variables}
vector
Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-NumTrials 3-D time series array of simulated paths of correlated state variables. Each row of Paths is the transpose of the state vector \(X(t)\) at time \(t\) for a given trial.

\section*{Times - Observation times associated with simulated paths}
vector
Observation times associated with simulated paths, returned as a NumPeriods +1-by- 1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.

\section*{Z - Time series array of dependent random variates \\ vector}

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-NumTrials 3-D array whenZ is specified as an input argument. If the \(Z\) input argument is not specified, then the \(Z\) output argument contains the random variates generated internally.

\section*{More About}

\section*{Barrier Option}

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has been reached or not reached. The payoff for this type of option depends on whether the underlying asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of the option.
- "Barrier Option" on page 3-25
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646-649.

Aitsahlia, F., L. Imhof, and T.L. Lai. "Pricing and hedging of American knock-in options." The Journal of Derivatives. Vol. 11.3, 2004, pp. 44-50.

Rubinstein M. and E. Reiner. "Breaking down the barriers." Risk. Vol. 4(8), 1991, pp. 2835.

\section*{See Also}
barrierbybls | barrierbyfd | barriersensbybls | barriersensbyfd | barriersensbyls

Introduced in R2016b

\section*{barriersensbyls}

Calculate barrier option prices or sensitivities using Longstaff-Schwartz model

\section*{Syntax}
[PriceSens, Paths,Times, Z] = barriersensbyls(RateSpec, StockSpec, OptSpec,Strike, Settle, ExerciseDates, BarrierSpec, Barrier) [PriceSens, Paths, Times, Z] = barriersensbyls(___ Name, Value)

\section*{Description}
[PriceSens,Paths,Times,Z] = barriersensbyls(RateSpec,StockSpec, OptSpec,Strike, Settle, ExerciseDates, BarrierSpec, Barrier) calculates barrier option prices or sensitivities on a single underlying asset using the LongstaffSchwartz model. barriersensbyls computes prices of European and American barrier options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.
[PriceSens, Paths, Times, Z] = barriersensbyls( ___ Name, Value) adds optional name-value pair arguments. barriersensbyls computes prices of European and American barrier options. For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.

\section*{Examples}

\section*{Compute the Delta and Gamma of an American Barrier Down In Put Option}

Compute the price of an American down in put option using the following data:
```

Rates = 0.0325;
Settle = '01-Jan-2016';
Maturity = '01-Jan-2017';
Compounding = -1;
Basis = 1;
Define a RateSpec.

```
```

RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',Maturity,

```
```

 'Rates', Rates, 'Compounding ',Compounding, 'Basis',Basis)
 RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9680
Rates: 0.0325
EndTimes: 1
StartTimes: 0
EndDates: 736696
StartDates: 736330
ValuationDate: 736330
Basis: 1
EndMonthRule: 1

```

Define a StockSpec.
AssetPrice = 40;
Volatility = 0.20;
StockSpec = stockspec(Volatility,AssetPrice)
StockSpec =
    struct with fields:
            FinObj: 'StockSpec'
                            Sigma: 0.2000
            AssetPrice: 40
        DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the delta and gamma of an American barrier down in put option.
```

Strike = 45;
OptSpec = 'put';
Barrier = 35;
BarrierSpec = 'DI';
AmericanOpt = 1;

```
```

OutSpec = {'delta','gamma'};
[Delta,Gamma] = barriersensbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,...
Maturity,BarrierSpec,Barrier,'NumTrials',2000, 'AmericanOpt',AmericanOpt,'OutSpec',OutS
Delta =
-0.6346
Gamma =
-0.3091

```

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is StockSpec.DividendAmounts.

Data Types: struct
OptSpec - Definition of option
character vector with values 'call' or 'put' | string object with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or string object with values 'call' or 'put'.

Data Types: char | double

\section*{Strike - Option strike price value \\ integer}

Option strike price value, specified as an integer.
Data Types: double

\section*{Settle - Settlement or trade date}
nonnegative integer | date character vector | datetime object
Settlement or trade date for the barrier option, specified as a nonnegative integer, a date character vector, or a datetime object.

Data Types: double | char

\section*{ExerciseDates - Option exercise dates \\ nonnegative scalar integer | date character vector | datetime object}

Option exercise dates, specified as a nonnegative scalar integer, a date character vector, or a datetime object:
- For a European option, use a 1 -by-1 vector of dates. For a European option, there is only one ExerciseDates on the option expiry date which is the maturity of the instrument.
- For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date numbers or a cell array of date character vectors, the option can be exercised between Settle and the single listed date in ExerciseDates.

\section*{Data Types: double | char}

\section*{BarrierSpec - Barrier option type}
character vector with values: 'UI', 'UO ', 'DI ', 'DO'
Barrier option type, specified as a character vector with the following values:
- 'UI ' - Up Knock In

This option becomes effective when the price of the underlying asset passes above the barrier level. It gives the option holder the right, but not the obligation, to buy/sell (call/put) the underlying security at the strike price if the underlying asset goes above the barrier level during the life of the option.
- 'UO' - Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying security at the strike price as long as the underlying asset does not go above the barrier level during the life of the option. This option terminates when the price of the underlying asset passes above the barrier level. Usually with an up-and-out option, the rebate is paid if the spot price of the underlying reaches or exceeds the barrier level.
- 'DI' - Down Knock In

This option becomes effective when the price of the underlying stock passes below the barrier level. It gives the option holder the right, but not the obligation, to buy/ sell (call/put) the underlying security at the strike price if the underlying security goes below the barrier level during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the underlying does not reach the barrier level during the life of the option.
- 'DO ' - Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying asset at the strike price as long as the underlying asset does not go below the barrier level during the life of the option. This option terminates when the price of the underlying security passes below the barrier level. Usually, the option holder receives a rebate amount if the option expires worthless.
\begin{tabular}{|l|l|l|l|}
\hline Option & Barrier Type & Payoff if Barrier Crossed & Payoff if Barrier not Crossed \\
\hline Call/Put & Down Knock-out & Worthless & Standard Call/Put \\
\hline Call/Put & Down Knock-in & Call/Put & Worthless \\
\hline Call/Put & Up Knock-out & Worthless & Standard Call/Put \\
\hline Call/Put & Up Knock-in & Standard Call/Put & Worthless \\
\hline
\end{tabular}

Data Types: char
Barrier - Barrier value
scalar integer

Barrier value, specified as a scalar integer.
Data Types: double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: Price = barriersensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity, BarrierSpec,

\section*{'AmericanOpt ' - Option type}

0 (European) (default) | scalar with values [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European
- 1 -American

Data Types: double
```

'Rebate' - Rebate value
0 (default) | scalar integer

```

Rebate value, specified as a scalar integer. For Knock In options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the barrier is reached.

\section*{Data Types: double}

\section*{'NumTrials' - Scalar number of independent sample paths \\ 1000 (default) | nonnegative scalar integer}

Scalar number of independent sample paths (simulation trials), specified as a nonnegative integer.
Data Types: double

\section*{' NumPeriods ' - Scalar number of simulation periods per trial \\ 100 (default) | nonnegative scalar integer}

Scalar number of simulation periods per trial, specified as a nonnegative integer.

\section*{Data Types: double}

\section*{' Z' - Time series array of dependent random variates \\ vector}

Time series array of dependent random variates, specified as a NumPeriods-by-1-by-NumTrials 3-D time series array. The \(Z\) value generates the Brownian motion vector (that is, Wiener processes) that drives the simulation.

Data Types: double

\author{
'Antithetic ' - Indicator for antithetic sampling \\ false (default) | scalar logical flag with value of true or false
}

Indicator for antithetic sampling, specified with a value of true or false.
Data Types: logical
```

'OutSpec' - Define outputs
{'Price'} (default)| character vector with values 'Price','Delta','Gamma',
'Vega','Lambda','Rho','Theta', and 'All' | cell array of character vectors with
values 'Price','Delta','Gamma', 'Vega','Lambda','Rho','Theta', and 'All'

```

Define outputs, specifying a NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = \{'All'\} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity.

Example: OutSpec =
```

{'delta','gamma','vega','lambda','rho','theta','price'}

```

Data Types: char | cell

\section*{Output Arguments}

PriceSens - Expected prices or sensitivities for barrier options
matrix
Expected prices or sensitivities (defined using OutSpec) for barrier options, returned as a NINST-by- 1 matrix.

\section*{Paths - Simulated paths of correlated state variables}
vector
Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-NumTrials 3-D time series array of simulated paths of correlated state variables. Each row of Paths is the transpose of the state vector \(X(t)\) at time \(t\) for a given trial.

\section*{Times - Observation times associated with simulated paths vector}

Observation times associated with simulated paths, returned as a NumPeriods +1 -by- 1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.

\section*{Z - Time series array of dependent random variates vector}

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-NumTrials 3-D array when \(Z\) is specified as an input argument. If the \(Z\) input argument is not specified, then the \(Z\) output argument contains the random variates generated internally.

\section*{More About}

\section*{Barrier Option}

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has been reached or not reached. The payoff for this type of option depends on whether the underlying asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of the option.
- "Barrier Option" on page 3-25
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J. Options, Futures and Other Derivatives Fourth Edition. Prentice Hall, 2000, pp. 646-649.

Aitsahlia, F., L. Imhof and T.L. Lai. "Pricing and hedging of American knock-in options." The Journal of Derivatives. Vol. 11.3, 2004, pp. 44-50.

Broadie, M., P. Glasserman and S. Kou. "A continuity correction for discrete barrier options." Mathematical Finance. Vol. 7.4, 1997, pp. 3250-349.

Moon, K.S. "Efficient Monte Carlo algorithm for pricing barrier options." Communications of the Korean Mathematical Society. Vol 23.2, 2008 pp. 85-294.

Papatheodorou, B. "Enhanced Monte Carlo methods for pricing and hedging exotic options." University of Oxford thesis, 2005.

Rubinstein M. and E. Reiner. "Breaking down the barriers." Risk. Vol. 4(8), 1991, pp. 2835.
```

See Also
barrierbybls | barrierbybls | barrierbyfd | barriersensbyfd |
barriersensbyls
Introduced in R2016b

```

\section*{barrierbybls}

Price European barrier options using Black-Scholes option pricing model

\section*{Syntax}

Price = barrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates, BarrierSpec, Barrier)
Price = barrierbybls( ___ Name, Value)

\section*{Description}

Price = barrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates, BarrierSpec, Barrier) calculates European barrier option prices using the Black-Scholes option pricing model.

Price = barrierbybls( ___ Name, Value) adds optional name-value pair arguments.

\section*{Examples}

\section*{Price an European Barrier Down Out Call Option}

Compute the price of an European barrier down out call option using the following data:
```

Rates = 0.035;
Settle = '01-Jan-2015';
Maturity = '01-jan-2016';
Compounding = -1;
Basis = 1;

```

Define a RateSpec.
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturi
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

```
```

RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9656
Rates: 0.0350
EndTimes: 1
StartTimes: 0
EndDates: 736330
StartDates: 735965
ValuationDate: 735965
Basis: 1
EndMonthRule: 1
Define a StockSpec.
AssetPrice = 50;
Volatility = 0.30;
StockSpec = stockspec(Volatility, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec
Sigma: 0.3000
AssetPrice: 50
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Calculate the price of an European barrier down out call option using the Black-Scholes option pricing model.
```

Strike = 50;
OptSpec = 'call';
Barrier = 45;
BarrierSpec = 'DO';
Price = barrierbybls(RateSpec, StockSpec, OptSpec, Strike, Settle,...

```
```

Maturity, BarrierSpec, Barrier)

```
Price =
4.4285

\section*{Price European Barrier Down Out and Down In Call Options}

Compute the price of European down out and down in call options using the following data:
```

Rates = 0.035;

```
Settle = '01-Jan-2015';
Maturity = '01-jan-2016';
Compounding = -1;
Basis = 1;

Define a RateSpec.
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturi`
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)
RateSpec =
struct with fields:

```
                            FinObj: 'RateSpec'
            Compounding: -1
                        Disc: 0.9656
                        Rates: 0.0350
                EndTimes: 1
            StartTimes: 0
                EndDates: 736330
            StartDates: 735965
            ValuationDate: 735965
                Basis: 1
            EndMonthRule: 1

Define a StockSpec.
AssetPrice \(=50\);
```

Volatility = 0.30;
StockSpec = stockspec(Volatility, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3000
AssetPrice: 50
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Calculate the price of European barrier down out and down in call options using the Black-Scholes Option Pricing model.
```

Strike = 50;
OptSpec = 'Call';
Barrier = 45;
BarrierSpec = {'DO';'DI'};

```
Price = barrierbybls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity, BarrierS
Price =
    4.4285
    2.3301

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is StockSpec.DividendAmounts.

Data Types: struct

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put' | string object with values 'call' or 'put'

Definition of the option as 'call' or 'put ', specified as a character vector or string object with values 'call' or 'put'.

Data Types: char | double

\section*{Strike - Option strike price value integer}

Option strike price value, specified as an integer.
Data Types: double

\section*{Settle - Settlement or trade date nonnegative integer | date character vector | datetime object}

Settlement or trade date for the barrier option, specified as a nonnegative integer, a date character vector, or a datetime object.

Data Types: double | char

\section*{ExerciseDates - Option exercise dates \\ nonnegative scalar integer | date character vector | datetime object}

Option exercise dates, specified as a nonnegative scalar integer, a date character vector, or a datetime object:
- NINST-by-1 vector of exercise dates. For a European option, there is only one ExerciseDates on the option expiry date which is the maturity of the instrument.

\section*{Data Types: double | char}

\section*{BarrierSpec - Barrier option type}
character vector with values: 'UI', 'UO', 'DI ', 'DO'
Barrier option type, specified as a character vector with the following values:
- 'UI ' - Up Knock In

This option becomes effective when the price of the underlying asset passes above the barrier level. It gives the option holder the right, but not the obligation, to buy/sell (call/put) the underlying security at the strike price if the underlying asset goes above the barrier level during the life of the option.
- 'UO' - Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying security at the strike price as long as the underlying asset does not go above the barrier level during the life of the option. This option terminates when the price of the underlying asset passes above the barrier level. Usually with an up-and-out option, the rebate is paid if the spot price of the underlying reaches or exceeds the barrier level.
- 'DI' - Down Knock In

This option becomes effective when the price of the underlying stock passes below the barrier level. It gives the option holder the right, but not the obligation, to buy/ sell (call/put) the underlying security at the strike price if the underlying security goes below the barrier level during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the underlying does not reach the barrier level during the life of the option.
- 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying asset at the strike price as long as the underlying asset does not go below the barrier level during the life of the option. This option terminates when the price of the underlying security passes below the barrier level. Usually, the option holder receives a rebate amount if the option expires worthless.
\begin{tabular}{|l|l|l|l|}
\hline Option & Barrier Type & Payoff if Barrier Crossed & Payoff if Barrier not Crossed \\
\hline Call/Put & Down Knock-out & Worthless & Standard Call/Put \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Option & Barrier Type & Payoff if Barrier Crossed & Payoff if Barrier not Crossed \\
\hline Call/Put & Down Knock-in & Call/Put & Worthless \\
\hline Call/Put & Up Knock-out & Worthless & Standard Call/Put \\
\hline Call/Put & Up Knock-in & Standard Call/Put & Worthless \\
\hline
\end{tabular}

\section*{Data Types: char}

\section*{Barrier - Barrier value}
scalar integer
Barrier value, specified as a scalar integer.
Data Types: double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . NameN, ValueN.
Example: Price = barrierbybls(RateSpec,StockSpec,OptSpec,Strike, Settle, Maturity, BarrierSpec, Bar

\author{
'Rebate' - Rebate value \\ 0 (default) | scalar integer
}

Rebate value, specified as a scalar integer. For Knock In options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the barrier is reached.
Data Types: double

\section*{Output Arguments}

\section*{Price - Expected prices for barrier options \\ matrix}

Expected prices for barrier options at time 0, returned as a NINST-by-1 matrix.

\section*{More About}

\section*{Barrier Option}

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has been reached or not reached. The payoff for this type of option depends on whether the underlying asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of the option.
- "Barrier Option" on page 3-25
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J. Options, Futures and Other Derivatives Fourth Edition. Prentice Hall, 2000, pp. 646-649.

Aitsahlia, F., L. Imhof, and T.L. Lai. "Pricing and hedging of American knock-in options." The Journal of Derivatives. Vol. 11.3, 2004, pp. 44-50.

Rubinstein M. and E. Reiner. "Breaking down the barriers." Risk. Vol. 4(8), 1991, pp. 2835.

\section*{See Also}
barrierbyfd | barrierbyls | barriersensbybls | barriersensbyfd | barriersensbyls

\section*{Introduced in R2016b}

\section*{barriersensbybls}

Calculate price or sensitivities for European barrier options using Black-Scholes option pricing model

\section*{Syntax}
```

PriceSens = barriersensbybls(RateSpec,StockSpec,OptSpec,Strike,
Settle,
ExerciseDates,BarrierSpec,Barrier)
PriceSens = barriersensbybls(___ Name,Value)

```

\section*{Description}

PriceSens = barriersensbybls(RateSpec,StockSpec,OptSpec,Strike, Settle,
ExerciseDates, BarrierSpec, Barrier) calculates European barrier option prices or sensitivities using the Black-Scholes option pricing model.

PriceSens = barriersensbybls( \(\qquad\) Name, Value) adds optional name-value pair arguments.

\section*{Examples}

\section*{Calculate Price and Sensitivities for European Barrier Down Out and Down In Call Options}

Compute price of European barrier down out and down in call options using the following data:
```

Rates = 0.035;
Settle = '01-Jan-2015';
Maturity = '01-April-2015';
Compounding = -1;
Basis = 1;

```

Define a RateSpec.
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Matur

```
```

 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)
 RateSpec =
struct with fields:
Fin0bj: 'RateSpec'
Compounding: -1
Disc: 0.9913
Rates: 0.0350
EndTimes: 0.2500
StartTimes: 0
EndDates: 736055
StartDates: 735965
ValuationDate: 735965
Basis: 1
EndMonthRule: 1
Define a StockSpec.

```
```

AssetPrice = 19;

```
AssetPrice = 19;
Volatility = 0.40;
DivType = 'Continuous';
DivAmount = 0.035;
StockSpec = stockspec(Volatility, AssetPrice, DivType, DivAmount)
StockSpec =
    struct with fields:
                FinObj: 'StockSpec'
                    Sigma: 0.4000
            AssetPrice: 19
            DividendType: {'continuous'}
    DividendAmounts: 0.0350
    ExDividendDates: []
```

Calculate the price, delta, and gamma for European barrier down out and down in call options using the Black-Scholes option pricing model.

```
OptSpec = 'Call';
```

```
Strike = 20;
Barrier = 18;
BarrierSpec = {'DO';'DI'};
OutSpec = {'price', 'delta', 'gamma'};
[Price, Delta, Gamma] = barriersensbybls(RateSpec, StockSpec, OptSpec, Strike, Settle,
Maturity, BarrierSpec, Barrier,'OutSpec', OutSpec)
Price =
    0.6287
    0.4655
Delta =
    0.6376
    -0.2036
Gamma =
    0.0255
    0.0773
```


Input Arguments

RateSpec - Interest-rate term structure

structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

StockSpec - Stock specification for underlying asset

structure
Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is StockSpec.DividendAmounts.

Data Types: struct

OptSpec - Definition of option

character vector with values 'call' or 'put' | string object with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or string object with values 'call' or 'put'.
Data Types: char | double

Strike - Option strike price value
 integer

Option strike price value, specified as an integer.

Data Types: double

Settle - Settlement or trade date

nonnegative integer | date character vector | datetime object
Settlement or trade date for the barrier option, specified as a nonnegative integer, a date character vector, or a datetime object.

Data Types: double | char

ExerciseDates - Option exercise dates

nonnegative scalar integer | date character vector | datetime object
Option exercise dates, specified as a nonnegative scalar integer, date character vector, or datetime object:

- NINST-by-1 vector of exercise dates. For a European option, there is only one ExerciseDates on the option expiry date which is the maturity of the instrument.

Data Types: double | char

BarrierSpec - Barrier option type

character vector with values: 'UI', 'U0', 'DI ', 'DO'

Barrier option type, specified as a character vector with the following values:

- 'UI ' - Up Knock In

This option becomes effective when the price of the underlying asset passes above the barrier level. It gives the option holder the right, but not the obligation, to buy/sell (call/put) the underlying security at the strike price if the underlying asset goes above the barrier level during the life of the option.

- 'UO' — Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying security at the strike price as long as the underlying asset does not go above the barrier level during the life of the option. This option terminates when the price of the underlying asset passes above the barrier level. Usually with an up-and-out option, the rebate is paid if the spot price of the underlying reaches or exceeds the barrier level.

- ' DI ' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the barrier level. It gives the option holder the right, but not the obligation, to buy/ sell (call/put) the underlying security at the strike price if the underlying security goes below the barrier level during the life of the option. With a down-and-in option, the rebate is paid if the spot price of the underlying does not reach the barrier level during the life of the option.

- 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/ put) the underlying asset at the strike price as long as the underlying asset does not go below the barrier level during the life of the option. This option terminates when the price of the underlying security passes below the barrier level. Usually, the option holder receives a rebate amount if the option expires worthless.

Option	Barrier Type	Payoff if Barrier Crossed	Payoff if Barrier not Crossed
Call/Put	Down Knock-out	Worthless	Standard Call/Put
Call/Put	Down Knock-in	Call/Put	Worthless
Call/Put	Up Knock-out	Worthless	Standard Call/Put
Call/Put	Up Knock-in	Standard Call/Put	Worthless

Data Types: char

Barrier - Barrier value

scalar integer
Barrier value, specified as a scalar integer.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: Price = barriersensbybls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity , BarrierSpec

'Rebate' - Rebate value
0 (default) | scalar integer

Rebate value, specified as a scalar integer. For Knock In options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the barrier is reached.

Data Types: double

'OutSpec' - Define outputs

\{'Price'\} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price','Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specifying a NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec $=\{$ 'All' $\}$ specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec =
\{'delta', 'gamma', 'vega','lambda', 'rho','theta', 'price'\}
Data Types: char | cell

Output Arguments

PriceSens - Expected prices or sensitivities for barrier options
 matrix

Expected prices at time 0 or sensitivities (defined using OutSpec) for barrier options, returned as a NINST-by- 1 matrix.

More About

Barrier Option

A Barrier option has not only a strike price but also a barrier level and sometimes a rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the barrier level has been reached or not reached. The payoff for this type of option depends on whether the underlying asset crosses the predetermined trigger value (barrier level), indicated by Barrier, during the life of the option.

- "Barrier Option" on page 3-25
- "Supported Equity Derivatives" on page 3-24

References

Hull, J. Options, Futures and Other Derivatives Fourth Edition. Prentice Hall, 2000, pp. 646-649.

Aitsahlia, F., L. Imhof, and T.L. Lai. "Pricing and hedging of American knock-in options." The Journal of Derivatives. Vol. 11.3, 2004, pp. 44-50.

Rubinstein M. and E. Reiner. "Breaking down the barriers." Risk. Vol. 4(8), 1991, pp. 2835.

```
See Also
barrierbybls | barrierbyfd | barrierbyls | barriersensbyfd |
barriersensbyls
Introduced in R2016b
```


barrierbyitt

Price barrier options using implied trinomial tree (ITT)

Syntax

[Price, PriceTree] = barrierbyitt(ITTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options)

Arguments

ITTTree	Stock tree structure created by itttree.
OptSpec	NINST-by-1 list of character vector values for 'Call ' or 'Put '.
Strike	European and American option, NINST-by-1 vector of strike price values. Each row is the schedule for one option.
Settle	NINST-by-1 vector of Settle dates. The settle date for every barrier option is set to the valuation date of the stock tree. The barrier argument Settle is ignored.
ExerciseDates	For a European option (AmericanOpt = 0): NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.
For an American option (AmericanOpt = 1): NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.	

AmericanOpt	If AmericanOpt $=0, \mathrm{NaN}$, or is unspecified, the option is a European option. If AmericanOpt $=1$, the option is an American option.
BarrierSpec	List of character vector values: ' UI ' — Up Knock In ' UO ' - Up Knock Out ' DI ' — Down Knock In ' DO ' - Down Knock Out
Barrier	Vector of barrier values.
Rebate	(Optional) NINST-by-1 matrix of rebate values. Default $=0$. For Knock In options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the barrier is reached.
Options	(Optional) Derivatives pricing options structure created with derivset.

See instbarrier for a description of barrier contract arguments.

Description

[Price, PriceTree] = barrierbyitt(ITTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options) computes the price of barrier options using an implied trinomial tree.

Price is a NINST-by- 1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

Note: The Settle date for every barrier option is set to the ValuationDate of the stock tree. The barrier argument, Settle, is ignored.

Examples

Price a Barrier Option Using an ITT Tree

This example shows how to price a barrier option using an ITT tree by loading the file deriv.mat, which provides ITTTree. The ITTTree structure contains the stock specification and time information needed to price the option.

```
load deriv.mat;
OptSpec = 'Call';
Strike = 85;
Settle = '01-Jan-2006';
ExerciseDates = '31-Dec-2008';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 115;
Price = barrierbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,...
BarrierSpec,Barrier)
```

Price =
2.4074

- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Pricing European Call Options Using Different Equity Models"

More About

- "Barrier Option" on page 3-25
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

References

Derman, E., I. Kani, D. Ergener and I. Bardhan. "Enhanced Numerical Methods for Options with Barriers." Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65-74.

See Also
instbarrier|itttree
Introduced in R2007a

barrierbystt

Price barrier options using standard trinomial tree

Syntax

[Price,PriceTree] = barrierbystt(STTTree,OptSpec,Strike,Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier)
[Price,PriceTree] = barrierbystt(__ ,Name, Value)

Description

[Price,PriceTree] = barrierbystt(STTTree,OptSpec,Strike,Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier) prices barrier options using a standard trinomial (STT) tree.
[Price,PriceTree] = barrierbystt(__ , Name, Value) prices barrier options using a standard trinomial (STT) tree with an optional name-value pair argument for Rebate and Options.

Examples

Price a Barrier Option Using the Standard Trinomial Tree Model

Create a RateSpec.

```
StartDates = 'Jan-1-2009';
EndDates = 'Jan-1-2013';
Rates = 0.035;
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)
RateSpec =
    struct with fields:
```

```
    FinObj: 'RateSpec'
    Compounding: -1
            Disc: 0.8694
            Rates: 0.0350
        EndTimes: 4
    StartTimes: 0
        EndDates: 735235
    StartDates: 733774
ValuationDate: 733774
        Basis: 1
    EndMonthRule: 1
```


Create a StockSpec.

```
AssetPrice = 85;
```

AssetPrice = 85;
Sigma = 0.15;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.1500
AssetPrice: }8
DividendType: []
DividendAmounts: 0
ExDividendDates: []
Create an STTTree.
NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)
STTTree =
struct with fields:
FinObj: 'STStockTree'
StockSpec: [1×1 struct]

```
```

TimeSpec: [1\times1 struct]
RateSpec: [1\times1 struct]
tObs: [0 1 2 2 3 4]
dObs: [733774 734139 734504 734869 735235]
STree: {1\times5 cell}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double] [3\times7 double]}

```

Define the barrier option and compute the price.
```

Settle = '1/1/09';
ExerciseDates = '1/1/12';
OptSpec = 'call';
Strike = 105;
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 115;
Price= barrierbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates,...
AmericanOpt, BarrierSpec, Barrier)

```
Price =
    3.7977

\section*{Input Arguments}

\section*{STTTree - Stock tree structure for standard trinomial tree}
structure
Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

\section*{OptSpec - Definition of option}
character vector with value 'call' or 'put ' | cell array of character vectors with values 'call' or 'put'

Definition of option, specified as 'call' or 'put ' using a character vector or a NINST-by-1 cell array of character vectors for 'call' or 'put'.
Data Types: char | cell

\section*{Strike - European or American option strike price value matrix of nonnegative integers}

European or American option strike price value, specified with a nonnegative integer using a NINST-by- 1 matrix of strike price values. Each row is the schedule for one option. To compute the value of a floating-strike barrier option, Strike should be specified as NaN. Floating-strike barrier options are also known as average strike options.

Data Types: double

\section*{Settle - Settlement date or trade date \\ nonnegative integer | date character vector}

Settlement date or trade date for the barrier option, specified as a NINST-by-1 matrix of settlement or trade dates using nonnegative integers or date character vectors.

Note: The Settle date for every barrier option is set to the ValuationDate of the stock tree. The barrier argument, Settle, is ignored.

Data Types: double | char

\section*{ExerciseDates - Option exercise dates}
nonnegative integer | date character vector
Option exercise dates, specified as a nonnegative scalar integer or date character vector:
- For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one ExerciseDates on the option expiry date.
- For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or cell array of character vectors, the option can be exercised between ValuationDate of the stock tree and the single listed ExerciseDates.

\section*{Data Types: double | char}

\section*{AmericanOpt - Option type}
scalar with values [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European
- 1 -American

Data Types: single | double

\section*{BarrierSpec - Barrier option type}
character vector with values: 'UI', 'UO', 'DI ', 'DO ' | cell array of character vectors with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector or cell array of character vectors with the following values:
- 'UI ' - Up Knock In
- 'UO' - Up Knock Out
- 'DI' - Down Knock In
- 'DO' — Down Knock Up

Data Types: char | cell

\section*{Barrier - Barrier levels}
matrix of barrier levels
Barrier levels, specified as a NINST-by- 1 matrix.
Data Types: single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: Price =
barrierbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates, 1, 'UI', 115, 'Rebate', 2

\section*{'Rebate' - Rebate values}

0 (default) | matrix of rebate values
Rebate values, specified as NINST-by-1 matrix of rebate values. For Knock In options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the barrier is reached.

\section*{Data Types: single | double}

\section*{'Options ' - Derivatives pricing options \\ structure}

Derivatives pricing options, specified as structure that is created with derivset.

\section*{Data Types: struct}

\section*{Output Arguments}

\section*{Price - Expected prices for barrier options at time 0 matrix}

Expected prices for barrier options at time 0, returned as a NINST-by-1 matrix.

\section*{PriceTree - Structure with vector of barrier option prices at each node} tree structure

Structure with a vector of barrier option prices at each node, returned as a tree structure.
PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of observation times for each node.

PriceTree. PTree contains the prices.
PriceTree.tObs contains the observation times.
PriceTree.dObs contains the observation dates.

\section*{More About}
- "Barrier Option" on page 3-25
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Derman, E., I. Kani, D. Ergener and I. Bardhan. "Enhanced Numerical Methods for Options with Barriers." Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65-74.
```

See Also
derivset | instbarrier | sttprice | sttsens | stttimespec | stttree
Introduced in R2015b

```

\section*{basketbyju}

Price European basket options using Nengjiu Ju approximation model

\section*{Syntax}

Price = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)

\section*{Description}

Price = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity) prices European basket options using the Nengjiu Ju approximation model.

\section*{Input Arguments}

\section*{RateSpec}

Annualized, continuously compounded rate term structure. For more information on the interest rate specification, see intenvset.

\section*{BasketStockSpec}

BasketStock specification. For information on the basket of stocks specification, see basketstockspec.

\section*{OptSpec}

Character vector or 2-by-1 cell array of character vectors with values of 'call' or 'put'.

\section*{Strike}

Scalar for the option strike price.

\section*{Settle}

Scalar of the settlement or trade date specified as a character vector or serial date number.

\section*{Maturity}

Maturity date specified as a character vector or serial date number.

\section*{Output Arguments}

\section*{Price}

Price of the basket option.

\section*{Examples}

Find a European call basket option of two stocks. Assume that the stocks are currently trading at \(\$ 10\) and \(\$ 11.50\) with annual volatilities of \(20 \%\) and \(25 \%\), respectively. The basket contains one unit of the first stock and one unit of the second stock. The correlation between the assets is \(30 \%\). On January 1, 2009, an investor wants to buy a 1 -year call option with a strike price of \(\$ 21.50\). The current annualized, continuously compounded interest rate is \(5 \%\). Use this data to compute the price of the call basket option with the Ju approximation model.
```

Settle = 'Jan-1-2009';
Maturity = 'Jan-1-2010';
% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', ...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);
% Define the Correlation matrix. Correlation matrices are symmetric, and
% have ones along the main diagonal.
Corr = [1 0.30; 0.30 1];
% Define BasketStockSpec
AssetPrice = [10;11.50];
Volatility = [0.2;0.25];
Quantity = [1;1];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
% Compute the price of the call basket option
OptSpec = {'call'};

```

Strike = 21.5;
PriceCorr30 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)
This returns:
PriceCorr30 =

\subsection*{2.12214}

Compute the price of the basket instrument for these two stocks with a correlation of \(60 \%\). Then compare this cost to the total cost of buying two individual call options:
```

Corr = [1 0.60; 0.60 1];
% Define the new BasketStockSpec
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
% Compute the price of the call basket option with Correlation = -0.60
PriceCorr60 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)

```

This returns:

\section*{PriceCorr60 =}

\subsection*{2.27566}

The following table summarizes the sensitivity of the option to correlation changes. In general, the premium of the basket option decreases with lower correlation and increases with higher correlation.
\begin{tabular}{|ll|l|l|l|l|}
\hline Correlation & -0.60 & -0.30 & 0 & 0.30 & 0.60 \\
\hline Premium & 1.52830 & 1.76006 & 1.9527 & 2.1221 & 2.2756 \\
\hline
\end{tabular}

Compute the cost of two vanilla 1-year call options using the Black-Scholes (BLS) model on the individual assets:
```

StockSpec = stockspec(Volatility, AssetPrice);
StrikeVanilla= [10;11.5];
PriceVanillaOption = optstockbybls(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, StrikeVanilla)
This returns:
PriceVanillaOption =
1.0451
1.4186

```

Find the total cost of buying two individual call options:
sum(PriceVanillaOption)
This returns:
ans \(=2.4637\)
The total cost of purchasing two individual call options is \(\$ 2.4637\), compared to the maximum cost of the basket option of \(\$ 2.27\) with a correlation of \(60 \%\).

\section*{More About}
- "Basket Option" on page 3-27
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Nengjiu Ju. "Pricing Asian and Basket Options Via Taylor Expansion." Journal of Computational Finance. Vol. 5, 2002.

\author{
See Also \\ basketsensbyju| basketstockspec \\ Introduced in R2009b
}

\section*{basketbyls}

Price basket options using Longstaff-Schwartz model

\section*{Syntax}
```

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates)
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates, 'ParameterName', ParameterValue, ...)

```

\section*{Description}

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, ExerciseDates) prices basket options using the Longstaff-Schwartz model.

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, ExerciseDates, 'ParameterName', ParameterValue, ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. Parametervalue is the value corresponding to 'ParameterName'. Specify parameter-value pairs in any order. Names are case-insensitive and partial matches are allowable, if no ambiguities exist.

\section*{Input Arguments}

\section*{RateSpec}

Annualized, continuously compounded rate term structure. For more information on the interest rate specification, see intenvset.

\section*{BasketStockSpec}

BasketStock specification. For information on the basket of stocks specification, see basketstockspec.

\section*{OptSpec}

Character vector or 2-by-1 cell array of character vectors with values of 'call' or 'put'.

\section*{Strike}

The option strike price:
- For a European or Bermuda option, Strike is a scalar (European) or 1-by-NSTRIKES (Bermuda) vector of strike price.
- For an American option, Strike is a scalar vector of the strike price.

\section*{Settle}

Scalar of the settlement or trade date specified as a character vector or serial date number.

\section*{ExerciseDates}

The exercise date for the option:
- For a European or Bermuda option, ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- For an American option, ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between, or including, the pair of dates on that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Parameter-Value Pairs}

\section*{American0pt}

Parameter values are a scalar flag.
- 0 - European/Bermuda
- 1 -American

Default: 0

\section*{NumPeriods}

Parameter value is a scalar number of simulation periods per trial. NumPeriods is considered only when pricing European basket options. For American and Bermuda basket options, NumPeriod equals the number of exercise days during the life of the option.

Default: 100

\section*{NumTrials}

Parameter value is a scalar number of independent sample paths (simulation trials).
Default: 1000

\section*{Output Arguments}

\section*{Price}

Price of the basket option.

\section*{Examples}

\section*{Prices Basket Options Using the Longstaff-Schwartz Model}

Find an American call basket option of three stocks. The stocks are currently trading at \(\$ 35, \$ 40\) and \(\$ 45\) with annual volatilities of \(12 \%, 15 \%\) and \(18 \%\), respectively. The basket contains \(33.33 \%\) of each stock. Assume the correlation between all pair of assets is \(50 \%\). On May 1, 2009, an investor wants to buy a three-year call option with a strike price of \(\$ 42\). The current annualized continuously compounded interest rate is \(5 \%\). Use this data to compute the price of the call basket option using the Longstaff-Schwartz model.
```

Settle = 'May-1-2009';
Maturity = 'May-1-2012';
% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...

```
```

Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);
% Define the Correlation matrix. Correlation matrices are symmetric,
% and have ones along the main diagonal.
Corr = [1 0.50 0.50; 0.50 1 0.50;0.50 0.50 1];
% Define BasketStockSpec
AssetPrice = [35;40;45];
Volatility = [0.12;0.15;0.18];
Quantity = [0.333;0.333;0.333];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
% Compute the price of the call basket option
OptSpec = {'call'};
Strike = 42;
AmericanOpt = 1; % American option
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...
'AmericanOpt',AmericanOpt)
Price =
5.4687

```

Increase the number of simulation trials to 2000 to give the following results:
```

NumTrial = 2000;
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...
'AmericanOpt',AmericanOpt,'NumTrials',NumTrial)

```
Price \(=\)
    5.5501
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139

\section*{More About}
- "Basket Option" on page 3-27
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Longstaff, F.A., and E.S. Schwartz. "Valuing American Options by Simulation: A Simple Least-Squares Approach." The Review of Financial Studies. Vol. 14, No. 1, Spring 2001, pp. 113-147.

\author{
See Also \\ basketsensbyls | basketstockspec
}

Introduced in R2009b

\section*{basketsensbyju}

Determine European basket options price or sensitivities using Nengjiu Ju approximation model

\section*{Syntax}
```

PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec,
Strike,
Settle, Maturity)
PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec,
Strike,
Settle, Maturity, 'ParameterName', ParameterValue, ...)

```

\section*{Description}

PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, Maturity) calculates prices or sensitivities for basket options using the Nengjiu Ju approximation model.

PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, Maturity, 'ParameterName', ParameterValue, ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. ParameterValue is the value corresponding to 'ParameterName'. Specify parameter-value pairs in any order. Names are caseinsensitive and partial matches are allowable, if no ambiguities exist.

\section*{Input Arguments}

\section*{RateSpec}

Annualized, continuously compounded rate term structure. For more information on the interest rate specification, see intenvset.

\section*{BasketStockSpec}

BasketStock specification. For information on the basket of stocks specification, see basketstockspec.

\section*{OptSpec}

Character vector or 2-by-1 cell array of character vectors with values of 'call' or 'put'.

\section*{Strike}

Scalar of the option strike price.

\section*{Settle}

Scalar of the settlement or trade date specified as a character vector or serial date number.

\section*{Maturity}

Maturity date, specified as a character vector or serial date number.

\section*{Parameter-Value Pairs}

\section*{OutSpec}

Parameter value is an NOUT-by-1 or 1-by-NOUT cell array of character vectors indicating the nature and order of the outputs for the function. Possible values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'. For example, OutSpec \(=\{\) 'Price', 'Lambda', 'Rho'\} specifies that the output is Price, Lambda, and Rho, in that order.

OutSpec \(=\) \{'All' \(\}\) specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.

Default: OutSpec = \{'Price' \(\}\)

\section*{UndIdx}

Scalar of the indice of the underlying instrument to compute the sensitivity.

Default: UndIdx = [ ]

\section*{Output Arguments}

\section*{PriceSens}

Expected prices or sensitivities values for the basket option.

\section*{Examples}

\section*{Calculate Prices and Sensitivities for Basket Options Using the Nengiiu Ju Approximation Model}

Find a European call basket option of five stocks. Assume that the basket contains:
- \(5 \%\) of the first stock trading at \(\$ 110\)
- \(15 \%\) of the second stock trading at \(\$ 75\)
- \(20 \%\) of the third stock trading at \(\$ 40\)
- \(25 \%\) of the fourth stock trading at \(\$ 125\)
- \(35 \%\) of the fifth stock trading at \(\$ 92\)
```

These stocks have annual volatilities of 20% and the correlation between
the assets is zero. On May 1, 2009, an investor wants to buy a 1-year
call option with a strike price of \$90. The current annualized, continuously
compounded interest is 5%. Use this data to compute price and delta of
the call basket option with the Ju approximation model.
Settle = 'May-1-2009';
Maturity = 'May-1-2010';
% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', ...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);
% Define the Correlation matrix. Correlation matrices are symmetric, and
% have ones along the main diagonal.
NumInst = 5;
InstIdx = ones(NumInst,1);
Corr = diag(ones(5,1), 0);

```
```

% Define BasketStockSpec
AssetPrice = [110; 75; 40; 125; 92];
Volatility = 0.2;
Quantity = [0.05; 0.15; 0.2; 0.25; 0.35];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
% Compute the price of the call basket option. Calculate also the delta
% of the first stock.
OptSpec = {'call'};
Strike = 90;
OutSpec = {'Price','Delta'};
UndIdx = 1; % First element in the basket
[Price, Delta] = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, .
Maturity, 'OutSpec', OutSpec,'UndIdx', UndIdx)
Price =
5.1610
Delta =
0.0297

```

Compute Delta with respect to the second asset:
UndIdx \(=2\); \% Second element in the basket
OutSpec = \{'Delta'\};
Delta = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity, 'OutSpec',OutSpec, 'UndIdx', UndIdx)

Delta =
0.0906
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139

\section*{More About}
- "Basket Option" on page 3-27
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Nengjiu Ju. "Pricing Asian and Basket Options Via Taylor Expansion." Journal of Computational Finance. Vol. 5, 2002.

\author{
See Also \\ basketbyju | basketstockspec \\ Introduced in R2009b
}

\section*{basketsensbyls}

Determine price and sensitivities for basket options using Longstaff-Schwartz model

\section*{Syntax}
```

PriceSens = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,
Strike,
Settle, ExerciseDates)
PriceSens = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,
Strike,
Settle, ExerciseDates, 'ParameterName', ParameterValue, ...)

```

\section*{Description}

PriceSens = basketsensbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, ExerciseDates) prices basket options using the Longstaff-Schwartz model.

PriceSens = basketsensbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates, 'ParameterName', ParameterValue, ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. ParameterValue is the value corresponding to 'ParameterName'. Specify parameter-value pairs in any order. Names are case-insensitive and partial matches are allowable, if no ambiguities exist.

\section*{Input Arguments}

\section*{RateSpec}

Annualized, continuously compounded rate term structure. For more information on the interest rate specification, see intenvset.

\section*{BasketStockSpec}

BasketStock specification. For information on the basket of stocks specification, see basketstockspec.

\section*{OptSpec}

Character vector or 2-by-1 cell array of character vectors with values for 'call' or 'put'.

\section*{Strike}

The option strike price:
- For a European or Bermuda option, Strike is a scalar (European) or 1-by-NSTRIKES (Bermuda) vector of strike price.
- For an American option, Strike is a scalar vector of strike price.

\section*{Settle}

Scalar of settlement or trade date.

\section*{ExerciseDates}

The exercise date for the option:
- For a European or Bermuda option, ExerciseDates is a 1-by-1 (European) or 1 -by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- For an American option, ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between or including the pair of dates on that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Parameter-Value Pairs}

\section*{AmericanOpt}

Parameter values are a scalar flag.
- 0 - European/Bermuda
- 1 -American

\section*{Default: 0}

\section*{NumPeriods}

Parameter value is a scalar number of simulation periods. NumPeriods is considered only when pricing European basket options. For American and Bermuda basket options, NumPeriod equals the number of exercise days during the life of the option.

Default: 100

\section*{NumTrials}

Parameter value is a scalar number of independent sample paths (simulation trials).
Default: 1000

\section*{OutSpec}

Parameter value is an NOUT-by-1 or 1-by-NOUT cell array of character vectors indicating the nature and order of the outputs for the function. Possible values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'. For example, OutSpec = \{'Price', 'Lambda', 'Rho'\} specifies that the output is Price, Lambda, and Rho, in that order.

OutSpec = \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.

Default: OutSpec = \{'Price' \(\}\)

\section*{UndIdx}

Scalar of the indice of the underlying instrument to compute the sensitivity.
Default: UndIdx = [ ]

\section*{Output Arguments}

\section*{PriceSens}

Expected prices or sensitivities values.

\section*{Examples}

\section*{Calculate Price and Sensitivities for Basket Options Using the Longstaff-Schwartz Model}

Find a European put basket option of two stocks. The basket contains \(50 \%\) of each stock. The stocks are currently trading at \(\$ 90\) and \(\$ 75\), with annual volatilities of \(15 \%\). Assume that the correlation between the assets is zero. On May 1, 2009, an investor wants to buy a one-year put option with a strike price of \(\$ 80\). The current annualized, continuously compounded interest is \(5 \%\). Use this data to compute price and delta of the put basket option with the Longstaff-Schwartz approximation model.
```

Settle = 'May-1-2009';
Maturity = 'May-1-2010';
% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);
% Define the Correlation matrix. Correlation matrices are symmetric,
% and have ones along the main diagonal.
NumInst = 2;
InstIdx = ones(NumInst,1);
Corr = diag(ones(NumInst,1), 0);
% Define BasketStockSpec
AssetPrice = [90; 75];
Volatility = 0.15;
Quantity = [0.50; 0.50];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
% Compute the price of the put basket option. Calculate also the delta
% of the first stock.
OptSpec = {'put'};
Strike = 80;
OutSpec = {'Price','Delta'};
UndIdx = 1; % First element in the basket
[PriceSens, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec,'UndIdx', UndIdx)

```

\section*{PriceSens =}
0.9822

Delta =
\(-0.0995\)

Compute the Price and Delta of the basket with a correlation of -20\%:
```

NewCorr = [1 -0.20; -0.20 1];
% Define the new BasketStockSpec.
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, NewCorr);
% Compute the price and delta of the put basket option.
[PriceSens, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec,'UndIdx', UndIdx)
PriceSens =
0.7814
Delta =
-0.0961

```
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139

\section*{More About}
- "Basket Option" on page 3-27
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Longstaff, F.A., and E.S. Schwartz. "Valuing American Options by Simulation: A Simple Least-Squares Approach." The Review of Financial Studies. Vol. 14, No. 1, Spring 2001, pp. 113-147.

\author{
See Also \\ basketbyls | basketstockspec
}

\section*{Introduced in R2009b}

\section*{basketstockspec}

Specify basket stock structure using Longstaff-Schwartz model

\section*{Syntax}

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation)
BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation, 'ParameterName',ParameterValue, ...)

\section*{Description}

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation) creates a basket stock structure.

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation, 'ParameterName',ParameterValue, ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. ParameterValue is the value corresponding to 'ParameterName'. Specify parameter-value pairs in any order. Names are caseinsensitive and partial matches are allowable, if no ambiguities exist.

\section*{Input Arguments}

\section*{Sigma}

NINST-by- 1 vector of decimal annual price volatility of the underlying security.

\section*{AssetPrice}

NINST-by- 1 vector of underlying asset price values at time 0 .

\section*{Quantity}

NINST-by-1 vector of quantities of the instruments contained in the basket.

\section*{Correlation}

NINST-by-NINST matrix of correlation values.

\section*{Parameter-Value Pairs}

\section*{DividendAmounts}

NINST-by- 1 cell array specifying the dividend amounts for basket instruments. Each element of the cell array is a 1 -by-NDIV row vector of cash dividends or a scalar representing a continuous annualized dividend yield for the corresponding instrument.

\section*{DividendType}

NINST-by-1 cell array of character vectors specifying each stock's dividend type. Dividend type must be either cash for actual dollar dividends or continuous for continuous dividend yield.

\section*{ExDividendDates}

NINST-by- 1 cell array specifying the ex-dividend dates for the basket instruments. Each row is a 1-by-NDIV matrix of ex-dividend dates for cash type. For rows that correspond to basket instruments with continuous dividend type, the cell is empty. If none of the basket instruments pay continuous dividends, do not specify ExDividendDates.

\section*{Output Arguments}

\section*{BasketStockSpec}

Structure encapsulating the properties of a basket stock structure.

\section*{Examples}

\section*{Create a Basket Stock Structure for Three Stocks}

Find a basket option of three stocks. The stocks are currently trading at \(\$ 56, \$ 92\) and \(\$ 125\) with annual volatilities of \(20 \%, 12 \%\) and \(15 \%\), respectively. The basket option contains \(25 \%\) of the first stock, \(40 \%\) of the second stock, and \(35 \%\) of the third. The first stock provides a continuous dividend of \(1 \%\), while the other two provide no dividends.

The correlation between the first and second asset is \(30 \%\), between the second and third asset \(11 \%\), and between the first and third asset \(16 \%\). Use this data to create the BasketStockSpec structure:
```

AssetPrice = [56;92;125];
Sigma = [0.20;0.12;0.15];
% Create the Correlation matrix. Correlation matrices are symmetric and
% have ones along the main diagonal.
NumInst = 3;
Corr = zeros(NumInst,1);
Corr(1,2) = .30;
Corr(2,3) = .11;
Corr(1,3) = .16;
Corr = triu(Corr,1) + tril(Corr',-1) + diag(ones(NumInst,1), 0);
% Define dividends
DivType = cell(NumInst,1);
DivType{1}='continuous';
DivAmounts = cell(NumInst,1);
DivAmounts{1} = 0.01;
Quantity = [0.25; 0.40; 0.35];
BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Corr, ...
'DividendType', DivType, 'DividendAmounts', DivAmounts)
BasketStockSpec =
struct with fields:
FinObj: 'BasketStockSpec'
Sigma: [3\times1 double]
AssetPrice: [3\times1 double]
Quantity: [3\times1 double]
Correlation: [3\times3 double]
DividendType: {3\times1 cell}
DividendAmounts: {3\times1 cell}
ExDividendDates: {3\times1 cell}

```

Examine the BasketStockSpec structure.
BasketStockSpec.Correlation
```

ans =

```
\begin{tabular}{lll}
1.0000 & 0.3000 & 0.1600 \\
0.3000 & 1.0000 & 0.1100 \\
0.1600 & 0.1100 & 1.0000
\end{tabular}

\section*{Create a Basket Stock Structure for Two Stocks}

Find a basket option of two stocks. The stocks are currently trading at \(\$ 60\) and \(\$ 55\) with volatilities of \(30 \%\) per annum. The basket option contains \(50 \%\) of each stock. The first stock provides a cash dividend of \(\$ 0.25\) on May 1, 2009 and September 1, 2009. The second stock provides a continuous dividend of \(3 \%\). The correlation between the assets is \(40 \%\). Use this data to create the structure BasketStockSpec:
```

AssetPrice = [60;55];
Sigma = [0.30;0.30];
% Create the Correlation matrix. Correlation matrices are symmetric and
% have ones along the main diagonal.
Correlation = [1 0.40;0.40 1];
% Define dividends
NumInst = 2;
DivType = cell(NumInst,1);
DivType{1}='cash';
DivType{2}='continuous';
DivAmounts = cell(NumInst,1);
DivAmounts{1} = [0.25 0.25];
DivAmounts{2} = 0.03;
ExDates = cell(NumInst,1);
ExDates{1} = {'May-1-2009' 'Sept-1-2009'};
Quantity = [0.5; 0.50];
BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation, ...
'DividendType', DivType, 'DividendAmounts', DivAmounts, 'ExDividendDates',ExDates)
BasketStockSpec =

```
```

struct with fields:
FinObj: 'BasketStockSpec'
Sigma: [2\times1 double]
AssetPrice: [2\times1 double]
Quantity: [2×1 double]
Correlation: [2\times2 double]
DividendType: {2\times1 cell}
DividendAmounts: {2\times1 cell}
ExDividendDates: {2\times1 cell}

```

Examine the BasketStockSpec structure.
BasketStockSpec.DividendType
ans =
\(2 \times 1\) cell array
cash \({ }^{\prime}\)
continuous'
- "Portfolio Creation" on page 1-7
- "Hedging Functions" on page 4-3

\section*{More About}
- "Instrument Constructors" on page 1-18
- "Supported Equity Derivatives" on page 3-24

\section*{See Also \\ basketbyju | basketbyls | basketsensbyju | basketsensbyls | basketstockspec | intenvset | stockspec}

\section*{Introduced in R2009b}

\section*{bdtprice}

Instrument prices from Black-Derman-Toy interest-rate tree

\section*{Syntax}
[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of NINST instruments. Instruments \\
are categorized by type. Each type can have different data fields. \\
The stored data field is a row vector or character vector for each \\
instrument.
\end{tabular} \\
\hline Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options structure created with \\
derivset.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options) computes arbitrage-free prices for instruments using an interest-rate tree created with bdttree. All instruments contained in a financial instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by- 1 vector of prices for each instrument at time 0 . The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.
bdtprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat',
'Swap '. See instadd to construct defined types.
Related single-type pricing functions are:
- bondbybdt - Price a bond from a BDT tree.
- capbybdt - Price a cap from a BDT tree.
- cfbybdt - Price an arbitrary set of cash flows from a BDT tree.
- fixedbybdt - Price a fixed-rate note from a BDT tree.
- floatbybdt - Price a floating-rate note from a BDT tree.
- floorbybdt - Price a floor from a BDT tree.
- optbndbybdt - Price a bond option from a BDT tree.
- optfloatbybdt - Price a floating-rate note with an option from a BDT tree.
- optemfloatbybdt - Price a floating-rate note with an embedded option from a BDT tree.
- optembndbybdt - Price a bond with embedded option by a BDT tree.
- rangefloatbybdt - Price range floating note using a BDT tree.
- swapbybdt - Price a swap from a BDT tree.
- swaptionbybdt - Price a swaption from a BDT tree.

\section*{Examples}

\section*{Price a Cap and Bond Instruments Contained in an Instrument Set}

Load the BDT tree and instruments from the data file deriv.mat to price the cap and bond instruments contained in the instrument set.
```

load deriv.mat;
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});
instdisp(BDTSubSet)

```
```

instdisp(BDTSubSet)
Index Type CouponRate Settle Maturity
1 Bond 0.1 01-Jan-2000 01-Jan-2003
2 Bond 0.1 01-Jan-2000 01-Jan-2004
Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity
3 Cap 0.15 01-Jan-2000 01-Jan-2004 1 NaN NaN NaN 15% Cap 30
Price the bond and cap.

```
```

[Price, PriceTree] = bdtprice(BDTTree, BDTSubSet)

```
```

[Price, PriceTree] = bdtprice(BDTTree, BDTSubSet)

```
```

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

```
Warning: Not all cash flows are aligned with the tree. Result will be approximated.
> In checktree at 289
> In checktree at 289
    In bdtprice at }8
    In bdtprice at }8
Price =
Price =
    95.5030
    95.5030
    93.9079
    93.9079
        1.4375
        1.4375
PriceTree =
PriceTree =
        FinObj: 'BDTPriceTree'
        FinObj: 'BDTPriceTree'
        PTree: {[3\times1 double] [3\times2 double] [3\times3 double] [3\times4 double] [3\times4 double]}
        PTree: {[3\times1 double] [3\times2 double] [3\times3 double] [3\times4 double] [3\times4 double]}
        AITree: {[3\times1 double] [3x2 double] [3x3 double] [3x4 double] [3\times4 double]}
        AITree: {[3\times1 double] [3x2 double] [3x3 double] [3x4 double] [3\times4 double]}
        tObs: [[0 1 1 2 3 4]
```

 tObs: [[0 1 1 2 3 4]
    ```

You can use the treeviewer function to see the prices of these three instruments along the price tree.


First 10\% Bond (Maturity 2003)


Second 10\% Bond (Maturity 2004)


\section*{Price Multi-Stepped Coupon Bonds}

Price the following multi-stepped coupon bonds using the following data:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

```
```

% Create a portfolio of stepped coupon bonds with different maturities
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014'
% Display the instrument portfolio
ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

| Index | Type | CouponRate | Settle | Maturity | Period | Basis | EndMonthRule | IssueDat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2011 | 1 | 0 | 1 | NaN |
| 2 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2012 | 1 | 0 | 1 | NaN |
| 3 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2013 | 1 | 0 | 1 | NaN |
| 4 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2014 | 1 | 0 | 1 | NaN |

```

Build a BDTTree to price the stepped coupon bonds. Assume the volatility to be \(10 \%\)
```

Sigma = 0.1;
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);
% Compute the price of the stepped coupon bonds
PBDT = bdtprice(BDTT, ISet)

```

PBDT \(=\)
100.6763
100.7368
100.9266
101.0115

\section*{Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds}

Price a portfolio of stepped callable bonds and stepped vanilla bonds using the following data: The data for the interest rate term structure is as follows:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

```
```

Compounding = 1;
%Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
% Create an instrument portfolio of 3 stepped callable bonds and three
% stepped vanilla bonds
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014'
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; %Callable in one year
% Bonds with embedded option
ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);
% Vanilla bonds
ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);
% Display the instrument portfolio
instdisp(ISet)

| Index | Type | CouponRate | Settle | Maturity | OptSpec | Strike ExerciseDates |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | OptEmBond | [Cell] | $01-$ Jan-2010 | $01-$ Jan-2012 | call | 100 |
| 2 | OptEmBond | [Cell] | $01-$ Jan-2010 | $01-$ Jan-2013 | call | 100 |
| 3 | OptEmBond | [Cell] | $01-$ Jan-2011 | | | |
| 2010 | $01-$ Jan-2014 | call | 100 | $01-$ Jan-2011 | | |

| Index | Type CouponRate | Settle | Maturity | Period | Basis | EndMonthRule | IssueDat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | Bond | [Cell] | $01-J a n-2010$ | $01-J a n-2012$ | 1 | 0 | 1 |
| 5 | Bond [Cell] | $01-J a n-2010$ | $01-J a n-2013$ | 1 | 0 | 1 | NaN |
| 6 | Bond [Cell] | $01-J a n-2010$ | $01-J a n-2014$ | 1 | 0 | 1 | NaN |
| | [CaN | | | | | | |

```

Build a BDTTree and price the instruments. Build the tree Assume the volatility to be 10\%

Sigma \(=0.1\);
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);
\%The first three rows corresponds to the price of the stepped callable bonds and the
```

%last three rows corresponds to the price of the stepped vanilla bonds.
PBDT = bdtprice(BDTT, ISet)
PBDT =
100.4799
100.3228
100.0840
100.7368
100.9266
101.0115

```

\section*{Price a Porffolio with Range Notes and a Floating Rate Note}

Compute the price of a portfolio with range notes and a floating rate note using the following data: The data for the interest rate term structure is as follows:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;
% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
% Create an instrument portfolio with two range notes and a floating rate
% note with the following data:
Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
% First Range Note:
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];
% Second Range Note:
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates = [0.048 0.059; 0.055 0.068; 0.07 0.09];
% Create InstSet
InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

```
```

% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);
% Display the portfolio instrument
instdisp(InstSet)

| Index | Type | Spread | Settle | Maturity | RateSched | FloatReset | Basis | Princ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RangeFloat | 200 | 01-Jan-2011 | 01-Jan-2014 | [Struct] | 1 | 0 | 100 |
| 2 | RangeFloat | 200 | 01-Jan-2011 | 01-Jan-2014 | [Struct] | 1 | 0 | 100 |

| Index | Type Spread Settle | Maturity | FloatReset Basis Principal EndMonthRu. | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | Float 200 | $01-J a n-2011$ | $01-J a n-2014$ | 1 | 0 | 100 |

```

Build a BDTTree and price the instruments. Build the tree Assume the volatility to be 10\%.
```

Sigma = 0.1;
BDTTS = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVS, RS, BDTTS);
% Price the portfolio
Price = bdtprice(BDTT, InstSet)
Price =
100.2841
98.0757
105.5147

```

\section*{Create a Float-Float Swap and Price with bdtprice}

Use instswap to create a float-float swap and price the swap with bdtprice.
```

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.02 .03],today,datemnth(today,60),[], [], [], [1 1]);
VolSpec = bdtvolspec(today,datemnth(today,[10 60]),[.01 .02]);
TimeSpec = bdttimespec(today,cfdates(today,datemnth(today,60),1));
BDTTree = bdttree(VolSpec,RateSpec,TimeSpec);
bdtprice(BDTTree,IS)

```

\section*{Price Multiple Swaps with bdtprice}

Use instswap to create multiple swaps and price the swaps with bdtprice.
```

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[.08 300],today,datemnth(today,60),[], [], [], [1 0]);
VolSpec = bdtvolspec(today,datemnth(today,[10 60]),[.01 .02]);
TimeSpec = bdttimespec(today,cfdates(today,datemnth(today,60),1));
BDTTree = bdttree(VolSpec,RateSpec,TimeSpec);
bdtprice(BDTTree,IS)

```

\section*{ans =}
4.3220
-4.3220
- 0.2701

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bdtsens | bdttree | instadd | intenvprice | intenvsens \\ Introduced before R2006a
}

\section*{bdtsens}

Instrument prices and sensitivities from Black-Derman-Toy interest-rate tree

\section*{Syntax}
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of NINST instruments. Instruments are \\
categorized by type. Each type can have different data fields. The stored \\
data field is a row vector or character vector for each instrument.
\end{tabular} \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with the bdttree function. NINST instruments from a financial instrument variable, InstSet, are priced. bdtsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat', 'Swap'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to bdttree. See bdttree for information on the observed yield curve.

Gamma is an NINST-by- 1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to bdttree.

Vega is an NINST-by- 1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility \(\sigma(t, T)\). Vega is computed by finite differences in calls to bdttree. See bdtvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by- 1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a \(1 \%\) shift in the volatility process.

\section*{Examples}

\section*{Compute Instrument Sensitivities and Prices for Cap and Bond instruments}

Load the tree and instruments from the deriv.mat data file.
```

load deriv.mat;
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});
instdisp(BDTSubSet)

| Index | Type CouponRate | Settle | Maturity | Period Basis EndMonthRule | IssueDat | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Bond 0.1 | $01-$ Jan-2000 | $01-$ Jan-2003 | 1 | NaN | NaN | NaN |
| 2 | Bond 0.1 | $01-$ Jan-2000 | $01-$ Jan-2004 | 2 | NaN | NaN | NaN |

| Index Type Strike Settle | Maturity | CapReset | Basis Principal Name | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | Cap 0.15 | $01-J a n-2000$ | $01-J a n-2004$ | 1 | NaN | NaN |

```

Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.
[Delta, Gamma] = bdtsens(BDTTree, BDTSubSet)
Warning: Not all cash flows are aligned with the tree. Result will be
```

approximated.
Delta =
-232.6681
-281.0517
63.8102
Gamma =
1.0e+03 *
0.8037
1.1819
1.8535

```

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bdtprice | bdttree | bdtvolspec | instadd \\ Introduced before R2006a
}

\section*{bdttimespec}

Specify time structure for Black-Derman-Toy interest-rate tree

\section*{Syntax}

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline ValuationDate & Scalar date marking the pricing date and first observation in the tree. Specify as serial date number or date character vector. \\
\hline Maturity & Number of levels (depth) of the tree. A number of levels (NLEVELS)-by- 1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default \(=1\). This argument determines the formula for the discount factors: \\
Compounding \(=1,2,3,4,6,12\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units; for example, \(T=F\) is one year. \\
Compounding \(=365\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis. \\
Compounding \(=-1\) \\
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for a BDT tree and determines the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for bdttree. The state observation dates are [ValuationDate; Maturity(1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

\section*{Examples}

\section*{Specify a Five-Period Tree with Annual Nodes}

This example shows how to specify a five-period tree with annual nodes and use annual compounding to report rates.
```

Compounding = 1;

```
ValuationDate = '01-01-2000';
Maturity = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
    struct with fields:
            FinObj: 'BDTTimeSpec'
    ValuationDate: 730486
            Maturity: [5×1 double]
            Compounding: 1
                    Basis: 0
            EndMonthRule: 1
- "Specifying the Time Structure (TimeSpec)" on page 2-70

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bdtprice | bdttree | bdtvolspec | instadd
Introduced before R2006a

\section*{bdttree}

Construct Black-Derman-Toy interest-rate tree

\section*{Syntax}

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline VolSpec & \begin{tabular}{l} 
Volatility process specification. See bdtvolspec for information on \\
the volatility process.
\end{tabular} \\
\hline RateSpec & \begin{tabular}{l} 
Interest-rate specification for the initial rate curve. See intenvset \\
for information on declaring an interest-rate variable.
\end{tabular} \\
\hline TimeSpec & \begin{tabular}{l} 
Tree time layout specification. Defines the observation dates of the \\
BDT tree and the Compounding rule for date to time mapping and \\
price-yield formulas. See bdttimespec for information on the tree \\
structure.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and interest-rate information on a recombining tree.

\section*{Examples}

Using the data provided, create a BDT volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a BDT tree with bdttree.
```

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';

```
```

'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);

```
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec \(=\) bdtvolspec(ValuationDate, EndDates, Volatility);
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree \(=\)
```

 FinObj: 'BDTFwdTree'
 VolSpec: [1\times1 struct]
 TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [lllllll}
dObs: [730486 730852 731217 731582 731947]
TFwd: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [4]}
CFlowT: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [5]}
FwdTree: {[1.1000] [1.0979 1.1432] [1.0976 1.1377 1.1942] [1.0872 1.1183 1.1606 1.2179] [1x5 double]}

```

Use treeviewer to observe the tree you have created.
treeviewer (BDTTree)


\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bdtprice | bdttimespec | bdttree | bdtvolspec | instadd | intenvset \\ Introduced before R2006a
}

\section*{bdtvolspec}

Specify Black-Derman-Toy interest-rate volatility process

\section*{Syntax}

Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve, InterpMethod)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ValuationDate & \begin{tabular}{l} 
Scalar value representing the observation date of the \\
investment horizon.
\end{tabular} \\
\hline VolDates & \begin{tabular}{l} 
Number of points (NPOINTS) -by-1 vector of yield volatility \\
end dates.
\end{tabular} \\
\hline VolCurve & \begin{tabular}{l} 
NPOINTS-by-1 vector of yield volatility values in decimal \\
form. The term structure of VolCurve is the yield volatility \\
represented by the value of the volatility of the yield from \\
time \(t=0\) to time \(t+i\), where \(i\) is any point within the \\
volatility curve.
\end{tabular} \\
\hline InterpMethod & \begin{tabular}{l} 
(Optional) Interpolation method. Default is 'linear '. See \\
interp1 for more information.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve, InterpMethod) creates a structure specifying the volatility for bdttree.

\section*{Examples}

\section*{Create a BDT Volatility Specification}

This example shows how to create a BDT volatility specification (VolSpec) using the following data.
```

ValuationDate = '01-01-2000';
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Volatility = [.2; .19; .18; .17; .16];
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)
BDTVolSpec =
struct with fields:
FinObj: 'BDTVolSpec
ValuationDate: 730486
VolDates: [5\times1 double]
VolCurve: [5\times1 double]
VolInterpMethod: 'linear'

```
- "Specifying the Volatility Model (VolSpec)" on page 2-67

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bdttree | interp1
}

Introduced before R2006a

\section*{bkprice}

Instrument prices from Black-Karasinski interest-rate tree

\section*{Syntax}
[Price, PriceTree] = bkprice(BKTree, InstSet, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline BKTree & Interest-rate tree structure created by bktree. \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of NINST instruments. Instruments are \\
categorized by type. Each type can have different data fields. The stored \\
data field is a row vector or character vector for each instrument.
\end{tabular} \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = bkprice(BKTree, InstSet, Options) computes arbitrage-free prices for instruments using an interest-rate tree created with bktree. All instruments contained in a financial instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
bkprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat', 'Swap'. See instadd to construct defined types.

Related single-type pricing functions are:
- bondbybk - Price a bond from a Black-Karasinski tree.
- capbybk - Price a cap from a Black-Karasinski tree.
- cfbybk - Price an arbitrary set of cash flows from a Black-Karasinski tree.
- fixedbybk - Price a fixed-rate note from a Black-Karasinski tree.
- floatbybk - Price a floating-rate note from a Black-Karasinski tree.
- floorbybk - Price a floor from a Black-Karasinski tree.
- optbndbybk — Price a bond option from a Black-Karasinski tree.
- optembndbybk - Price a bond with embedded option by a Black-Karasinski tree.
- optfloatbybk - Price a floating-rate note with an option from a Black-Karasinski tree.
- optemfloatbybk - Price a floating-rate note with an embedded option from a Black-Karasinski tree.
- rangefloatbybk - Price range floating note from a Black-Karasinski tree.
- swapbybk - Price a swap from a Black-Karasinski tree.
- swaptionbybk - Price a swaption from a Black-Karasinski tree.

\section*{Examples}

Load the BK tree and instruments from the data file deriv.mat. Price the cap and bond instruments contained in the instrument set.
```

load deriv.mat;
BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'});
instdisp(BKSubSet)
%Table of instrument portfolio partially displayed:
Index Type CouponRate Settle
1 Blllll
Index Type Strike Settle Maturity CapReset ... Name ...
3 Cap 0.04 01-Jan-2004 01-Jan-2008 1 ... 4% Cap
[Price, PriceTree] = bkprice(BKTree, BKSubSet);

```

\section*{Price =}
98.1096
95.6734
2.2706

You can use treeviewer to see the prices of these three instruments along the price tree.
treeviewer(PriceTree, BKSubSet)


First 3\% Bond (Maturity 2007)


Second 3\% Bond (Maturity 2008)


Price the following multi-stepped coupon bonds using the following data:
\% The data for the interest rate term structure is as follows:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
% Create a portfolio of stepped coupon bonds with different maturities
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};
ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)
%Table of instrument portfolio partially displayed:
Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face
1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 ... 100
2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 0 1 % .. 100
3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100
4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 .. 100
% Build the tree with the following data
VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);
% Compute the price of the stepped coupon bonds
PBK = bkprice(BKT, ISet)
PBK =
100.6763
100.7368
100.9266
101.0115

```

Price a portfolio of stepped callable bonds and stepped vanilla bonds using the following data:
```

% The data for the interest rate term structure is as follows:
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

```
```

% Create an instrument portfolio of 3 stepped callable bonds and three
% stepped vanilla bonds
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; % Callable in one year
% Bonds with embedded option
ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);
% Vanilla bonds
ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);
% Display the instrument portfolio
instdisp(ISet)
%Table of instrument portfolio partially displayed:

| Index | Type CouponRate | Settle | Maturity | OptSpec | Strike | ExerciseDates | . American0pt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | OptEmBond [Cell] | 01-Jan-2010 | 01-Jan-2012 | call | 100 | 01-Jan-2011 | 0 |
| 2 | OptEmBond [Cell] | 01-Jan-2010 | 01-Jan-2013 | call | 100 | 01-Jan-2011 | 0 |
| 3 | OptEmBond [Cell] | 01-Jan-2010 | 01-Jan-2014 | call | 100 | 01-Jan-2011 | 0 |

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

| 4 | Bond [Cell] | $01-$ Jan-2010 | $01-$ Jan-2012 | 1 | 0 | 1 | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | Bond [Cell] | $01-$ Jan-2010 | $01-$ Jan-2013 | 1 | 0 | 1 | \ldots |
| 6 | Bond [Cell] | $01-J a n-2010$ | $01-J a n-2014$ | 1 | 0 | 1 | \ldots |

% Build the tree with the following data
VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);
% The first three rows corresponds to the price of the stepped callable bonds
% and the last three rows corresponds to the price of the stepped vanilla bonds.
PBK = bkprice(BKT, ISet)
PBK =
100.6735
100.6763
100.6763
100.7368
100.9266
101.0115

```

Compute the price of a portfolio using the following data:
```

% The data for the interest rate term structure is as follows:
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;
% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
% Create an instrument portfolio with two range notes and a floating rate
% note with the following data:
Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
% First Range Note:
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];
% Second Range Note:
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates = [0.048 0.059; 0.055 0.068; 0.07 0.09];
% Create InstSet
InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);
% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);
% Display the portfolio instrument
instdisp(InstSet)

| Index | Type | | Spread | Settle | Maturity R | RateSched | FloatReset | t Basis | Principal | EndMonthRule |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RangeF | loat | 200 | 01-Jan-2011 | 1 01-Jan-2014 | 4 [Struct] | 1 | 0 | 100 | 1 |
| 2 | RangeF | loat | 200 | 01-Jan-2011 | 1 01-Jan-2014 | 4 [Struct] | 1 | 0 | 100 | 1 |
| Index | Type | Spre | ad Set | | Maturity | FloatRese | et Basis P | Principal | 1 EndMonth | Rule |
| 3 | Float | 200 | 01 - | Jan-2011 0 | 01-Jan-2014 | 1 | 0 | 100 | 1 | |

% The data to build the tree is as follows:
VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;
BKVS = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTS = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVS, RS, BKTS);
% Price the portfolio
Price = bkprice(BKT, InstSet)

```

\section*{Price =}
105.5147
101.4740
105.5147

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bdttree | bksens | instadd | intenvprice | intenvsens \\ Introduced before R2006a
}

\section*{bksens}

Instrument prices and sensitivities from Black-Karasinski interest-rate tree

\section*{Syntax}
[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline BKTree & Interest-rate tree structure created by bktree. \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of NINST instruments. Instruments are \\
categorized by type. Each type can have different data fields. The stored \\
data field is a row vector or character vector for each instrument.
\end{tabular} \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with the bktree function. NINST instruments from a financial instrument variable, InstSet, are priced. bksens handles instrument types: 'Bond ', 'CashFlow', 'OptBond', 'OptEmBond', 'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat', 'Swap'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to bktree. See bktree for information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to bktree.

Vega is an NINST-by- 1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility \(\sigma(t, T)\). Vega is computed by finite differences in calls to bktree. See bkvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by- 1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a \(1 \%\) shift in the volatility process.

\section*{Examples}

\section*{Compute Instrument Sensitivities and Prices for Cap and Bond Instruments}

Load the tree and instruments from the deriv.mat data file.
```

load deriv.mat;
BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'});
instdisp(BKSubSet)

```
\begin{tabular}{llllllll} 
Index & Type CouponRate Settle & Maturity & Period & Basis EndMonthRule & IssueDat \\
1 & Bond 0.03 & \(01-\) Jan-2004 & \(01-\) Jan-2007 & 1 & 0 & 1 & NaN \\
2 & Bond 0.03 & \(01-\) Jan-2004 & \(01-\) Jan-2008 & 1 & 0 & 1 & NaN
\end{tabular}
\begin{tabular}{llllllll} 
Index & Type Strike Settle & Maturity & CapReset Basis Principal Name & Quanti \\
3 & Cap 0.04 & \(01-J a n-2004\) & \(01-J a n-2008\) & 1 & 0 & 100 & \(4 \%\) Cap 10
\end{tabular}

Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.
[Delta, Gamma] = bksens(BKTree, BKSubSet)

\section*{Delta =}
-285.7151
-365.7048
189.5319

Gamma =
\(1.0 e+03\)
0.8456
1.4345
6.9999
- "Pricing Using Interest-Rate Tree Models" on page 2-84

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bkprice | bktree | bkvolspec | instadd

\section*{Introduced before R2006a}

\section*{bktimespec}

Specify time structure for Black-Karasinski tree

\section*{Syntax}

TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline ValuationDate & Scalar date marking the pricing date and first observation in the tree. Specify as a serial date number or date character vector. \\
\hline Maturity & Number of levels (depth) of the tree. A number of levels (NLEVELS)-by- 1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default =-1 (continuous compounding). This argument determines the formula for the discount factors: \\
Compounding \(=1,2,3,4,6,12=F\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units; for example, \(\mathrm{T}=\mathrm{F}\) is one year. \\
Compounding \(=365\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis. \\
Compounding \(=-1\) \\
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

TimeSpec = bktimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for a BK tree and determines the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for bktree. The state observation dates are [Settle; Maturity (1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

\section*{Examples}

\section*{Specify a Four-Period Tree with Annual Nodes}

This example shows how to specify a four-period tree with annual nodes using annual compounding to report rates.
```

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
Compounding = 1;
TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
struct with fields:
FinObj: 'BKTimeSpec'
ValuationDate: 731947
Maturity: [4\times1 double]
Compounding: 1
Basis: 0
EndMonthRule: 1

```
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Specifying the Time Structure (TimeSpec)" on page 2-70

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bksens | bktree | bkvolspec
Introduced before R2006a

\section*{bktree}

Construct Black-Karasinski interest-rate tree

\section*{Syntax}

BKTree = bktree(VolSpec, RateSpec, TimeSpec)
BKTree \(=\) bktree(VolSpec, RateSpec, TimeSpec, Name, Value)

\section*{Description}

BKTree = bktree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and interest-rate information on a recombining tree.

BKTree = bktree(VolSpec, RateSpec, TimeSpec, Name, Value) creates a structure containing time and interest-rate information on a recombining tree with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{VolSpec}

Volatility process specification. See bkvolspec for information on the volatility process.

\section*{RateSpec}

Interest-rate specification for the initial rate curve. See intenvset for information on declaring an interest-rate variable.

\section*{TimeSpec}

Tree time layout specification. Defines the observation dates of the BK tree and the compounding rule for date to time mapping and price-yield formulas. See bktimespec for information on the tree structure.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'Method'}

Method is a character vector specifying the Hull-White method upon which the tree-node connectivity algorithm is based. Possible values are HW1996 and HW2000.

Note: bktree supports two tree-node connectivity algorithms. HW1996 is based on the original paper published in the Journal of Derivatives, and HW2000 is the general version of the algorithm, as specified in the paper published in August 2000.

Default: HW2000

\section*{Output Arguments}

\section*{BKTree}

Structure containing time and interest rate information of a trinomial recombining tree.

\section*{Examples}

Using the data provided, create a BK volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a BK tree using bktree.
```

Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004';'12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];

```
```

BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', ValuationDate,...
'EndDates', VolDates,...
'Rates', Rates);
BKTimeSpec = bktimespec(ValuationDate, VolDates, Compounding);
BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec)
BKTree =
FinObj: 'BKFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.9973 1.9973 2.9973]
dObs: [l731947 732312 732677 733042]
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [3.9973]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}
Connect: {[2] [2 3 4] [2 3 4 5 5 6]}
FwdTree: {[1.0278] [1.0361 1.0355 1.0349][[l.0493 1.0484 1.0476 1.0467 1.0459] [1.0620 1.0609 1.0598 1.0587 1.057)

```

Use treeviewer to observe the tree you have created.
treeviewer(BKTree)


Using the data provided, create a Hull-White volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a Hull-White tree using hwtree.
```

Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
StartDates', ValuationDate,...
'EndDates', VolDates,...
'Rates', Rates);
HWTimeSpec = hwtimespec(ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)
HWTree =
FinObj: 'HWFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.9973 1.9973 2.9973]
dObs: [731947 732312 732677 733042]
CFlowT: {[4\times1 double] [3\times1 double] [2x1 double] [3.9973]}
Probs: {[3\times1 double] [3x3 double] [3x5 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6]}

```


Use treeviewer to observe the tree you have created.
treeviewer(HWTree)


\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Hull, J., and A. White. "Using Hull-White Interest Rate Trees." Journal of Derivatives. 1996.

Hull, J., and A. White. "The General Hull-White Model and Super Calibration." August 2000.

\author{
See Also \\ bkprice | bksens | bktimespec | bkvolspec | intenvset
}

11 Functions - Alphabetical List

Introduced before R2006a

\section*{bkvolspec}

Specify Black-Karasinski interest-rate volatility process

\section*{Syntax}

Volspec = bkvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve, InterpMethod)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ValuationDate & \begin{tabular}{l} 
Scalar value representing the observation date of the \\
investment horizon.
\end{tabular} \\
\hline VolDates & \begin{tabular}{l} 
Number of points (NPOINTS)-by-1 vector of yield volatility \\
end dates.
\end{tabular} \\
\hline VolCurve & \begin{tabular}{l} 
NPOINTS-by-1 vector of annualized yield volatility values \\
in decimal form. The term structure of VolCurve is the \\
yield volatility represented by the value of the volatility of \\
the yield from time \(t=0\) to time \(t+i\), where \(i\) is any point \\
within the volatility curve.
\end{tabular} \\
\hline AlphaDates & NPOINTS-by-1 vector of mean reversion end dates. \\
\hline AlphaCurve & \begin{tabular}{l} 
NPOINTS-by-1 vector of positive mean reversion values in \\
decimal form.
\end{tabular} \\
\hline InterpMethod & \begin{tabular}{l} 
(Optional) Interpolation method. Default is ' linear '. See \\
interp1 for more information.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Volspec = bkvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve, InterpMethod) creates a structure specifying the volatility for bktree.

\section*{Examples}

\section*{Create a Black-Karasinski Volatility Specification}

This example shows how to create a Black-Karasinski volatility specification (VolSpec) using the following data.
```

ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve)

```
BKVolSpec =
    struct with fields:
            FinObj: 'BKVolSpec'
        ValuationDate: 731947
        VolDates: [ \(4 \times 1\) double]
        VolCurve: [4×1 double]
        AlphaCurve: 0.1000
        AlphaDates: 733408
    VolInterpMethod: 'linear'
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Specifying the Volatility Model (VolSpec)" on page 2-67

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bkprice | bktimespec | bktree | interp1 \\ Introduced before R2006a
}

\section*{bondbybdt}

Price bond from Black-Derman-Toy interest-rate tree

\section*{Syntax}
[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, Maturity)
[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Name, Value)

\section*{Input Arguments}
\begin{tabular}{|l|l|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline CouponRate & \begin{tabular}{l} 
Decimal annual rate. CouponRate is a NINST-by-1 vector \\
or NINST-by-1 cell array of decimal annual rates, or \\
decimal annual rate schedules. For the latter case of a \\
variable coupon schedule, each element of the cell array \\
is a NumDates-by-2 cell array, where the first column is \\
dates and the second column is its associated rate. The \\
date indicates the last day that the coupon rate is valid.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
Settlement date. A vector of serial date numbers or \\
date character vectors. Settle must be earlier than \\
Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
Maturity date. A vector of serial date numbers or date \\
character vectors.
\end{tabular} \\
\hline
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the BDT tree. The bond argument Settle is ignored.

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Period}

Coupons per year of the bond. A vector of integers. Values are 1, 2, 3, 4, 6, and 12.

\section*{Default: 2}

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/ 360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{EndMonthRule}

End-of-month rule. A NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Default: 1

\section*{IssueDate}

Date when a bond was issued.

\section*{Default:}

\section*{FirstCouponDateDate}

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

\section*{Default:}

\section*{LastCouponDateDate}

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

\section*{Default:}

\section*{StartDate}

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

\section*{Default:}

\section*{Face}

Face or par value. Face is a NINST-by-1 vector or NINST-by- 1 cell array of face values, or face value schedules. For the latter case, each element of the cell array is a NumDates-by- 2 cell array, where the first column is dates and the second column is its associated face value. The date indicates the last day that the face value is valid.

Default: 100

\section*{Options}

Derivatives pricing options structure created with derivset.

\section*{Default:}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.
Default: false

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by-1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{Description}
[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, Maturity) computes the price of a bond from a BDT interest-rate tree.
[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from a BDT interest-rate tree using optional input arguments.
[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Name, Value) computes the price of a bond from a BDT interest-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0 .
PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree:
- PriceTree.PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.
bondbybdt computes prices of vanilla bonds, stepped coupon bonds, and amortizing bonds with no market purchase option and no call provisions.

\section*{Examples}

\section*{Price a Bond Using a BDT Tree}

Price a \(10 \%\) bond using a BDT interest-rate tree.

Load deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the bond.
```

load deriv.mat;

```

Define the bond using the required arguments. Other arguments use defaults.
```

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Period = 1;

```

Use bondbybdt to compute the price of the bond.
```

Price = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period)

```
Price =
    95.5030

\section*{Price a Stepped Coupon Bond}

Price single stepped coupon bonds using market data.
Define the interest-rate term structure.
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

```

Create the RateSpec.
```

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates, 'EndDates',..
EndDates, 'Rates', Rates, 'Compounding', Compounding)

```
RS \(=\)
    struct with fields:
    FinObj: 'RateSpec'
```

 Compounding: 1
 Disc: [4×1 double]
 Rates: [4×1 double]
 EndTimes: [4×1 double]
 StartTimes: [4×1 double]
 EndDates: [4×1 double]
 StartDates: 734139
 ValuationDate: 734139
Basis: 0
EndMonthRule: 1

```

Create the stepped bond instrument.
```

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

```

Build the BDT tree and assume the volatility to be \(10 \%\) using the following market data:
```

Sigma = 0.1;
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec)
BDTT =
struct with fields:
FinObj: 'BDTFwdTree'
VolSpec: [1×1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1\times1 struct]
tObs: [l0 1 1 2 3]
dObs: [734139 734504 734869 735235]
TFwd: {[4\times1 double] [3\times1 double] [2\times1 double] [3]}
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
FwdTree: {1\times4 cell}

```

Compute the price of the stepped coupon bonds.
PBDT= bondbybdt(BDTT, CouponRate, Settle,Maturity , Period)

PBDT =
100.7246
100.0945
101.5900
102.0820

\section*{Price Two Bonds with Amortization Schedules}

Price two bonds with amortization schedules using the Face input argument to define the schedule.

Define the interest-rate term structure.
```

Rates = 0.035;
ValuationDate = '1-Nov-2011';
StartDates = ValuationDate;
EndDates = '1-Nov-2017';
Compounding = 1;

```

Create the RateSpec.
```

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

```

Create the bond instrument. The bonds have a coupon rate of \(4 \%\) and \(3.85 \%\), a period of one year, and mature on 1-Nov-2017.
```

CouponRate = [0.04; 0.0385];

```
Settle ='1-Nov-2011';
Maturity = '1-Nov-2017';
Period = 1;

Define the amortizing schedule.
```

Face = {{'1-Nov-2015' 100;'1-Nov-2016' 85;'1-Nov-2017' 70};
{'1-Nov-2015' 100;'1-Nov-2016' 90;'1-Nov-2017' 80}};

```

Build the BDT tree and assume the volatility to be \(10 \%\).
```

MatDates = {'1-Nov-2012'; '1-Nov-2013';'1-Nov-2014';'1-Nov-2015';'1-Nov-2016';'1-Nov-2
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.1;

```
```

BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))')
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);
Compute the price of the amortizing bonds.

```
```

Price = bondbybdt(BDTT, CouponRate, Settle, Maturity, 'Period',Period,...

```
Price = bondbybdt(BDTT, CouponRate, Settle, Maturity, 'Period',Period,...
'Face', Face)
Price =
    102.4791
    101.7786
```

- "Computing Instrument Sensitivities" on page 2-93
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11

More About

Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time. The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount being amortized to interest expense over the life of the bond.

- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

See Also
bdtprice | bdttree | cfamounts | instbond
Introduced before R2006a

blackvolbyrebonato

Compute Black volatility for LIBOR Market Model using Rebonato formula

Syntax

outVol = blackvolbyrebonato(ZeroCurve, VolFunc, CorrMat, ExerciseDate, Maturity) outVol = blackvolbyrebonato(\qquad ,Name, Value)

Description

outVol = blackvolbyrebonato(ZeroCurve, VolFunc,CorrMat, ExerciseDate, Maturity) computes the Black volatility for a swaption using a LIBOR Market Model.
outVol = blackvolbyrebonato(\qquad ,Name, Value) computes the Black volatility for a swaption using a LIBOR Market Model with optional name-value pair arguments.

Examples

Price Swaption for LIBOR Market Model Using the Rebonato Formula

Define the input maturity and tenor for a LIBOR Market Model (LMM) specified by the cell array of volatility function handles, and a correlation matrix for the LMM.

```
Settle = datenum('11-Aug-2004');
% Zero Curve
CurveTimes = (1:10)';
CurveDates = daysadd(Settle,360*CurveTimes,1);
ZeroRates =[ [0.03 0.033 0.036 0.038 0.04 0.042 0.043 0.044 0.045 0.046]';
% Construct an IRCurve
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
```

```
LMMVolParams = [.3 -. 02 .7 .14];
numRates = length(ZeroRates);
VolFunc(1:numRates-1) = {@(t) LMMVolFunc(LMMVolParams,t)};
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
CorrMat = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
ExerciseDate = datenum('11-Aug-2009');
Maturity = daysadd(ExerciseDate,360*[3;4],1);
Vol = blackvolbyrebonato(irdc,VolFunc,CorrMat,ExerciseDate,Maturity,'Period',1)
Vol =
    0.2210
    0.2079
```

- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation"

Input Arguments

ZeroCurve - Zero-curve for LiborMarketModel model

structure
Zero-curve for the LiborMarketModel, specified using IRDataCurve or RateSpec.
Data Types: struct

VolFunc - Function handle for volatility
cell array of function handles

Function handle for volatility, specified by a NumRates-by- 1 cell array of function handles. Each function handle must take time as an input and return a scalar volatility

Data Types: cell | function_handle

CorrMat - Correlation matrix

vector

Correlation matrix, specified by NumRates-by-NumRates.
Data Types: single | double

ExerciseDate - Swaption exercise date
 nonnegative integer | vector of nonnegative integers | date character vector

Swaption exercise dates, specified by a NumSwaptions-by-1 vector of serial date numbers or date character vectors.
Data Types: single | double | char | cell

Maturity - Swap maturity date

nonnegative integer | vector of nonnegative integers | date character vector
Swap maturity dates, specified using a NumSwaptions-by-1 vector of dates or date character vectors.

Data Types: single | double | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: Vol = blackvolbyrebonato(irdc, VolFunc, CorrMat, ExerciseDate, Maturity, 'Period', 1)

```
'Period' - Compounding frequency of curve and reset of swaptions
2 (default) | positive integer from the set [1,2,3,4,6,12] | vector of positive integers from the set [1, 2, 3, 4, 6, 12]
```

Compounding frequency of curve and reset of swaptions, specified as a positive integer for the values $1,2,4,6,12$ in a NumSwaptions-by- 1 vector.

Data Types: single | double

Output Arguments

outVol - Black volatility for specified swaption

scalar | vector

Black volatility, returned as a vector for the specified swaptions.

More About

Algorithms

The Rebonato approximation formula relates the Black volatility for a European swaption, given a set of volatility functions and a correlation matrix

$$
\left(v_{\alpha, \beta}^{L F M}\right)^{2}=\sum_{i, j=\alpha+1}^{\beta} \frac{w_{i}(0) w_{j}(0) F_{i}(0) F_{j}(0) \rho_{i, j}}{S_{\alpha, \beta}(0)^{2}} \int_{0}^{T_{\alpha}} \sigma_{i}(t) \sigma_{j}(t) d t
$$

where:

$$
w_{i}(t)=\frac{\tau_{i} P\left(t, T_{i}\right)}{\sum_{k=\alpha+1}^{\beta} \tau_{\kappa} P\left(t, t_{\kappa}\right)}
$$

- "Supported Interest-Rate Instruments" on page 2-2

References

[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

See Also

LiborMarketModel

Introduced in R2013a

blackvolbysabr

Calculate implied Black volatility using SABR model

Syntax

```
outVol = blackvolbysabr(Alpha,Beta,Rho,Nu,Settle,
ExerciseDate,ForwardValue,Strike)
outVol = blackvolbysabr(
```

\qquad

``` , Name, Value)
```


Description

outVol = blackvolbysabr(Alpha,Beta, Rho,Nu,Settle, ExerciseDate, ForwardValue, Strike) calculates the implied Black volatility using the SABR stochastic volatility model.
outVol = blackvolbysabr (__ , Name, Value) calculates the implied Black volatility using the SABR stochastic volatility model with optional name-value pair arguments.

Examples

Compute the Implied Black Volatility Using the SABR Model

Define the model parameters and option data.

```
ForwardRate = 0.0357;
Strike = 0.03;
Alpha = 0.036;
Beta = 0.5;
Rho = -0.25;
Nu = 0.35;
Settle = datenum('15-Sep-2013');
ExerciseDate = datenum('15-Sep-2015');
```

Compute the Black volatility using the SABR model.

```
ComputedVols = blackvolbysabr(Alpha, Beta, Rho, Nu, Settle, ...
ExerciseDate, ForwardRate, Strike)
```

ComputedVols =
0.2122

- "Calibrate the SABR Model " on page 2-21
- "Price a Swaption Using the SABR Model" on page 2-27

Input Arguments

Alpha - Current SABR volatility scalar

Current SABR volatility, specified as a scalar.
Data Types: double

Beta - SABR constant elasticity of variance (CEV) exponent scalar

SABR CEV exponent, specified as a scalar.
Data Types: double

Rho - Correlation between forward value and volatility

 scalarCorrelation between forward value and volatility, specified as a scalar.
Data Types: double

Nu - Volatility of volatility
 scalar

Volatility of volatility, specified as a scalar.
Data Types: double

Settle - Settlement date

scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as a scalar using a serial nonnegative date number or date character vector.
Data Types: double | char

ExerciseDate - Option exercise date

scalar for serial nonnegative date number | scalar for date character vector
Option exercise date, specified as a scalar using a serial nonnegative date number or date character vector.
Data Types: double | char

ForwardValue - Current forward value of underlying asset
 scalar | vector

Current forward value of the underlying asset, specified as a scalar or vector of size NumVols-by-1.

Data Types: double

Strike - Option strike price values

scalar | vector
Option strike price values, specified as a scalar value or a vector of size NumVols-by-1.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

Example: outVol =
blackvolbysabr(Alpha, Beta, Rho, Nu, Settle, ExerciseDate, ForwardValue, Strike, 'Basi
'Basis' - Day-count basis of instrument
0 (actual/actual) (default) | positive integers of the set [1...13]
Day-count basis of the instrument specified as a positive integer of the set [1...13]. The Basis value represents the basis used when annualizing the input forward-rate tree:

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: double

'Model' - Version of SABR model

'Hagan2002' (default) | value 'Obloj2008'
Version of SABR model, specified with either value:

- 'Hagan2002 ' - Original version by Hagan et al. (2002)
- 'Obloj2008' — Version by Obloj (2008)

Data Types: char

Output Arguments

outVol - Implied Black volatility computed by SABR model

scalar | vector
Implied Black volatility computed by SABR model, returned as a scalar or vector of size NumVols-by-1.

More About

Algorithms

The SABR stochastic volatility model treats the underlying forward \hat{F} and volatility $\hat{\alpha}$ as separate random processes, which are related with correlation ρ :

$$
\begin{aligned}
& d \hat{F}=\hat{\alpha} \hat{F}^{\beta} d W_{1} \\
& d \hat{\alpha}=v \hat{\alpha} d W_{2} \\
& d W_{1} d W_{2}=\rho d t \\
& \hat{F}(0)=F \\
& \hat{\alpha}(0)=\alpha
\end{aligned}
$$

where

- \hat{F} is the underlying forward (a variable).
- F is the current underlying forward (a constant).
- $\hat{\alpha}$ is the SABR volatility (a variable).
- α is the current SABR volatility (a constant).
- $\quad \beta$ is the SABR constant elasticity of variance (CEV) exponent.
- v is the volatility of volatility.
- $d W_{1}$ is Brownian motion.
- $d W_{2}$ is Brownian motion.
- $\quad \rho$ is the correlation between forward value and volatility.

In contrast, Black's lognormal model assumes a constant volatility, σ_{B}.

$$
d \hat{F}=\sigma_{B} \hat{F} d W
$$

Hagan et al. (2002) derived the following closed-form approximation of implied Black lognormal volatility (σ_{B}) for the SABR model

$$
\begin{aligned}
& \sigma_{B}(F, K)=\frac{\alpha\left\{1+\left[\frac{(1-\beta)^{2}}{24} \frac{\alpha^{2}}{(F K)^{1-\beta}}+\frac{1}{4} \frac{\rho \beta v \alpha}{(F K)^{(1-\beta) / 2}}+\frac{2-3 \rho^{2}}{24} v^{2}\right] T+\ldots\right\}}{(F K)^{(1-\beta) / 2}\left\{1+\frac{(1-\beta)^{2}}{24} \log ^{2}(F / K)+\frac{(1-\beta)^{4}}{1920} \log ^{4}(F / K)+\ldots\right\}}\left(\frac{z}{x(z)}\right) \\
& z=\frac{v}{\alpha}(F K)^{(1-\beta) / 2} \log (F / K) \\
& x(z)=\log \left\{\frac{\sqrt{1-2 \rho z+z^{2}}+z-\rho}{1-\rho}\right\}
\end{aligned}
$$

where

- F is the current forward value of the underlying.
- α is the current SABR volatility.
- K is the strike value.
- T is the time to option maturity.

Obloj (2008) advocated the following closed-form approximation of implied Black lognormal volatility for the SABR model (for $\beta<1$)

$$
\begin{aligned}
& \sigma_{B}(F, K)=\frac{v \log (F / K)}{x(z)}\left\{1+\left[\frac{(1-\beta)^{2}}{24} \frac{\alpha^{2}}{(F K)^{1-\beta}}+\frac{1}{4} \frac{\rho \beta v \alpha}{(F K)^{(1-\beta) / 2}}+\frac{2-3 \rho^{2}}{24} v^{2}\right] T+\ldots\right\} \\
& z=\frac{v}{\alpha} \frac{F^{(1-\beta)}-K^{(1-\beta)}}{1-\beta} \\
& x(z)=\log \left\{\frac{\sqrt{1-2 \rho z+z^{2}}+z-\rho}{1-\rho}\right\}
\end{aligned}
$$

These expressions can be simplified in special situations, such as the at-the-money ($F=K$) and stochastic lognormal ($\beta=1$) cases [1,2].

- basis
- "Supported Interest-Rate Instruments" on page 2-2

References

[1] Hagan, P. S., D. Kumar, A.S. Lesniewski, and D.E. Woodward. "Managing Smile Risk."Wilmott Magazine, September, pp. 84-108, 2002.
[2] Obloj, J. "Fine-tune your smile: Correction to Hagan et. al." Wilmott Magazine, 2008.

See Also
swaptionbyblk
Introduced in R2014a

bondbybk

Price bond from Black-Karasinski interest-rate tree

Syntax

[Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle, Maturity)
[Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
[Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle, Maturity, Name, Value)

Input Arguments

BKTree	Forward rate tree structure created by bktree.
CouponRate	Decimal annual rate. CouponRate is a NINST-by-1 vector or NINST-by-1 cell array of decimal annual rates, or decimal annual rate schedules. For the latter case of a variable coupon schedule, each element of the cell array is a NumDates-by-2 cell array, where the first column is dates and the second column is its associated rate. The date indicates the last day that the coupon rate is valid.
Settle	Settlement date. A vector of serial date numbers or date character vectors. Settle must be earlier than Maturity. The Settle date for every bond is set to the ValuationDate of the BK Tree. The bond argument, Settle, is ignored.
Maturity	Maturity date. A vector of serial date numbers or date character vectors.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

Period

Coupons per year of the bond. A vector of integers. Values are 1, 2, 3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- $2=$ actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

- $0=$ Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Date when a bond was issued.

Default:

FirstCouponDateDate

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

Default:

LastCouponDateDate

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

Default:

StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

Default:

Face

Face or par value. Face is a NINST-by- 1 vector or NINST-by- 1 cell array of face values, or face value schedules. For the latter case, each element of the cell array is a NumDates-by- 2 cell array, where the first column is dates and the second column is its associated face value. The date indicates the last day that the face value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.
Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:

- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

Description

[Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle, Maturity) computes the price of a bond from a Black-Karasinski interest-rate tree.
[Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from a Black-Karasinski interest-rate tree using optional input arguments.
[Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle, Maturity, Name, Value) computes the price of a bond from a BlackKarasinski interest-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is a number of instruments (NINST)-by- 1 matrix of expected prices at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree:

- PriceTree.PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.
bondbybk computes prices of vanilla bonds, stepped coupon bonds, and amortizing bonds with no market purchase option and no call provisions.

Examples

Price a Bond Using a BK Tree
Price a 4\% bond using a Black-Karasinski interest-rate tree.

Load deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the bond.

```
load deriv.mat;
```

Define the bond using the required arguments. Other arguments use defaults.

```
CouponRate = 0.04;
Settle = '01-Jan-2004';
Maturity = '31-Dec-2008';
```

Use bondbybk to compute the price of the bond.

```
Price = bondbybk(BKTree, CouponRate, Settle, Maturity)
```

Warning: Not all cash flows are aligned with the tree. Result will be
approximated.
Price =
98.0300

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.
Define the interest-rate term structure.

```
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012';...
'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
Create the RateSpec.
```

```
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
```

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

```
RS =
```

struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4×1 double]
Rates: [4\times1 double]
EndTimes: [4×1 double]
StartTimes: [4×1 double]
EndDates: [4\times1 double]
StartDates: 734139
ValuationDate: 734139
Basis: 0
EndMonthRule: 1

```

Create the stepped bond instrument.
```

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

```

Build the BK tree using the following market data:
```

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

```

Compute the price of the stepped coupon bonds.
```

PBK= bondbybk(BKT, CouponRate, Settle,Maturity , Period)

```
PBK =
    100.7246
    100.0945
    101.5900
    102.0820

\section*{Price a Bond with an Amortization Schedule}

Price a bond with an amortization schedule using the Face input argument to define the schedule.

Define the interest-rate term structure.
Rates \(=0.065\);
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates= '1-Jan-2017';
Compounding \(=1\);
Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =
struct with fields:
Fin0bj: 'RateSpec'
Compounding: 1
Disc: 0.6853
Rates: 0.0650
EndTimes: 6
StartTimes: 0
EndDates: 736696
StartDates: 734504
ValuationDate: 734504
Basis: 0
EndMonthRule: 1

Create the bond instrument. The bond has a coupon rate of 7\%, a period of one year, and matures on 1-Jan-2017.

CouponRate \(=0.07\);
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
```

Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

```

Build the BK tree with the following market data:
```

VolDates = ['1-Jan-2012'; '1-Jan-2013';...
'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'];
VolCurve = 0.01;
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

```

Compute the price of the amortizing bond.
```

Price = bondbybk(BKT, CouponRate, Settle, Maturity, 'Period', Period,...
'Face', Face)

```

\section*{Price =}
```

102.3155

```

Compare the results with price of a vanilla bond.
```

PriceVanilla = bondbybk(BKT, CouponRate, Settle, Maturity, Period)

```

\section*{PriceVanilla =}
```

 102.4205
    ```
- "Pricing Using Interest-Rate Tree Models" on page 2-84

\section*{More About}

\section*{Vanilla Bond}

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment.

\section*{Stepped Coupon Bond}

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond.

\section*{Bond with an Amortization Schedule}

An amortized bond is treated as an asset, with the discount amount being amortized to interest expense over the life of the bond.
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bkprice | bktree | cfamounts | hwprice | hwtree | instbond

\section*{Introduced before R2006a}

\section*{bondbyhim}

Price bond from Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, Maturity)
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, Maturity, Name, Value)

\section*{Input Arguments}
\begin{tabular}{|l|l|}
\hline HJMTree & Forward rate tree structure created by hjmtree. \\
\hline CouponRate & \begin{tabular}{l} 
Decimal annual rate. CouponRate is a NINST-by-1 vector \\
or NINST-by-1 cell array of decimal annual rates, or \\
decimal annual rate schedules. For the latter case of a \\
variable coupon schedule, each element of the cell array \\
is a NumDates-by-2 cell array, where the first column is \\
dates and the second column is its associated rate. The \\
date indicates the last day that the coupon rate is valid.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
Settlement date. A vector of serial date numbers or date \\
character vectors. Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
Maturity date. A vector of serial date numbers or date \\
character vectors.
\end{tabular} \\
\hline
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the HJM tree. The bond argument Settle is ignored.

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Period}

Coupons per year of the bond. A vector of integers. Values are 1, 2, 3, 4, 6, and 12.

\section*{Default: 2}

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{EndMonthRule}

End-of-month rule. A NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{IssueDate}

Date when a bond was issued.

\section*{Default:}

\section*{FirstCouponDateDate}

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

\section*{Default:}

\section*{LastCouponDateDate}

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

\section*{Default:}

\section*{StartDate}

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

\section*{Default:}

\section*{Face}

Face or par value. Face is a NINST-by- 1 vector or NINST-by- 1 cell array of face values, or face value schedules. For the latter case, each element of the cell array is a NumDates-by- 2 cell array, where the first column is dates and the second column is its associated face value. The date indicates the last day that the face value is valid.

Default: 100

\section*{Options}

Derivatives pricing options structure created with derivset.

\section*{Default:}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.
Default: false

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{Description}
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, Maturity) computes the price of a bond from an HJM forward-rate tree
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from an HJM forward-rate tree with optional input arguments.
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, Maturity, Name, Value) computes the price of a bond from an HJM forward-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is a number of instruments (NINST)-by- 1 matrix of expected prices at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree:
- PriceTree. PBush contains the clean prices.
- PriceTree.AIBush contains the accrued interest.
- PriceTree.tObs contains the observation times.
bondbyhjm computes prices of vanilla bonds, stepped coupon bonds, and amortizing bonds with no market purchase option and no call provisions.

\section*{Examples}

\section*{Price a Bond Using an HJM Tree}

Price a 4\% bond using an HJM interest-rate tree.

Load deriv.mat, which provides HJMTree. The HJMTree structure contains the time and interest-rate information needed to price the bond.
```

load deriv.mat;

```

Define the bond using the required arguments. Other arguments use defaults.
```

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use bondbyhjm to compute the price of the bond.
```

Price = bondbyhjm(HJMTree, CouponRate, Settle, Maturity)

```
Warning: Not all cash flows are aligned with the tree. Result will be
approximated.
Price =
    97.5280

\section*{Price a Stepped Coupon Bond}

Price single stepped coupon bonds using market data.
Define the interest-rate term structure.
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

```

Create the RateSpec.
```

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

```

Create the stepped bond instrument.
```

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};

```
```

Period = 1;

```

Build the HJM tree using the following market data:
```

Volatility = [.2; .19; .18; .17];
CurveTerm = [1; 2; 3; 4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec);

```

Compute the price of the stepped coupon bonds.
PHJM= bondbyhjm(HJMT, CouponRate, Settle,Maturity , Period)

\section*{PHJM =}
100.7246
100.0945
101.5900
102.0820

\section*{Price a Bond with an Amortization Schedule}

Price a bond with an amortization schedule using the Face input argument to define the schedule.

Define the interest-rate term structure.
```

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates= '1-Jan-2017';
Compounding = 1;
Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:

```
```

 FinObj: 'RateSpec'
 Compounding: 1
 Disc: 0.6853
 Rates: 0.0650
 EndTimes: 6
 StartTimes: 0
 EndDates: 736696
 StartDates: 734504
 ValuationDate: 734504
Basis: 0
EndMonthRule: 1

```

Create the bond instrument. The bond has a coupon rate of 7\%, a period of one year, and matures on 1-Jan-2017.
```

CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

```

Build the HJM tree using the following market data:
```

Volatility = [.2; .19; .18; .17];
CurveTerm = [1; 2; 3; 4];
MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015';...
'Jan-1-2016'; 'Jan-1-2017'};
HJMTimeSpec = hjmtimespec(ValuationDate, MaTree);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

```

Compute the price of the amortizing bond.
Price = bondbyhjm(HJMT, CouponRate, Settle, Maturity, 'Period',... Period, 'Face' , Face)
```

Price =

```
102.3155

Compare the results with price of a vanilla bond.
```

PriceVanilla = bondbyhjm(HJMT, CouponRate, Settle, Maturity, Period)

```

PriceVanilla =
102.4205
- "Computing Instrument Prices" on page 2-84
- "Understanding Interest-Rate Tree Models" on page 2-64

\section*{More About}

\section*{Vanilla Bond}

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time. The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment.

\section*{Stepped Coupon Bond}

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond.

\section*{Bond with an Amortization Schedule}

An amortized bond is treated as an asset, with the discount amount being amortized to interest expense over the life of the bond.
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ cfamounts | hjmprice | hjmtree | instbond \\ Introduced before R2006a
}

\section*{bondbyhw}

Price bond from Hull-White interest-rate tree

\section*{Syntax}
[Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle, Maturity)
[Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
[Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle, Maturity, Name, Value)

\section*{Input Arguments}
\begin{tabular}{|l|l|}
\hline HWTree & Forward-rate tree structure created by hwtree. \\
\hline CouponRate & \begin{tabular}{l} 
Decimal annual rate. CouponRate is a NINST-by-1 vector \\
or NINST-by-1 cell array of decimal annual rates, or \\
decimal annual rate schedules. For the latter case of a \\
variable coupon schedule, each element of the cell array \\
is a NumDates-by-2 cell array, where the first column is \\
dates and the second column is its associated rate. The \\
date indicates the last day that the coupon rate is valid.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
Settlement date. A vector of serial date numbers or \\
date character vectors. Settle must be earlier than \\
Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
Maturity date. A vector of serial date numbers or date \\
character vectors.
\end{tabular} \\
\hline
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the HW tree. The bond argument Settle is ignored.

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Period}

Coupons per year of the bond. A vector of integers. Values are 1, 2, 3, 4, 6, and 12.

\section*{Default: 2}

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual \(/ 360\)
- 3 = actual/ 365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{EndMonthRule}

End-of-month rule. NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Default: 1

\section*{IssueDate}

Date when a bond was issued.

\section*{Default:}

\section*{FirstCouponDateDate}

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

\section*{Default:}

\section*{LastCouponDateDate}

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

\section*{Default:}

\section*{StartDate}

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

\section*{Default:}

\section*{Face}

Face or par value. Face is a NINST-by- 1 vector or NINST-by- 1 cell array of face values, or face value schedules. For the latter case, each element of the cell array is a NumDates-by- 2 cell array, where the first column is dates and the second column is its associated face value. The date indicates the last day that the face value is valid.

Default: 100

\section*{Options}

Derivatives pricing options structure created with derivset.

\section*{Default:}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.
Default: false

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{Description}
[Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle, Maturity) computes the price of a bond from a Hull-White interest-rate tree.
[Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from a Hull-White interest-rate tree with optional input arguments.
[Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle, Maturity, Name, Value) computes the price of a bond from a Hull-White interest-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is a number of instruments (NINST)-by- 1 matrix of expected prices at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree:
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.
bondbyhw computes prices of vanilla bonds, stepped coupon bonds, and amortizing bonds with no market purchase option and no call provisions.

\section*{Examples}

\section*{Price a Bond Using the HW Tree}

Price a \(4 \%\) bond using a Hull-White interest-rate tree.

Load deriv. mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the bond.
```

load deriv.mat;

```

Define the bond using the required arguments. Other arguments use defaults.
```

CouponRate = 0.04;
Settle = '01-Jan-2004';
Maturity = '31-Dec-2008';

```

Use bondbyhw to compute the price of the bond.
```

Price = bondbyhw(HWTree, CouponRate, Settle, Maturity)

```
Warning: Not all cash flows are aligned with the tree. Result will be
approximated.
Price =
98.0483

\section*{Price a Stepped Coupon Bond}

Price single stepped coupon bonds using market data.
Define the interest-rate term structure.
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
Create the RateSpec.
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RS =
struct with fields:

```
```

 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [4\times1 double]
 Rates: [4\times1 double]
 EndTimes: [4×1 double]
 StartTimes: [4×1 double]
 EndDates: [4\times1 double]
 StartDates: 734139
 ValuationDate: 734139
Basis: 0
EndMonthRule: 1

```

Create the stepped bond instrument.
```

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

```

Build the HW tree using the following market data:
```

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

```

Compute the price of the stepped coupon bonds.
```

PHW= bondbyhw(HWT, CouponRate, Settle,Maturity , Period)

```
PHW \(=\)
    100.7246
    100.0945
    101.5900
    102.0820

\section*{Price Two Bonds with Amortization Schedules}

Price two bonds with amortization schedules using the Face input argument to define the schedules.

Define the interest rate term structure.
```

Rates = 0.035;
ValuationDate = '1-Nov-2011';
StartDates = ValuationDate;
EndDates = '1-Nov-2017';
Compounding = 1;

```

Create the RateSpec.
```

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

```

Create the bond instrument. The bonds have a coupon rate of \(4 \%\) and \(3.85 \%\), a period of one year, and mature on 1-Nov-2017.
```

CouponRate = [0.04; 0.0385];

```
Settle ='1-Nov-2011';
Maturity = '1-Nov-2017';
Period = 1;

Define the amortizing schedule.
```

Face = {{'1-Nov-2015' 100;'1-Nov-2016' 85;'1-Nov-2017' 70};
{'1-Nov-2015' 100;'1-Nov-2016' 90;'1-Nov-2017' 80}};

```

Build the HW tree and assume the volatility to be \(10 \%\).
```

VolDates = ['1-Nov-2012'; '1-Nov-2013';'1-Nov-2014';'1-Nov-2015';'1-Nov-2016';'1-Nov-2
VolCurve = 0.1;
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

```

Compute the price of the amortizing bonds.
```

Price = bondbyhw(HWT, CouponRate, Settle, Maturity, 'Period',Period,...
'Face', Face)
Price =

```
    102.4791
    101.7786
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}

\section*{Vanilla Bond}

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time. The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment.

\section*{Stepped Coupon Bond}

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond.

\section*{Bond with an Amortization Schedule}

An amortized bond is treated as an asset, with the discount amount being amortized to interest expense over the life of the bond.
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bkprice | bktree | cfamounts | hwprice | hwtree | instbond

Introduced before R2006a

\section*{bondbyzero}

Price bond from set of zero curves

\section*{Syntax}
[Price, DirtyPrice, CFlowAmounts, CFlowDates] = bondbyzero(RateSpec, CouponRate, Settle, Maturity) [Price, DirtyPrice, CFlowAmounts, CFlowDates] = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) [Price, DirtyPrice, CFlowAmounts, CFlowDates] = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Name, Value)

\section*{Description}
[Price, DirtyPrice, CFlowAmounts, CFlowDates] = bondbyzero(RateSpec, CouponRate, Settle, Maturity) returns a NINST-by-NUMCURVES matrix of clean bond prices. Each column arises from one of the zero curves.
[Price, DirtyPrice, CFlowAmounts, CFlowDates] = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) returns a NINST-by-NUMCURVES matrix of clean bond prices. Each column arises from one of the zero curves.
[Price, DirtyPrice, CFlowAmounts, CFlowDates] = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Name, Value) returns a NINST-by-NUMCURVES matrix of clean bond prices (each column arises from one of the zero curves) with additional options specified by one or more Name, Value pair arguments.
bondbyzero computes prices of vanilla bonds, stepped coupon bonds, and amortizing bonds with no market purchase option and no call provisions.

\section*{Input Arguments}

\section*{RateSpec}

Structure containing the properties of an interest-rate structure. See intenvset for information on creating RateSpec.

\section*{CouponRate}

Decimal annual rate. CouponRate is a NINST-by- 1 vector or NINST-by- 1 cell array of decimal annual rates, or decimal annual rate schedules. For the latter case of a variable coupon schedule, each element of the cell array is a NumDates-by-2 cell array, where the first column is dates and the second column is its associated rate. The date indicates the last day that the coupon rate is valid.

\section*{Settle}

Settlement date. Settle must be either a scalar or NINST-by-1 vector of serial date numbers or date character vectors of the same value which represent the settlement date for each bond. Settle must be earlier than Maturity.

\section*{Maturity}

Maturity date. NINST-by-1 vector of dates representing the maturity date for each swap.

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Period}

Coupons per year of the bond. A vector of integers. Values are 1, 2, 3, 4, 6, and 12.
Default: 2

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/ 365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{EndMonthRule}

End-of-month rule. A NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{IssueDate}

Date when a bond was issued.

\section*{Default:}

\section*{FirstCouponDateDate}

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified,

FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

\section*{Default:}

\section*{LastCouponDateDate}

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

\section*{Default:}

\section*{StartDate}

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

\section*{Default:}

\section*{Face}

Face or par value. Face is a NINST-by-1 vector or NINST-by- 1 cell array of face values, or face value schedules. For the latter case, each element of the cell array is a NumDates-by- 2 cell array, where the first column is dates and the second column is its associated face value. The date indicates the last day that the face value is valid.

Default: 100

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.
Default: false

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{Output Arguments}

\section*{Price}

NINST-by-NUMCURVES matrix of clean bond prices. Each column arises from one of the zero curves.

\section*{DirtyPrice}

NINST-by-NUMCURVES matrix of dirty bond price (clean + accrued interest). Each column arises from one of the zero curves.

\section*{CFlowAmounts}

NINST-by-NUMCFS matrix of cash flows for each bond

\section*{CFlowDates}

NUMCFS-by-1 matrix of payment dates for each bond

\section*{Examples}

\section*{Price a Vanilla Bond}

Price a \(4 \%\) bond using a zero curve.
Load deriv.mat, which provides ZeroRateSpec, the interest-rate term structure, needed to price the bond.
```

load deriv.mat;
CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Price = bondbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)
Price =
97.5334

```

\section*{Price a Stepped Coupon Bond}

Price single stepped coupon bonds using market data.
Define data for the interest-rate term structure.
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

```

Create the RateSpec.
```

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

```
RS =
```

struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4×1 double]
Rates: [4\times1 double]
EndTimes: [4×1 double]
StartTimes: [4 < 1 double]
EndDates: [4×1 double]
StartDates: 734139
ValuationDate: 734139
Basis: 0
EndMonthRule: 1

```

Create the stepped bond instrument.
```

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

```

Compute the price of the stepped coupon bonds.
```

PZero= bondbyzero(RS, CouponRate, Settle, Maturity ,Period)

```

\section*{PZero =}
100.7246
100.0945
101.5900
102.0820

\section*{Price a Bond with an Amortizing Schedule}

Price a bond with an amortizing schedule using the Face input argument to define the schedule.

Define data for the interest-rate term structure.
Rates \(=0.065\);
ValuationDate = '1-Jan-2011';
```

StartDates = ValuationDate;
EndDates= '1-Jan-2017';
Compounding = 1;
Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
Fin0bj: 'RateSpec'
Compounding: 1
Disc: 0.6853
Rates: 0.0650
EndTimes: 6
StartTimes: 0
EndDates: 736696
StartDates: 734504
ValuationDate: 734504
Basis: 0
EndMonthRule: 1

```

Create and price the amortizing bond instrument. The bond has a coupon rate of \(7 \%\), a period of one year, and matures on 1-Jan-2017.
```

CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};
Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, 'Period',...
Period, 'Face', Face)
Price =

```
    102.3155

Compare the results with price of a vanilla bond.
```

PriceVanilla = bondbyzero(RateSpec, CouponRate, Settle, Maturity,Period)
PriceVanilla =

```
    102.4205

Price both the amortizing and vanilla bonds.
```

Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80};
100};
PriceBonds = bondbyzero(RateSpec, CouponRate, Settle, Maturity, 'Period',...
Period, 'Face', Face)

```
PriceBonds =
    102.3155
    102.4205

\section*{Price a Bond in a Holding Period}

When a bond is first issued, it can be priced with bondbyzero on that day by setting the Settle date to the issue date. Later on, if the bond needs to be traded someday between the issue date and the maturity date, its new price can be computed by updating the Settle date, as well as the RateSpec input. Note that the bond's price is determined by its remaining cash flows and the zero-rate term structure, which can both change as the bond matures. While bondbyzero automatically updates the bond's remaining cash flows with respect to the new Settle date, you must supply a new RateSpec input in order to reflect the new zero-rate term structure for that new Settle date.
```

%% Bond info:
IssueDate = datenum('20-May-2014');
CouponRate = 0.01;
Maturity = datenum('20-May-2019');

```

Determine the bond price on 20-May-2014.
```

Settle1 = datenum('20-May-2014');
ZeroDates1 = datemnth(Settle1,12*[1 2 3 5 7 10 20]');
ZeroRates1 = [0.23 0.63 1.01 1.60 2.01 2.27 2.79]'/100;
RateSpec1 = intenvset('StartDate',Settle1,'EndDates',ZeroDates1,'Rates',ZeroRates1);
[Price1, ~, CFlowAmounts1, CFlowDates1] = bondbyzero(RateSpec1, ...

```

CouponRate, Settle1, Maturity, 'IssueDate', IssueDate);

\section*{Price1}

Price1 =
97.1899

Determine the bond price on 10-Aug-2015.
```

Settle2 = datenum('10-Aug-2015');
ZeroDates2 = datemnth(Settle2,12*[1 2 3 5 7 10 20]');
ZeroRates2 = [0.40 0.73 1.09 1.62 1.98 2.24 2.58]'/100;
RateSpec2 = intenvset('StartDate',Settle2,'EndDates',ZeroDates2,'Rates',ZeroRates2);
[Price2, ~, CFlowAmounts2, CFlowDates2] = bondbyzero(RateSpec2, ...
CouponRate, Settle2, Maturity, 'IssueDate', IssueDate);
Price2

```
Price2 =
    98.9384

\section*{Price Three Bonds Using Two Different Curves}

To price three bonds using two different curves, define the RateSpec:
```

StartDates = '01-April-2016';
EndDates = ['01-April-2017'; '01-April-2018';'01-April-2019';'01-April-2020'];
Rates = [[0.0356;0.041185;0.04489;0.047741],[0.0325;0.0423;0.0437;0.0465]];
RateSpec = intenvset('Rates', Rates, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4×2 double]
Rates: [4\times2 double]
EndTimes: [4×1 double]
StartTimes: [4 < 1 double]
EndDates: [4×1 double]
StartDates: 736421
ValuationDate: 736421
Basis: 0
EndMonthRule: 1

```

Price three bonds with the same Maturity and different coupons.
```

Settle = '01-April-2016';
Maturity = '01-April-2020';

```
```

Price = bondbyzero(RateSpec, [0.025;0.028;0.035], Settle, Maturity)
Price =
92.0766 92.4888
93.1680 93.5823
95.7145 96.1338

```
- "Pricing Using Interest-Rate Term Structure" on page 2-57

\section*{More About}

\section*{Vanilla Bond}

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time. The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment.

\section*{Stepped Coupon Bond}

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond.

\section*{Bond with an Amortization Schedule}

An amortized bond is treated as an asset, with the discount amount being amortized to interest expense over the life of the bond.
- "Understanding the Interest-Rate Term Structure" on page 2-40
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
cfamounts | cfbyzero | fixedbyzero | floatbyzero | swapbyzero

Introduced before R2006a

\section*{bushpath}

Extract entries from node of bushy tree

\section*{Syntax}

Values = bushpath(Tree, BranchList)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Tree & Bushy tree. \\
\hline BranchList & \begin{tabular}{l} 
Number of paths (NUMPATHS) by path length (PATHLENGTH) matrix \\
containing the sequence of branchings.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Values = bushpath(Tree, BranchList) extracts entries of a node of a bushy tree. The node path is described by the sequence of branchings taken, starting at the root. The top branch is number 1 , the second-to-top is 2 , and so on. Set the branch sequence to zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved entries of a bushy tree.

\section*{Examples}

Create an HJM tree by loading the example file.
```

load deriv.mat;

```

Then

returns the rates at the tree nodes located by taking the up branch, then the down branch, and finally the up branch again.

FwdRates =
1.0356
1.0364
1.0526
1.0463

You can visualize this with the treeviewer function.
treeviewer (HJMTree)


\section*{See Also}
bushshape | mkbush
Introduced before R2006a

\section*{bushshape}

Retrieve shape of bushy tree

\section*{Syntax}
[NumLevels, NumChild, NumPos, NumStates, Trim] = bushshape(Tree)

\section*{Arguments}
\begin{tabular}{l|l}
\hline Tree & Bushy tree.
\end{tabular}

\section*{Description}
[NumLevels, NumChild, NumPos, NumStates, Trim] = bushshape(Tree) returns information on a bushy tree's shape.

NumLevels is the number of time levels of the tree.
NumChild is a 1-by-number of levels (NUMLEVELS) vector with the number of branches (children) of the nodes in each level.

NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in each level.

NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in each level.

Trim is 1 if NumPos decreases by 1 when moving from one time level to the next. Otherwise, it is 0 .

\section*{Examples}

Create an HJM tree by loading the example file.

\section*{load deriv.mat;}

With treeviewer you can see the general shape of the HJM interest-rate tree.


With this tree
[NumLevels, NumChild, NumPos, NumStates, Trim] =... bushshape(HJMTree.FwdTree)
returns
\begin{tabular}{clll} 
NumLevels & \(=\) & & \\
4 & & & \\
NumChild & \(=\) & & \\
2 & 2 & 2 & 0 \\
NumPos & & & \\
4 & 3 & 2 & 1 \\
NumStates & \(=\) & &
\end{tabular}
```

 1 2 4 8
 Trim =
1

```

You can recreate this tree using the mkbush function.
Tree \(=\) mkbush(NumLevels, NumChild(1), NumPos(1), Trim);
Tree \(=\) mkbush(NumLevels, NumChild, NumPos);

\section*{See Also}
bushpath | mkbush

Introduced before R2006a

\section*{capbybdt}

Price cap instrument from Black-Derman-Toy interest-rate tree

\section*{Syntax}
[Price, PriceTree] = capbybdt(BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline Strike & Number of instruments (NINST)-by- 1 vector of rates at which the cap is exercised. \\
\hline Settle & Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the cap. \\
\hline Maturity & NINST-by-1 vector of dates representing the maturity dates of the cap. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- 8 = actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 10 = actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = capbybdt(BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from a BDT interest-rate tree.

Price is the expected price of the cap at time 0.
PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the BDT tree. The cap argument Settle is ignored.

Note: Use the optional name-value pair argument, Principal, to pass a schedule to compute price for an amortizing cap.

\section*{Examples}

\section*{Price a 3\% Cap Instrument Using a BDT Interest-Rate Tree}

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the cap instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use capbybdt to compute the price of the cap instrument.
```

Price = capbybdt(BDTTree, Strike, Settle, Maturity)

```

\section*{Price =}
28.4001

\section*{Price a 10\% Cap Instrument Using a BDT Interest-Rate Tree}

Set the required arguments for the three specifications required to create a BDT tree.
```

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

```

Create the specifications.
RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec \(=\) bdtvolspec(ValuationDate, EndDates, Volatility);

Create the BDT tree from the specifications.
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree \(=\)
```

struct with fields:

```
```

 FinObj: 'BDTFwdTree
 VolSpec: [1×1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1×1 struct]
tObs: [0 0 1 2 3 3 4]
dObs: [730486 730852 731217 731582 731947]
TFwd: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [4]}
CFlowT: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [5]}
FwdTree: {1\times5 cell}

```

Set the cap arguments. Remaining arguments will use defaults.
```

CapStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002';
CapReset = 1;

```

Use capbybdt to find the price of the cap instrument.
```

Price= capbybdt(BDTTree, CapStrike, Settlement, Maturity,...

```
CapReset)
Price =
    1.7169

\section*{Compute the Price of an Amortizing Cap Using the BDT Model}

Define the RateSpec.
```

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

```
```

RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [5×1 double]
Rates: [5\times1 double]
EndTimes: [5\times1 double]
StartTimes: [5\times1 double]
EndDates: [5\times1 double]
StartDates: 734822
ValuationDate: 734822
Basis: 0
EndMonthRule: 1

```

Define the cap instrument.
```

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = 0.04;
Reset = 1;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

```

Build the BDT Tree.
```

BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
Volatility = 0.10;
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility*ones(1,length(EndDates))')
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

```
BDTTree \(=\)
        struct with fields:
```

 FinObj: 'BDTFwdTree'
 VolSpec: [1×1 struct]
 TimeSpec: [1\times1 struct]
 RateSpec: [1\times1 struct]
 tObs: [lllllll}
 dObs: [l734822 735188}735553 735918 736283]
 TFwd: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [4]}
 CFlowT: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [5]}
    ```

FwdTree: \(\{1 \times 5\) cell \(\}\)

Price the amortizing cap.
Basis = 0;
Price = capbybdt(BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal)

Price =
1.4042
- "Computing Instrument Prices" on page 2-84
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bdttree | cfbybdt | floorbybdt | swapbybdt \\ Introduced before R2006a
}

\section*{capbybk}

Price cap instrument from Black-Karasinski interest-rate tree

\section*{Syntax}
[Price, PriceTree] = capbybk(BKTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline BKTree & Interest-rate tree structure created by bktree. \\
\hline Strike & Number of instruments (NINST)-by- 1 vector of rates at which the cap is exercised. \\
\hline Settle & Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the cap. \\
\hline Maturity & NINST-by- 1 vector of dates representing the maturity dates of the cap. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 10 = actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = capbybk(BKTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from a Black-Karasinski interest-rate tree.

Price is the expected price of the cap at time 0 .
PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the BK tree. The cap argument Settle is ignored.

Note: Use the optional name-value pair argument, Principal, to pass a schedule to compute price for an amortizing cap.

\section*{Examples}

\section*{Price a 3\% Cap Instrument Using a Black-Karasinski Interest-Rate Tree}

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the cap instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;

```
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use capbybk to compute the price of the cap instrument.
Price = capbybk(BKTree, Strike, Settle, Maturity)

\section*{Price =}
2.0965

\section*{Compute the Price of an Amortizing and Vanilla Caps Using the BK Model}

Load deriv.mat to specify the BKTree and then define the cap instrument.
load deriv.mat;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2008';
Strike = 0.05;
Reset = 1;
Principal =\{\{'01-Jan-2005' 100;'01-Jan-2006' 60;'01-Jan-2007' 30;'01-Jan-2008' 30\};... 100\};

Price the amortizing and vanilla caps.
Basis = 1;
Price = capbybk(BKTree, Strike, Settle, Maturity, Reset, Basis, Principal)

Price =
0.2226
0.7422
- "Pricing Using Interest-Rate Tree Models" on page 2-84

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2

\section*{See Also}
bktree | cfbybk | floorbybk | swapbybk
Introduced before R2006a

\section*{capbyblk}

Price caps using Black option pricing model

\section*{Syntax}
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, Volatility)
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, Volatility, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded rate term structure. For \\
more information, see intenvset.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
NINST-by-1 vector of rates at which the cap is exercised, as a \\
decimal number.
\end{tabular} \\
\hline Settle & Scalar representing the settle date of the cap. \\
\hline Maturity & Scalar representing the maturity date of the cap. \\
\hline Volatility & \begin{tabular}{l} 
NINST-by-1 vector of volatilities. The Volatility input is not \\
intended for volatility surfaces or cubes. If you specify a matrix for \\
the Volatility input, capbyblk will internally convert it into \\
a vector. capbyblk assumes that the volatilities specified in the \\
Volatility input are flat volatilities, which are applied equally to \\
each of the caplets.
\end{tabular} \\
\hline Reset & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the frequency of \\
payments per year. Default is 1.
\end{tabular} \\
\hline Principal & \begin{tabular}{l} 
(Optional) NINST-by-1 of notional principal amounts or NINST- \\
by-1 cell array where each element is a NumDates-by-2 cell array \\
where the first column is dates and the second column is associated \\
principal amount. The date indicates the last day that the principal \\
value is valid. Default is 100.
\end{tabular} \\
\hline Basis & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the basis used when \\
annualizing the input forward rate.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& \text { • } \quad 0=\text { actual/actual (default) } \\
& \text { - } \quad 1=30 / 360 \text { (SIA) } \\
& \text { - } \quad 2=\text { actual/360 } \\
& \text { - } \quad 3=\text { actual/365 } \\
& \text { - } \quad 4=30 / 360 \text { (BMA) } \\
& \text { - } \quad 5=30 / 360 \text { (ISDA) } \\
& \text { - } \quad 6=30 / 360 \text { (European) } \\
& \text { - } \quad 7=\text { actual/365 (Japanese) } \\
& \text { - } \quad 8=\text { actual/actual (ICMA) } \\
& \text { - } \quad 9=\text { actual/360 (ICMA) } \\
& \text { - } 10=\text { actual/365 (ICMA) } \\
& \text { - } 11=30 / 360 \mathrm{E} \text { (ICMA) } \\
& \text { - } 12=\text { actual/365 (ISDA) } \\
& \text { - } 13=\text { BUS/252 } \\
& \text { For more information, see basis. }
\end{aligned}
\] \\
\hline ValuationDate & (Optional) Scalar representing the observation date of the investment horizons. The default is the Settle date. \\
\hline ProjectionCurv & (Optional) The rate curve to be used in generating the future forward rates. This structure must be created using intenvset. Use this optional input if the forward curve is different from the discount curve. If ProjectionCurve is not specified, then RateSpec is used both for discounting cash flows and projecting future forward rates. \\
\hline
\end{tabular}

Note: All optional inputs are specified as matching parameter name-value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. You can specify parameter name-value pairs in any order. Names are case-insensitive and partial matches are allowed provided no ambiguities exist.

\section*{Description}
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle,

Maturity, Volatility) to price caps using the Black option pricing model.
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, Volatility, 'Name1', Value1...) to price caps using the Black option pricing model with optional name-value pair arguments.

The outputs for capbyblk are:
- CapPrice - NINST-by-1 expected prices of the cap.
- Caplets - NINST-by-NCF array of caplets, padded with NaNs.

Note: Use the optional name-value pair argument, Principal, to pass a schedule to compute the price for an amortizing cap.

\section*{Examples}

\section*{Price a Cap Using the Black Option Pricing Model}

Consider an investor who gets into a contract that caps the interest rate on a \(\$ 100,000\) loan at \(8 \%\) quarterly compounded for 3 months, starting on January 1, 2009. Assuming that on January 1, 2008 the zero rate is \(6.9394 \%\) continuously compounded and the volatility is \(20 \%\), use this data to compute the cap price. First, calculate the RateSpec:
```

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.069394;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.8554

```
```

 Rates: 0.0694
 EndTimes: 2.2500
 StartTimes: 0
 EndDates: 734229
 StartDates: 733408
 ValuationDate: 733408
Basis: 1
EndMonthRule: 1

```

Compute the price of the cap.
```

Settle = 'Jan-01-2009'; % cap starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
CapRate = 0.08;
CapReset = 4;
Principal=100000;
CapPrice = capbyblk(RateSpec, CapRate, Settle, Maturity, Volatility,...
'Reset',CapReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)
CapPrice =

```
    51.6125

\section*{Price a Cap Using a Different Curve to Generate the Future Forward Rates}

Define the OIS and Libor rates.
```

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006 .011 .017 .021 . 026 .03]';
LiborRates = [.0045 .0047 . 005 .0055 .0075 .0109 .0162 .0216 .0262 .0309 .0348]';

```

Create an associated RateSpec for the OIS and Libor curves.
OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates, 'Compour LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates,'Cor

Define the Cap instruments.
```

Maturity = {'15-Mar-2018';'15-Mar-2020'};

```
Strike = [0.04;0.05];
```

BlackVol = 0.2;

```

Price the cap instruments using the term structure OISCurve both for discounting the cash flows and generating future forward rates.
[Price, Caplets] = capbyblk(OISCurve, Strike, Settle, Maturity, BlackVol)

Price \(=\)
0.7472
0.9890

Caplets =
\begin{tabular}{lllllrr}
0 & 0.0000 & 0.0033 & 0.2996 & 0.4443 & NaN & NaN \\
0 & 0.0000 & 0.0003 & 0.1134 & 0.2112 & 0.2292 & 0.4349
\end{tabular}

Price the cap instruments using the term structure LiborCurve to generate future forward rates. The term structure OISCurve is used for discounting the cash flows.
[PriceLC, CapletsLC] = capbyblk(OISCurve, Strike, Settle, Maturity, BlackVol,'Projecti

\section*{PriceLC =}
1.3293
1.6329

CapletsLC =
\begin{tabular}{rrrrrrr}
0 & 0.0000 & 0.0337 & 0.4250 & 0.8706 & NaN & NaN \\
0 & 0.0000 & 0.0052 & 0.1767 & 0.4849 & 0.3663 & 0.5998
\end{tabular}

\section*{Compute the Price of Two Amortizing Caps Using the Black Model}

Define the RateSpec.
```

Rates = [0.0358; 0.0421; 0.0473; 0.0527; 0.0543];

```
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = \{'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'\};
```

Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [5×1 double]
Rates: [5\times1 double]
EndTimes: [5\times1 double]
StartTimes: [5\times1 double]
EndDates: [5\times1 double]
StartDates: 734822
ValuationDate: 734822
Basis: 0
EndMonthRule: 1

```

Define the cap instruments.
```

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = [0.03;0.035];
Reset = 1;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

```

Price the amortizing caps.
```

Volatility = 0.10;
Price = capbyblk (RateSpec, Strike, Settle, Maturity, Volatility,...
'Reset', Reset,'Principal', Principal)
Price =
3.0339
2.0141

```

\section*{See Also}
floorbyblk | intenvset

11 Functions - Alphabetical List

\section*{Introduced in R2009a}

\section*{capbyhjm}

Price cap instrument from Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}
[Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline HJMTree & Forward-rate tree structure created by hjmtree. \\
\hline Strike & Number of instruments (NINST-by-1) vector of rates at which the cap is exercised. \\
\hline Settle & Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the cap. \\
\hline Maturity & NINST-by-1 vector of dates representing the maturity dates of the cap. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 10 = actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from an HJM tree.

Price is the expected price of the cap at time 0.
PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the HJM tree. The cap argument Settle is ignored.

Note: Use the optional name-value pair argument, Principal, to pass a schedule to compute price for an amortizing cap.

\section*{Examples}

\section*{Price a 3\% Cap Instrument Using an HJM Forward-Rate Tree}

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the cap instrument.
load deriv.mat;
Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use capbyhjm to compute the price of the cap instrument.
```

Price = capbyhjm(HJMTree, Strike, Settle, Maturity)

```
Price =
    6.2831

\section*{Compute the Price of an Amortizing Cap Using the HJM Model}

Load deriv.mat to specify the HJMTree and then define the cap instrument.
```

load deriv.mat;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Strike = 0.045;
Reset = 1;
Principal ={{'01-Jan-2001' 100;'01-Jan-2002' 80;'01-Jan-2003' 70;'01-Jan-2004' 30}};

```

Price the amortizing cap.
Basis = 1;
Price = capbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Basis, Principal)

Price =
1.4588
- "Computing Instrument Prices" on page 2-84

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
cfbyhjm | floorbyhjm | hjmtree | swapbyhjm

Introduced before R2006a

\section*{capbyhw}

Price cap instrument from Hull-White interest-rate tree

\section*{Syntax}
[Price, PriceTree] = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline HWTree & Interest-rate tree structure created by hwtree. \\
\hline Strike & Number of instruments (NINST)-by- 1 vector of rates at which the cap is exercised. \\
\hline Settle & Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the cap. \\
\hline Maturity & NINST-by- 1 vector of dates representing the maturity dates of the cap. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by- 1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from a Hull-White interest-rate tree.

Price is the expected price of the cap at time 0 .
PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the HW tree. The cap argument Settle is ignored.

Note: Use the optional name-value pair argument, Principal, to pass a schedule to compute price for an amortizing cap.

\section*{Examples}

\section*{Price a 3\% Cap Instrument Using a Hull-White Interest-Rate Tree}

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the cap instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

```

Use capbyhw to compute the price of the cap instrument.
```

Price = capbyhw(HWTree, Strike, Settle, Maturity)

```
Price =
    2.3090

\section*{Compute the Price of an Amortizing and Vanilla Caps Using the HW Model}

Define the RateSpec.
```

Rates = [0.035; 0.042; 0.047; 0.052; 0.054];
ValuationDate = '01-April-2014';
StartDates = ValuationDate;
EndDates = {'01-April-2019'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [5\times1 double]
Rates: [5\times1 double]
EndTimes: [5\times1 double]
StartTimes: [5\times1 double]
EndDates: 737516
StartDates: 735690
ValuationDate: 735690
Basis: 0

```

\section*{EndMonthRule: 1}

Define the cap instruments.
```

Settle ='01-April-2014';
Maturity = '01-April-2018';
Strike = 0.055;
Reset = 1;
Principal ={{'01-April-2015' 100;'01-April-2016' 60;'01-April-2017' 40;'01-April-2018'
100};

```

Build the HW Tree.
```

VolDates = ['01-April-2015';'01-April-2016';'01-April-2017';'01-April-2018'];
VolCurve = 0.05;
AlphaDates = '01-April-2018';
AlphaCurve = 0.10;
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)
HWTree =
struct with fields:

```
```

 FinObj: 'HWFwdTree'
    ```
            FinObj: 'HWFwdTree'
        VolSpec: [1\times1 struct]
        VolSpec: [1\times1 struct]
    TimeSpec: [1\times1 struct]
    TimeSpec: [1\times1 struct]
    RateSpec: [1×1 struct]
    RateSpec: [1×1 struct]
        tObs: [0 1 1 2 3]
        tObs: [0 1 1 2 3]
        dObs: [735690 736055 736421 736786]
        dObs: [735690 736055 736421 736786]
            CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
            CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
            Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
            Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
    Connect: {[2] [2 3 4] [2 3 4 5 6]}
    Connect: {[2] [2 3 4] [2 3 4 5 6]}
    FwdTree: {[1.0350] [1.1300 1.0363 0.9503] [1×5 double] [1×7 double]}
```

 FwdTree: {[1.0350] [1.1300 1.0363 0.9503] [1×5 double] [1×7 double]}
    ```

Price the amortizing and vanilla caps.
```

Basis = 0;
Price = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal)

```

Price =
1.6754
4.6149
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ cfbyhw | floorbyhw | hwtree | swapbyhw \\ Introduced before R2006a
}

\section*{capbylg \(2 f\)}

Price cap using Linear Gaussian two-factor model

\section*{Syntax}
```

CapPrice = capbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,
Maturity)
CapPrice = capbylg2f(___, Name,Value)

```

\section*{Description}

CapPrice = capbylg2f(ZeroCurve, a, b, sigma, eta, rho, Strike, Maturity) returns cap price for a two-factor additive Gaussian interest-rate model.

CapPrice = capbylg2f(__ , Name, Value) returns cap price for a two-factor additive Gaussian interest-rate model using optional name-value pairs.

Note: Use the optional name-value pair argument, Notional, to pass a schedule to compute the price for an amortizing cap.

\section*{Examples}

\section*{Price a Cap Using a Linear Gaussian Two-Factor Model}

Define the ZeroCurve, a, b, sigma, eta, and rho parameters to price the cap.
```

Settle = datenum('15-Dec-2007');
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

```
```

a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
Price = capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity)
Price =
0.0316
0.3225
0.7761
1.3240
1.9394
3.1247
4.8451
7.3752
9.8582
11.4673
12.7850

```

\section*{Price an Amortizing Cap Using a Linear Gaussian Two-Factor Model}

Define the ZeroCurve, a, b, sigma, eta, rho, and Notional parameters for the amortizing cap.
```

Settle = datenum('15-Dec-2007');
% Define ZeroCurve
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
% Define a, b, sigma, eta, and rho
a = .07;
b = .5;
sigma = .01;

```
```

eta = .006;
rho = -.7;
% Define the amortizing caps
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
Notional = {{'15-Dec-2010' 100;'15-Dec-2014' 70;'15-Dec-2022' 40;'15-Dec-2037' 10}};
% Price the amortizing caps
Price = capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity, 'Notional', Notional)
Price =
0.0316
0.3225
0.7761
1.1313
1.5362
2.3213
2.8297
3.6878
3.7297
3.8906
4.0223

```
- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation"

\section*{Input Arguments}

\section*{ZeroCurve - Zero-curve for Linear Gaussian two-factor model \\ structure}

Zero-curve for the Linear Gaussian two-factor model, specified using IRDataCurve or RateSpec.

Data Types: struct
a - Mean reversion for first factor for Linear Gaussian two-factor model
scalar

Mean reversion for first factor for the Linear Gaussian two-factor model, specified as a scalar.

Data Types: single | double
b - Mean reversion for second factor for Linear Gaussian two-factor model scalar

Mean reversion for second factor for the Linear Gaussian two-factor model, specified as a scalar.

\section*{Data Types: single | double}

\section*{sigma - Volatility for first factor for Linear Gaussian two-factor model scalar}

Volatility for first factor for the Linear Gaussian two-factor model, specified as a scalar.

\section*{Data Types: single | double}

\section*{eta - Volatility for second factor for Linear Gaussian two-factor model} scalar

Volatility for second factor for the Linear Gaussian two-factor model, specified as a scalar.

Data Types: single | double
rho - Scalar correlation of the factors
scalar
Scalar correlation of the factors, specified as a scalar.
Data Types: single | double

\section*{Strike - Cap strike price}
nonnegative integer | vector of nonnegative integers
Cap strike price, specified as a nonnegative integer using a NumCaps-by-1 vector.
Data Types: single | double

\section*{Maturity - Cap maturity date}
nonnegative integer | vector of nonnegative integers | date character vector

Cap maturity date, specified using a NumCaps-by- 1 vector of serial date numbers or date character vectors.

Data Types: single | double | char | cell

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: Price =
capbylg2f(irdc, a, b, sigma, eta, rho,Strike, CapMaturity, 'Reset' , 1, 'Notional' , 100)

\section*{'Reset ' - Frequency of cap payments per year}

2 (default) | positive integer from the set[1,2,3,4,6,12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of cap payments per year, specified as positive integers for the values [ \(1,2,4,6,12\) ] in a NumCaps-by-1 vector.
Data Types: single | double

\author{
'Notional' - Notional value of cap \\ 100 (default) | nonnegative integer | vector of nonnegative integers
}

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by- 2 cell array where the first column is dates and the second column is the associated principal amount. The date indicates the last day that the principal value is valid.

Data Types: single | double

\section*{Output Arguments}

\section*{CapPrice - Cap price}
scalar | vector
Expected prices of cap, returned as a scalar or an NumCaps-by-1 vector.

\section*{More About}

\section*{Algorithms}

The following defines the two-factor additive Gaussian interest rate model, given the ZeroCurve, a, b, sigma, eta, and rho parameters:
\[
\begin{aligned}
& r(t)=x(t)+y(t)+\phi(t) \\
& d x(t)=-a(x)(t) d t+\sigma\left(d W_{1}(t), x(0)=0\right. \\
& d y(t)=-b(y)(t) d t+\eta\left(d W_{2}(t), y(0)=0\right.
\end{aligned}
\]
where \(d W_{1}(t) d W_{2}(t)=\rho d t\) is a two-dimensional Brownian motion with correlation \(\rho\) and \(\phi\) is a function chosen to match the initial zero curve.

\section*{References}
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

\author{
See Also \\ LinearGaussian2F | floorbylg2f | swaptionbylg2f \\ Introduced in R2013a
}

\section*{capvolstrip}

Strip caplet volatilities from flat cap volatilities

\section*{Syntax}
[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip(ZeroCurve, CapSettle, CapMaturity, CapVolatility) [CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip( \(\qquad\) Name, Value)

\section*{Description}
[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip(ZeroCurve, CapSettle, CapMaturity, CapVolatility) strips caplet volatilities from the flat cap volatilities by using the bootstrapping method. The cap volatilities are interpolated on each caplet payment date before stripping the caplet volatilities.
[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip (__ Name, Value) strips caplet volatilities from the flat cap volatilities by using the bootstrapping method and optional name-value pair arguments. The cap volatilities are interpolated on each caplet payment date before stripping the caplet volatilities.

\section*{Examples}

\section*{Stripping Caplet Volatilities from At-The-Money (ATM) Caps}

Compute the zero curve for discounting and projecting forward rates.
```

ValuationDate = datenum('23-Jun-2015');
ZeroRates = [0.01 0.09 0.30 0.70 1.07 1.71]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)
ZeroCurve =

```
```

 Type: Zero
 Settle: 736138 (23-Jun-2015)
 Compounding: 2
 Basis: O (actual/actual)
 InterpMethod: linear
Dates: [6x1 double]
Data: [6x1 double]

```

Define the ATM cap volatility data.
```

CapSettle = datenum('25-Jun-2015');
CapMaturity = datenum({'27-Jun-2016';'26-Jun-2017';'25-Jun-2018'; ...
'25-Jun-2019';'25-Jun-2020'});
CapVolatility = [0.29;0.38;0.42;0.40;0.38];

```

Strip caplet volatilities from ATM caps.
[CapletVols, CapletPaymentDates, ATMCapStrikes] = capvolstrip(ZeroCurve, ...
    CapSettle, CapMaturity, CapVolatility);
PaymentDates = cellstr(datestr(CapletPaymentDates));
format;
table(PaymentDates, CapletVols, ATMCapStrikes)
ans =
\begin{tabular}{|c|c|c|}
\hline PaymentDates & CapletVols & ATMCapStrikes \\
\hline '27-Jun-2016' & 0.29 & 0.0052014 \\
\hline '27-Dec-2016' & 0.34657 & 0.0071594 \\
\hline '26-Jun-2017' & 0.41404 & 0.0091175 \\
\hline '26-Dec-2017' & 0.42114 & 0.010914 \\
\hline '25-Jun-2018' & 0.45297 & 0.012698 \\
\hline '26-Dec-2018' & 0.37257 & 0.014222 \\
\hline '25-Jun-2019' & 0.36184 & 0.015731 \\
\hline '26-Dec-2019' & 0.3498 & 0.017262 \\
\hline '25-Jun-2020' & 0.33668 & 0.018774 \\
\hline
\end{tabular}

\section*{Stripping Caplet Volatilities from Caps with the Same Strikes}

Compute the zero curve for discounting and projecting forward rates.
```

ValuationDate = datenum('17-Feb-2015');
ZeroRates = [0.02 0.07 0.25 0.70 1.10 1.62]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)
ZeroCurve =
Type: Zero
Settle: 736012 (17-Feb-2015)
Compounding: 2
Basis: O (actual/actual)
InterpMethod: linear
Dates: [6x1 double]
Data: [6x1 double]

```

Define the cap volatility data.
```

CapSettle = datenum('19-Feb-2015');

```
CapMaturity = datenum(\{'19-Feb-2016';'21-Feb-2017';'20-Feb-2018'; ...
    '19-Feb-2019';'19-Feb-2020'\});
CapVolatility \(=\) [0.44;0.45;0.44;0.41;0.39];
CapStrike = 0.013;

Strip caplet volatilities from caps with the same strike.
[CapletVols, CapletPaymentDates, CapStrikes] = capvolstrip(ZeroCurve, ... CapSettle, CapMaturity, CapVolatility, 'Strike', CapStrike);
PaymentDates \(=\) cellstr(datestr(CapletPaymentDates));
format;
table(PaymentDates, CapletVols, CapStrikes)
ans \(=\)
    PaymentDates CapletVols CapStrikes
\begin{tabular}{|c|c|c|}
\hline '19-Feb-2016' & 0.44 & 0.013 \\
\hline '19-Aug-2016' & 0.44495 & 0.013 \\
\hline '21-Feb-2017' & 0.45256 & 0.013 \\
\hline '21-Aug-2017' & 0.43835 & 0.013 \\
\hline '20-Feb-2018' & 0.42887 & 0.013 \\
\hline '20-Aug-2018' & . & \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
'19-Feb-2019' & 0.35237 & 0.013 \\
'19-Aug-2019' & 0.3525 & 0.013 \\
'19-Feb-2020' & 0.33136 & 0.013
\end{tabular}

\section*{Stripping Caplet Volatilities Using Manually Specified Caplet Dates}

Compute the zero curve for discounting and projecting forward rates.
```

ValuationDate = datenum('06-Mar-2015');
ZeroRates = [0.01 0.08 0.27 0.73 1.16 1.70]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)
ZeroCurve =
Type: Zero
Settle: 736029 (06-Mar-2015)
Compounding: 2
Basis: 0 (actual/actual)
InterpMethod: linear
Dates: [6x1 double]
Data: [6x1 double]

```

Define the cap volatility data.
```

CapSettle = datenum('06-Mar-2015');
CapMaturity = datenum({'07-Mar-2016';'06-Mar-2017';'06-Mar-2018'; ...
06-Mar-2019';'06-Mar-2020'});
CapVolatility = [0.43;0.44;0.44;0.43;0.41];
CapStrike = 0.011;

```

Specify quarterly and semiannual dates.
```

CapletDates = [cfdates(CapSettle, '06-Mar-2016', 4) ...
cfdates('06-Mar-2016', '06-Mar-2020', 2)]';
CapletDates(~isbusday(CapletDates)) = ...
busdate(CapletDates(~isbusday(CapletDates)), 'modifiedfollow');

```

Strip caplet volatilities using specified CapletDates.
[CapletVols, CapletPaymentDates, CapStrikes] = capvolstrip(ZeroCurve, ... CapSettle, CapMaturity, CapVolatility, 'Strike', CapStrike, ... 'CapletDates', CapletDates);
```

PaymentDates = cellstr(datestr(CapletPaymentDates));
format;
table(PaymentDates, CapletVols, CapStrikes)
ans =

PaymentDates	CapletVols	CapStrikes
'08-Sep-2015'	0.43	0.011
'07-Dec-2015'	0.42999	0.011
'07-Mar-2016'	0.43	0.011
'06-Sep-2016'	0.43538	0.011
'06-Mar-2017'	0.44396	0.011
'06-Sep-2017'	0.43999	0.011
'06-Mar-2018'	0.44001	0.011
'06-Sep-2018'	0.41934	0.011
'06-Mar-2019'	0.40985	0.011
'06-Sep-2019'	0.36818	0.011
'06-Mar-2020'	0.34657	0.011

```

\section*{Input Arguments}

\section*{ZeroCurve - Zero rate curve}

RateSpec or IRDataCurve object
Zero rate curve, specified using a RateSpec or IRDataCurve object containing the zero rate curve for discounting according to its day count convention. ZeroCurve is also used for computing the underlying forward rates if the optional argument ProjectionCurve is not specified. Its observation date specifies the valuation date. For more information on creating a RateSpec, see intenvset For more information on creating an IRDataCurve object, see IRDataCurve.

\section*{Data Types: struct}

\section*{CapSettle - Common cap settle date}
serial date numbers | date character vectors
Common cap settle date, specified using a serial date numbers or date character vectors. The CapSettle date cannot be earlier than the ZeroCurve valuation date.

\section*{Data Types: double | char}

\section*{CapMaturity - Cap maturity dates}
serial date numbers | date character vectors
Cap maturity dates, specified using serial date numbers or date character vectors as a NCap-by-1 vector.

\section*{Data Types: double | char}

\section*{CapVolatility - Flat cap volatilities}
positive decimals
Flat cap volatilities, specified using positive decimals as a NCap-by-1 vector.
Data Types: double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: [CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip(ZeroCurve, CapSettle, CapMaturity, CapVolatility,'Strike', .2)

\section*{'Strike' - Cap strike rate}

If not specified, the default is to assume that all caps are at-the-money (ATM) and the ATM strike will be computed for each cap maturing on each caplet payment date. (default) | decimals

Cap strike rate, specified as decimals. Use Strike to specify a single strike that is equally applied to all caps.

Data Types: double

\section*{'CapletDates ' - Caplet reset and payment dates}
if not specified, the default is to automatically generate periodic caplet dates (default) | serial date numbers | date character vectors

Caplet reset and payment dates, specified as serial date numbers or date character vectors using a NCapletDates-by-1 vector.

Use CapletDates to manually specify all caplet reset and payment dates. For example, some date intervals may be quarterly while others may be semiannual. All dates must be later than CapSettle and cannot be later than the last CapMaturity date. Dates are adjusted according to the BusDayConvention and Holidays inputs.

If CapletDates is not specified, the default is to automatically generate periodic caplet dates after CapSettle based on the last CapMaturity date as the reference date, using the following optional inputs: Reset, EndMonthRule, BusDayConvention, and Holidays.

\section*{Data Types: double | char}

\section*{'Reset ' - Frequency of periodic payments per year within a cap \\ 2 (default) | positive integer with values 1,2, 3, 4, 6, or 12}

Frequency of periodic payments per year within a cap, specified as a positive integer with values \(1,2,3,4,6\), or 12 .

Note: The input for Reset is ignored if CapletDates is specified.

\section*{Data Types: double}

\section*{'EndMonthRule ' - End-of-month rule flag for generating caplet dates}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag for generating caplet dates is specified as nonnegative integer [0, 1] using a NINST-by-1 vector.
- \(0=\) Ignore rule, meaning that a payment date is always the same numerical day of the month.
- \(1=\) Set rule on, meaning that a payment date is always the last actual day of the month.

\section*{Data Types: logical}

\section*{'BusDayConvention' - Business day conventions}
modifiedfollow (default) | character vector | cell array of character vectors
Business day conventions, specified by a character vector or N -by- 1 cell array of character vectors of business day conventions. The selection for business day convention determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays). Values are:
- actual - Non-business days are effectively ignored. Cash flows that fall on nonbusiness days are assumed to be distributed on the actual date.
- follow - Cash flows that fall on a non-business day are assumed to be distributed on the following business day.
- modifiedfollow - Cash flows that fall on a non-business day are assumed to be distributed on the following business day. However if the following business day is in a different month, the previous business day is adopted instead.
- previous - Cash flows that fall on a non-business day are assumed to be distributed on the previous business day.
- modifiedprevious - Cash flows that fall on a non-business day are assumed to be distributed on the previous business day. However if the previous business day is in a different month, the following business day is adopted instead.

Data Types: char | cell
' Holidays ' - Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers
Holidays used in computing business days, specified as MATLAB date numbers using an NHolidays-by-1 vector.

\section*{Data Types: double}

\section*{'ProjectionCurve' - Rate curve for computing underlying forward rates}
if not specified, the default is to use the ZeroCurve input for computing the underlying forward rates (default) | RateSpec or IRDatCurve object

Rate curve for computing underlying forward rates, specified as a RateSpec or IRDatCurve object. For more information on creating a RateSpec, see intenvset and for more information on creating an IRDataCurve object, see IRDataCurve.

Data Types: struct

\footnotetext{
' MaturityInterpMethod ' - Method used when interpolating the cap volatilities on each caplet maturity date before stripping the caplet volatilities
linear (default) | character vector with values: linear, nearest, next, previous, spline, pchip
}

Method used when interpolating the cap volatilities on each caplet maturity date before stripping the caplet volatilities, specified using a character vector with values: linear, nearest, next, previous, spline, or pchip. The definitions of the methods are:
- linear - Linear interpolation. The interpolated value at a query point is based on linear interpolation of the values at neighboring grid points in each respective dimension. This is the default interpolation method.
- nearest - Nearest neighbor interpolation. The interpolated value at a query point is the value at the nearest sample grid point.
- next - Next neighbor interpolation. The interpolated value at a query point is the value at the next sample grid point.
- previous - Previous neighbor interpolation. The interpolated value at a query point is the value at the previous sample grid point.
- spline - Spline interpolation using not-a-knot end conditions. The interpolated value at a query point is based on a cubic interpolation of the values at neighboring grid points in each respective dimension.
- pchip - Shape-preserving piecewise cubic interpolation. The interpolated value at a query point is based on a shape-preserving piecewise cubic interpolation of the values at neighboring grid points.

For more information on interpolation methods, see interp1

Note: Constant extrapolation is used for volatilities falling outside the range of usersupplied data.

\section*{Data Types: char}

\author{
' Limit ' - Upper bound of implied volatility search interval \\ 10 (or 1000\% per annum) (default) | positive scalar decimal
}

Upper bound of implied volatility search interval, specified as a positive scalar decimal.
Data Types: double
'Tolerance' - Implied volatility search termination tolerance
1e-5 (default) | positive scalar
Implied volatility search termination tolerance, specified as a positive scalar.

\section*{Data Types: double}

\section*{'OmitFirstCaplet' - Flag indicating whether to omit the first caplet payment in the caps true always omit the first caplet (default) | logical}

Flag indicating whether to omit the first caplet payment in the caps, specified as a scalar logical. For example, the first caplet payment is omitted in spot-starting caps, while it is included in forward-starting caps. Setting this logical to false means to always include the first caplet.

In general, "spot lag" is the delay between the fixing date and the effective date for LIBOR-like indices. It also determines whether a cap is spot-starting or forward-starting (Corb, 2012). Caps are considered to be spot-starting if they settle within "spot lag" business days after the valuation date. Those that settle later are considered to be forward-starting. The first caplet is omitted if caps are spot-starting, while it is included if they are forward-starting (Tuckman, 2012).

Data Types: logical

\section*{Output Arguments}

\section*{CapletVols - Stripped caplet volatilities}
vector in decimals
Stripped caplet volatilities, returned as a NCapletVols-by-1 vector in decimals.

Note: capvolstrip may output NaNs for some caplet volatilities. This could be the case if no volatility will match the caplet price implied by the user-supplied cap data.

\section*{CapletPaymentDates - Payment dates}
vector in date numbers
Payment dates (in date numbers), returned as a NCapletVols-by-1 vector corresponding to CapletVols.

\section*{CapStrikes - Cap strikes}
decimals
Cap strikes, returned as a NCapletVols-by-1 vector of strikes in decimals for caps maturing on corresponding CapletPaymentDates.

\section*{Limitations}

When bootstrapping the caplet volatilities from ATM caps, the caplet volatilities stripped from the shorter maturity caps are reused in the longer maturity caps without adjusting for the difference in strike. capvolstrip follows the simplified approach described in Gatarek, 2006.

\section*{More About}

\section*{ATM}

A cap or floor is at-the-money (ATM) if its strike is equal to the forward swap rate.
This is the fixed rate of a swap that makes the present value of the floating leg equal to that of the fixed leg. In comparison, a caplet or floorlet is ATM if its strike is equal to the forward rate (not the forward swap rate). In general (except over a single period), the forward rate is not necessarily equal to the forward swap rate. So, to be precise, the individual caplets in an ATM cap have slightly different moneyness and are actually only approximately ATM (Alexander, 2003). In addition, note that swap rate changes with swap maturity. Similarly, the ATM cap strike also changes with cap maturity, so the ATM cap strikes need to be computed for each cap maturity before stripping the caplet volatilities. As a result, when stripping the caplet volatilities from the ATM caps with increasing maturities, the ATM strikes of the consecutive caps will be different.

\section*{References}

Alexander, C. "Common Correlation and Calibrating the Lognormal Forward Rate Model." Wilmott Magazine, 2003.

Corb, H. "Interest Rate Swaps and Other Derivatives." Columbia Business School Publishing, 2012.

Gatarek, D.P., Bachert, and R. Maksymiuk. The LIBOR Market Model in Practice. Wiley, 2006.

Tuckman, B., Serrat, A. Fixed Income Securities: Tools for Today's Markets. Wiley Finance, 2012.

\author{
See Also \\ floorvolstrip | intenvset | interp1
}

Introduced in R2016a

\section*{cashbybls}

Determine price of cash-or-nothing digital options using Black-Scholes model

\section*{Syntax}

Price = cashbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, Payoff)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 cell array of character vectors with values of \\
'call ' or ' put '.
\end{tabular} \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline Payoff & \begin{tabular}{l} 
NINST-by- 1 vector of payoff values or the amount to be paid at \\
expiration.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = cashbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike, Payoff) computes cash-or-nothing option prices using the BlackScholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

\section*{Examples}

\section*{Compute Cash-or-Nothing Option Prices Using the Black-Scholes Option Pricing Model}

Consider a European call and put cash-or-nothing options on a futures contract with and exercise strike price of \(\$ 90\), a fixed payoff of \(\$ 10\) that expires on October 1, 2008. Assume that on January 1, 2008, the contract trades at \(\$ 110\), and has a volatility of \(25 \%\) per annum and the risk-free rate is \(4.5 \%\) per annum. Using this data, calculate the price of the call and put cash-or-nothing options on the futures contract. First, create the RateSpec:
```

Settle = 'Jan-1-2008';
Maturity = 'Oct-1-2008';
Rates = 0.045;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9668
Rates: 0.0450
EndTimes: 0.7500
StartTimes: 0
EndDates: 733682
StartDates: 733408
ValuationDate: 733408
Basis: 1
EndMonthRule: 1

```

Define the StockSpec.
```

AssetPrice = 110;

```
Sigma = . 25;
DivType = 'Continuous';
DivAmount = Rates;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount)
```

StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2500
AssetPrice: 110
DividendType: {'continuous'}
DividendAmounts: 0.0450
ExDividendDates: []

```

Define the call and put options.
```

OptSpec = {'call'; 'put'};

```
Strike = 90;
Payoff = 10;

Calculate the prices.
```

Pcon = cashbybls(RateSpec, StockSpec, Settle,...

```
Maturity, OptSpec, Strike, Payoff)
Pcon \(=\)
    7.6716
    1.9965
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Black-Scholes Model" on page 3-142

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ assetbybls | cashsensbybls | gapbybls | supersharebybls \\ Introduced in R2009a
}

\section*{cashsensbybls}

Determine price or sensitivities of cash-or-nothing digital options using Black-Scholes model

\section*{Syntax}

PriceSens = cashsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, Payoff)
PriceSens = cashsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, Payoff, OutSpec)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 cell array of character vectors with values of \\
'call ' or 'put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
NINST-by-1 vector of strike price values. \\
\hline Payoff \\
\hline OutSpec \\
\begin{tabular}{l} 
NINST-by-1 vector of payoff values or the amount to be paid at \\
expiration.
\end{tabular} \\
\hline \begin{tabular}{l} 
(Optional) All optional inputs are specified as matching \\
parameter name/value pairs. The parameter name is specified \\
as a character vector, followed by the corresponding parameter \\
value. You can specify parameter name/value pairs in any \\
order. Names are case-insensitive and partial matches are \\
allowed provided no ambiguities exist. Valid parameter names \\
are: \\
ard
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
function. Possible values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'. \\
For example, OutSpec = \{'Price'; 'Lambda'; \\
'Rho' \(\}\) specifies that the output should be Price, Lambda, and Rho, in that order. \\
To invoke from a function: [Price, Lambda, Rho] = cashsensbybls(..., 'OutSpec', \{'Price', 'Lambda', 'Rho'\}) \\
OutSpec \(=\) \{'All' \(\}\) specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};. \\
- Default is OutSpec = \{'Price' \(\}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

PriceSens = cashsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, Payoff) computes cash-or-nothing option prices using the Black-Scholes option pricing model.

PriceSens = cashsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, Payoff, OutSpec) includes an OutSpec argument defined as parameter/value pairs, and computes cash-or-nothing option prices or sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices or sensitivities.

\section*{Examples}

\section*{Compute Cash-or-Nothing Option Prices and Sensitivities Using the Black-Scholes Option Pricing Model}

Consider a European call and put cash-or-nothing options on a futures contract with an exercise price of \(\$ 90\), and a fixed payoff of \(\$ 10\) that expires on January 1, 2009. Assume
that on October 1, 2008 the contract trades at \(\$ 110\), and has a volatility of \(25 \%\) per annum and the risk-free rate is \(4.5 \%\) per annum. Using this data, calculate the price and sensitivity of the call and put cash-or-nothing options on the futures contract. First, create the RateSpec:
```

Settle = 'Jan-1-2008';
Maturity = 'Oct-1-2008';
Rates = 0.045;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9668
Rates: 0.0450
EndTimes: 0.7500
StartTimes: 0
EndDates: 733682
StartDates: 733408
ValuationDate: 733408
Basis: 1
EndMonthRule: 1

```

Define the StockSpec.
```

AssetPrice = 110;

```
Sigma = . 25;
DivType = 'Continuous';
DivAmount = Rates;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount)
StockSpec =
    struct with fields:
    FinObj: 'StockSpec'
```

 Sigma: 0.2500
 AssetPrice: }11
 DividendType: {'continuous'}
 DividendAmounts: 0.0450
ExDividendDates: []

```

Define the call and put options.
OptSpec = \{'call'; 'put'\};
Strike = 90;
Payoff = 10;
Compute the gamma, theta, and price.
OutSpec = \{ 'gamma';'theta';'price'\};
[Gamma, Theta, Price] = cashsensbybls(RateSpec, StockSpec,...
Settle, Maturity, OptSpec, Strike, Payoff, 'OutSpec', OutSpec)

Gamma =
- 0.0050
0.0050

\section*{Theta \(=\)}
-2.2489
1.8139

Price =
7.6716
1.9965
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Black-Scholes Model" on page 3-142

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ cashbybls \\ Introduced in R2009a
}

\section*{cbondbycrr}

Price convertible bonds from CRR binomial tree

\section*{Syntax}

Price = cbondbycrr(CRRTree, CouponRate, Settle, Maturity, ConvRatio)
[Price,PriceTree] = cbondbycrr(CRRTree, CouponRate, Settle, Maturity, ConvRatio)
[Price, PriceTree, EquityTree, DebtTree] = cbondbycrr(___ , Name, Value)

\section*{Description}

Price = cbondbycrr(CRRTree, CouponRate, Settle, Maturity, ConvRatio) prices convertible bonds from a CRR binomial tree using the Tsiveriotis and Fernandes model.
[Price,PriceTree] = cbondbycrr(CRRTree, CouponRate,Settle, Maturity, ConvRatio) prices convertible bonds from a CRR binomial tree using the Tsiveriotis and Fernandes model.
[Price,PriceTree, EquityTree, DebtTree] = cbondbycrr( \(\qquad\) , Name, Value) prices convertible bonds from a CRR binomial tree using a credit spread or incorporating the risk of bond default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional name-value pair input argument Spread. To incorporate default risk into the algorithm, specify the optional name-value pair input arguments DefaultProbability and RecoveryRate.

\section*{Examples}

\section*{Price Convertible Bond Using a CRR Tree}

Price a convertible bond using the following data for the interest-rate term structure:
```

StartDates = 'Jan-1-2014';

```
```

EndDates = 'Jan-1-2015';
Rates = 0.1;
Basis = 1;

```

Create the RateSpec and StockSpec.
```

Sigma = 0.3;
Price = 50;

```
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,'EndDates',End
'Rates', Rates, 'Compounding' , -1, 'Basis' , Basis)
StockSpec = stockspec(Sigma,Price)
RateSpec =
    struct with fields:
                    FinObj: 'RateSpec'
            Compounding: -1
                        Disc: 0.9048
                            Rates: 0.1000
                    EndTimes: 1
            StartTimes: 0
                EndDates: 735965
            StartDates: 735600
        ValuationDate: 735600
                        Basis: 1
            EndMonthRule: 1
StockSpec =
    struct with fields:
                            FinObj: 'StockSpec'
                        Sigma: 0.3000
            AssetPrice: 50
            DividendType: []
        DividendAmounts: 0
    ExDividendDates: []

Create the CRR tree for the equity.
```

Settle = '1-Jan-2014';
Maturity = '1-Oct-2014';
NumSteps = 3;
TimeSpec = crrtimespec(Settle,Maturity,NumSteps);
CRRT = crrtree(StockSpec,RateSpec,TimeSpec)
CRRT =
struct with fields:

```
```

 FinObj: 'BinStockTree'
    ```
    FinObj: 'BinStockTree'
    Method: 'CRR'
    Method: 'CRR'
StockSpec: [1×1 struct]
StockSpec: [1×1 struct]
    TimeSpec: [1×1 struct]
    TimeSpec: [1×1 struct]
    RateSpec: [1\times1 struct]
    RateSpec: [1\times1 struct]
        tObs: [[0 0.2491 0.4982 0.7473]
        tObs: [[0 0.2491 0.4982 0.7473]
        dObs: [l735600 735691 735782 735873]
        dObs: [l735600 735691 735782 735873]
        STree: {1\times4 cell}
        STree: {1\times4 cell}
    UpProbs: [0.5465 0.5465 0.5465]
```

 UpProbs: [0.5465 0.5465 0.5465]
    ```

Define and price the convertible bond.
```

CouponRate = 0;

```
Period = 1;
ConvRatio = 2 ;
CallExDates = '1-Oct-2014';
CallStrike = 115;
AmericanCall = 1;
Spread = 0.05;
[Price,PriceTree,EqtTree,DbtTree] = cbondbycrr(CRRT,CouponRate,Settle,Maturity,ConvRat:
'Period', Period, 'Spread', Spread, 'CallExDates', CallExDates, 'CallStrike',CallStrike,'Ame
Price =
    104.9490
PriceTree =
    struct with fields:
```

 FinObj: 'BinPriceTree'
 PTree: {1\times4 cell}
 tObs: [0 0.2491 0.4982 0.7473]
 dObs: [735600 735691 735782 735873]
 EqtTree =
struct with fields:
FinObj: 'BinPriceTree
PTree: {1\times4 cell}
tObs: [0 0.2491 0.4982 0.7473]
dObs: [735600 735691 735782 735873]
DbtTree =
struct with fields:
FinObj: 'BinPriceTree'
PTree: {[28.4278] [0 65.0790] [0 43.6821 96.3327] [1\times4 double]}
tObs: [0 0.2491 0.4982 0.7473]
dObs: [735600 735691 735782 735873]

```

\section*{Price a Convertible Bond Using a CRR Tree and Incorporate Default Risk Using} DefaultProbability and RecoveryRate

Create the interest-rate term structure RateSpec.
```

StartDates = 'Jan-1-2014';
EndDates = Jan-1-2016'
Rates = 0.025;
Basis = 1;
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',...
StartDates,'EndDates', EndDates, 'Rates', Rates, 'Compounding' , -1, 'Basis',Basis)
RateSpec =
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9512
Rates: 0.0250
EndTimes: 2
StartTimes: 0
EndDates: 736330

```
```

 StartDates: 735600
 ValuationDate: 735600
Basis: 1
EndMonthRule: 1

```

Create the StockSpec.
```

AssetPrice = 110;
Sigma = 0.22;
Div = 0.02;
StockSpec = stockspec(Sigma,AssetPrice,'continuous',Div)
StockSpec =
FinObj: 'StockSpec'
Sigma: 0.2200
AssetPrice: 110
DividendType: {'continuous'}
DividendAmounts: 0.0200
ExDividendDates: []

```

Create the CRR tree for the equity.
```

Settle = '1-Jan-2014';
Maturity = '1-Oct-2014';
NumSteps = 3;
TimeSpec = crrtimespec(Settle,Maturity,NumSteps);
CRRT = crrtree(StockSpec,RateSpec,TimeSpec)
CRRT =

```
```

 FinObj: 'BinStockTree
    ```
    FinObj: 'BinStockTree
    Method: 'CRR
    Method: 'CRR
StockSpec: [1x1 struct]
StockSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
    RateSpec: [1x1 struct]
            tObs: [lllllll
            tObs: [lllllll
            dObs: [735600 735691 735782 735873]
            dObs: [735600 735691 735782 735873]
            STree: {[110] [122.7658 98.5616] [137.0132 110.0000 88.3127] [1x4 double]}
            STree: {[110] [122.7658 98.5616] [137.0132 110.0000 88.3127] [1x4 double]}
    UpProbs: [lll.4782 0.4782 0.4782]
```

 UpProbs: [lll.4782 0.4782 0.4782]
    ```

Define and price the convertible bond using DefaultProbability and RecoveryRate arguments.
```

CouponRate = 0;
Period = 1;
ConvRatio = 2;
CallExDates = '1-0ct-2014';
CallStrike = 115;
AmericanCall = 1;
DefaultProbability = .30;

```
```

RecoveryRate = .82;
[Price,PriceTree,EqtTree,DbtTree] = cbondbycrr(CRRT,CouponRate,Settle,Maturity,ConvRatio,..
'Period',Period,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',AmericanCall,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)
Price =
2 2 0
PriceTree =
FinObj: 'BinPriceTree
PTree: {[220] [245.5317 197.1233] [274.0263 220.0000 176.6254] [1x4 double]}
tObs: [[0 0.2491 0.4982 0.7473]
dObs: [735600 735691 735782 735873]
EqtTree =
FinObj: 'BinPriceTree
PTree: {[220] [245.5317 197.1233] [274.0263 220.0000 176.6254] [1x4 double]}
tObs: [lllllllll
dObs: [735600 735691 735782 735873]
DbtTree =
FinObj: 'BinPriceTree
Tree: {[0] [0 0] [0 0 0] [0 0 0 0]}
tObs: [0 0.2491 0.4982 0.7473]
dObs: [l735600 735691 735782 735873]

```

\section*{Input Arguments}

\section*{CRRTree - Stock tree structure}
structure
Stock tree structure, specified by using crrtree.
Data Types: struct

\section*{CouponRate - Bond coupon rate}
positive decimal value
Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array. The first column of the NumDates-by- 2 cell array is dates and the second column is associated rates. The date indicates the last day that the coupon rate is valid.
```

Data Types: double | cell

```
```

Settle - Settlement date
scalar for serial nonnegative date number | scalar for date character vector

```

Settlement date, specified as an NINST-by- 1 scalar using a serial nonnegative date number or date character vector.

Note: The Settle date for every convertible bond is set to the ValuationDate of the CRR stock tree. The bond argument, Settle, is ignored.

\section*{Data Types: double | char}

\section*{Maturity - Maturity date}
scalar for serial nonnegative date number | scalar for date character vector
Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char

\section*{ConvRatio - Number of shares convertible to one bond \\ scalar for nonnegative number}

Number of shares convertible to one bond, specified as an NINST-by- 1 scalar with a nonnegative number.

Data Types: double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: [Price, PriceTree, EquityTree, DebtTree]
= cbondbycrr(CRRT,CouponRate,Settle, Maturity, ConvRatio, 'Spread', Spread, 'CallExDates', CallExDates, 'CallStrike', CallStrike, 'A

\author{
'Spread ' - Number of basis points over the reference rate 0 (default) | vector
}

Number of basis points over the reference rate, specified as an NINST-by-1 vector.

Note: To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. Do not use Spread with DefaultProbability and RecoveryRate.

\section*{Data Types: double}

\section*{'Period' - Coupons per year}

2 per year (default) | vector
Coupons per year, specified as an NINST-by-1 vector.
Data Types: double
```

'IssueDate' - Bond issue date
scalar for serial nonnegative date number | scalar for date character vector

```

Bond issue date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char
'FirstCouponDate' - Irregular first coupon date
scalar for serial nonnegative date number | scalar for date character vector
Irregular first coupon date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char
'LastCouponDate' - Irregular last coupon date
scalar for serial nonnegative date number | scalar for date character vector
Irregular last coupon date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: char | double
'Face' - Face value
100 (default) | scalar of nonnegative value | cell array of nonnegative values

Face value, specified as anNINST-by- 1 scalar of nonnegative face values or a NINST-by- 1 cell array, where each element is a NumDates-by-2 cell array. The first column of the NumDates-by- 2 cell array is dates and the second column is the associated face value. The date indicates the last day that the face value is valid.

Data Types: cell | double
'CallStrike ' - Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers
Call strike price for European, Bermuda, or American option, specified as:
- For a European call option - NINST-by-1 vector of nonnegative integers
- For a Bermuda call option - NINST-by-NSTRIKES matrix of call strike price values, where each row is the schedule for one call option. If a call option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American call option - NINST-by-1 vector of strike price values for each option.

\section*{Data Types: single | double}

\section*{'CallExDates ' - Call exercise date for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers}

Call exercise date for European, Bermuda, or American option, specified as:
- For a European option - NINST-by-1 vector of nonnegative integers
- For a Bermuda option - NINST-by-NSTRIKES matrix of exercise dates, where each row is the schedule for one option. For a European option, there is only one CallExDate on the option expiry date.
- For an American option - NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each instrument, the call option can be exercised on any tree date between or including the pair of dates on that row. If CallExDates is NINST-by-1, the option can be exercised between the ValuationDate of the CRR stock tree and the single listed CallExDate.

\section*{Data Types: char | cell}
'AmericanCall' - Call option type indicator
0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive integers[0,1]

Call option type, specified as an NINST-by- 1 positive integer scalar flags with values 0 or 1.
- For a European or Bermuda option - AmericanCall is 0 for each European or Bermuda option.
- For an American option - AmericanCall is 1 for each American option. The AmericanCall argument is required to invoke American exercise rules.

\section*{Data Types: single | double}

\section*{'PutStrike' - Put strike values for European, Bermuda, or American option scalar | vector of positive integers}

Put strike values for European, Bermuda, or American option, specified as:
- For a European put option - NINST-by-1 vector of nonnegative integers
- For a Bermuda put option - NINST-by-NSTRIKES matrix of strike price values where each row is the schedule for one option. If a put option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American put option - NINST-by-1 vector of strike price values for each option.

\section*{Data Types: single | double}

\section*{'PutExDates ' - Put exercise date for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers}

Put exercise date for European, Bermuda, or American option, specified as:
- For a European option - NINST-by-1 vector of nonnegative integers
- For a Bermuda option - NINST-by-NSTRIKES matrix of exercise dates where each row is the schedule for one option. For a European option, there is only one PutExDate on the option expiry date.
- For an American option - NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each instrument, the put option can be exercised on any tree date between or including the pair of dates on that row. If PutExDates is NINST-by-1, the put option can be exercised between the ValuationDate of the CRR stock tree and the single listed PutExDate.

\footnotetext{
Data Types: char | cell
}
```

'AmericanPut ' - Put option type indicator
O if AmericanPut is NaN or not entered (default) | scalar | vector of positive
integers[0,1]

```

Put option type, specified as an NINST-by-1 positive integer scalar flags with values 0 or 1.
- For a European or Bermuda option - AmericanPut is 0 for each European or Bermuda option.
- For an American option - AmericanPut is 1 for each American option. The AmericanPut argument is required to invoke American exercise rules.

Data Types: single | double
'ConvDates ' - Convertible dates
MaturityDate (default) | scalar for serial nonnegative date number | scalar for date character vector

Convertible dates, specified as an NINST-by-1 or NINST-by-2 matrix of serial nonnegative date numbers or date character vectors. If ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including the pair of dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of the CRR stock tree and the single listed ConvDates.

\section*{Data Types: char | single | double}

\section*{'DefaultProbability ' - Annual probability of default rate \\ 0 (default) | nonnegative decimal}

Annual probability of default rate, specified as an NINST-by-1 nonnegative decimal.

Note: To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. Do not use DefaultProbability and RecoveryRate with Spread.

\section*{Data Types: single | double}

\section*{'RecoveryRate' - Recovery rate}

1 (default) | nonnegative decimal
Recovery rate, specified as an NINST-by-1 nonnegative decimal.

Note: To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. Do not use DefaultProbability and RecoveryRate with Spread.

\section*{Data Types: single | double}

\section*{Output Arguments}

\section*{Price - Expected price at time 0 \\ array}

Expected price at time 0, returned as an NINST-by-1 array.
PriceTree - Structure with vector of convertible bond prices at each node
tree structure
Structure with a vector of convertible bond prices at each node, returned as a tree structure.

\section*{EquityTree - Structure with vector of convertible bond equity component at each node tree structure}

Structure with a vector of convertible bond equity component at each node, returned as a tree structure.

DebtTree - Structure with vector of convertible bond debt component at each node tree structure

Structure with a vector of convertible bond debt component at each node, returned as a tree structure.

\section*{More About}

\section*{Callable Convertible}

A convertible bond that is callable by the issuer. The issuer of the bond forces conversion, removing the advantage that conversion is at the discretion of the bondholder.

Upon call, the bondholder can either convert the bond or redeem at the call price. This option enables the issuer to control the price of the convertible bond and, if necessary, refinance the debt with a new cheaper one.

\section*{Puttable Convertible}

A convertible bond with a put feature allows the bondholder to sell back the bond at a premium on a specific date.

This option protects the holder against rising interest rates by reducing the year to maturity.

\section*{Algorithms}
cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in the form of a price vector and a price tree. . These functions implement the risk in the form of either a credit spread or incorporating the risk of bond default. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional namevalue pair argument Spread. To incorporate default risk into the algorithm, specify the optional name-value pair arguments DefaultProbability and RecoveryRate.
- "Convertible Bond" on page 2-3

\section*{References}

Tsiveriotis, K., and C. Fernandes. "Valuing Convertible Bonds with Credit Risk." Journal of Fixed Income. Vol. 8, 1998, pp. 95-102.

Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646-649.

\section*{See Also}
cbondbyeqp | crrsens | crrtree | eqpprice | eqpsens | instadd | instcbond | instdisp | intenvset | stockspec

Introduced in R2015a

\section*{cbondbyeqp}

Price convertible bonds from EQP binomial tree

\section*{Syntax}

Price = cbondbyeqp(EQPTree, CouponRate, Settle, Maturity, ConvRatio) [Price,PriceTree] = cbondbyeqp(EQPTree, CouponRate, Settle, Maturity, ConvRatio)
[Price, PriceTree, EquityTree, DebtTree] = cbondbyeqp( ___ , Name, Value)

\section*{Description}

Price = cbondbyeqp(EQPTree, CouponRate, Settle, Maturity, ConvRatio) prices convertible bonds from an EQP binomial tree using the Tsiveriotis and Fernandes model.
[Price,PriceTree] = cbondbyeqp(EQPTree, CouponRate,Settle, Maturity, ConvRatio) prices convertible bonds from an EQP binomial tree using the Tsiveriotis and Fernandes model.
[Price,PriceTree,EquityTree,DebtTree] = cbondbyeqp( \(\qquad\) , Name, Value) prices convertible bonds from an EQP binomial tree using a credit spread or incorporating the risk of bond default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional name-value pair input argument Spread. To incorporate default risk into the algorithm, specify the optional name-value pair input arguments DefaultProbability and RecoveryRate.

\section*{Examples}

\section*{Price Convertible Bond Using an EQP Tree}

Create the interest-rate term structure RateSpec.
```

StartDates = 'Jan-1-2014';

```
```

EndDates = 'Jan-1-2016';
Rates = 0.025;
Basis = 1;
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,'EndDates',End[
'Rates',Rates,'Compounding', -1,'Basis',Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9512
Rates: 0.0250
EndTimes: 2
StartTimes: 0
EndDates: 736330
StartDates: 735600
ValuationDate: 735600
Basis: 1
EndMonthRule: 1
Create the StockSpec.

```
```

AssetPrice = 110;

```
AssetPrice = 110;
Sigma = 0.22;
Div = 0.02;
StockSpec = stockspec(Sigma,AssetPrice,'continuous',Div)
StockSpec =
    struct with fields:
                    FinObj: 'StockSpec'
                        Sigma: 0.2200
            AssetPrice: 110
        DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []
```

Create the EQP tree for the equity.

```
NumSteps = 6;
TimeSpec = eqptimespec(StartDates,EndDates,NumSteps);
EQPTree = eqptree(StockSpec,RateSpec,TimeSpec)
EQPTree =
    struct with fields:
        FinObj: 'BinStockTree'
        Method: 'EQP'
    StockSpec: [1\times1 struct]
    TimeSpec: [1\times1 struct]
    RateSpec: [1\times1 struct]
        tObs: [[0 0.3333 0.6667 1 1.3333 1.6667 2]
            dObs: [l735600 735721 735843 735965 736086 736208 736330]
            STree: {1\times7 cell}
        UpProbs: [0.5000 0.5000 0.5000 0.5000 0.5000 0.5000]
```

Define the convertible bond. The convertible bond can be called starting on Jan 1, 2015 with a strike price of 125 .

```
Settle = 'Jan-1-2014';
Maturity = 'Jan-1-2016';
CouponRate = 0.03;
CallStrike = 125;
Period = 1;
CallExDates = [datenum('Jan-1-2015') datenum('Jan-1-2016')];
ConvRatio = 1.5;
```

Price the convertible bond.

```
Spread = 0.045;
```

[Price,PriceTree,EqtTre,DbtTree] = cbondbyeqp(EQPTree,CouponRate,Settle,...
Maturity, ConvRatio,'Period', Period,'Spread',Spread,'CallExDates',...
CallExDates, 'CallStrike', CallStrike, 'AmericanCall',1)
Price $=$
165

```
PriceTree =
    struct with fields:
FinObj: 'BinPriceTree'
            PTree: {1\times7 cell}
                tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
                dObs: [735600 735721 735843 735965 736086 736208 736330]
EqtTre =
    struct with fields:
        FinObj: 'BinPriceTree'
            PTree: {1\times7 cell}
                tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
                dObs: [735600 735721 735843 735965 736086 736208 736330]
DbtTree =
        struct with fields:
            FinObj: 'BinPriceTree'
            PTree: {1\times7 cell}
                tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
                dObs: [735600 735721 735843 735965 736086 736208 736330]
```


Price a Convertible Bond Using an EQP Tree and Incorporate Default Risk Using DefaultProbability and RecoveryRate

Create the interest-rate term structure RateSpec.

```
StartDates = 'Jan-1-2014';
EndDates = 'Jan-1-2016';
Rates = 0.025;
Basis = 1;
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',..
StartDates,'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)
RateSpec =
    FinObj: 'RateSpec'
Compounding: -1
    Disc: 0.9512
```

```
            Rates: 0.0250
        EndTimes: 2
    StartTimes: 0
        EndDates: 736330
    StartDates: 735600
ValuationDate: 735600
        Basis: 1
    EndMonthRule: 1
```

Create the StockSpec.
AssetPrice = 110;

```
Sigma = 0.22;
```

Div $=0.02$;
StockSpec = stockspec(Sigma,AssetPrice,'continuous',Div)
StockSpec =
FinObj: 'StockSpec'
Sigma: 0.2200
AssetPrice: 110
DividendType: \{'continuous'\}
DividendAmounts: 0.0200
ExDividendDates: []

Create the EQP tree for the equity.

```
NumSteps = 6;
TimeSpec = eqptimespec(StartDates,EndDates,NumSteps);
EQPTree = eqptree(StockSpec,RateSpec,TimeSpec)
EQPTree =
    FinObj: 'BinStockTree
    Method: 'EQP'
StockSpec: [1\times1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
            tObs: [lllllllll
            dObs: [ll35600 735721 735843 735965 736086 736208 736330]
            STree: {1x7 cell}
        UpProbs: [0.5000 0.5000 0.5000 0.5000 0.5000 0.5000]
```

Define and price the convertible bond using DefaultProbability and RecoveryRate arguments.

```
Settle = 'Jan-1-2014';
Maturity = 'Jan-1-2016';
CouponRate = 0.03;
CallStrike = 125;
Period = 1;
```

```
CallExDates = [datenum('Jan-1-2015') datenum('Jan-1-2016')];
ConvRatio = 1.5;
DefaultProbability = .30;
RecoveryRate = .82;
[Price,PriceTree,EqtTre,DbtTree] = cbondbyeqp(EQPTree,CouponRate,Settle,...
Maturity,ConvRatio,'Period',Period,'CallExDates',...
CallExDates,'CallStrike',CallStrike,'AmericanCall',1,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)
Price =
    1 6 5
PriceTree =
    FinObj: 'BinPriceTree
        PTree: {1x7 cell}
        tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
        dObs: [735600 735721 735843 735965 736086 736208 736330]
EqtTre =
    FinObj: 'BinPriceTree'
        PTree: {1x7 cell}
        tObs: [[\begin{array}{lllllll}{0.3333}&{0.6667}&{1}&{1.3333}&{1.6667 2}\end{array}]
        dObs: [735600 735721 735843 735965 736086 736208 736330]
DbtTree =
    FinObj: 'BinPriceTree
        PTree: {[0] [0 0] [0 0 0] [0 0 0 0] [0 0 0 0 48.9285] [0 0 0 0 0 100.3956] [1x7 double]}
        tObs: [[0 0.3333 0.6667 1 1.3333 1.6667 2]
        dObs: [ll35600 735721 735843 735965 736086 736208 736330]
```


Input Arguments

EQPTree - Stock tree structure

structure
Stock tree structure, specified by using eqptree.

Data Types: struct

CouponRate - Bond coupon rate

positive decimal value
Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates and the second column is associated rates. The date indicates the last day that the coupon rate is valid.

Data Types: double | cell

Settle - Settlement date
 scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as an NINST-by- 1 scalar using a serial nonnegative date number or date character vector.

Note: The Settle date for every convertible bond is set to the ValuationDate of the EQP stock tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity - Maturity date

scalar for serial nonnegative date number | scalar for date character vector
Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char

ConvRatio - Number of shares convertible to one bond

scalar for nonnegative number
Number of shares convertible to one bond, specified as an NINST-by- 1 scalar with a nonnegative number.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.
Example: [Price, PriceTree, EquityTree, DebtTree]
= cbondbyeqp(EQPT,CouponRate,Settle, Maturity, ConvRatio, 'Spread',Spread, 'CallExDates', CallExDates, 'CallStrike', CallStrike,'AmericanCall', 1)

'Spread ' - Number of basis points over the reference rate 0 (default) | vector

Number of basis points over the reference rate, specified as an NINST-by-1 vector.

Note: To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. Do not use Spread with DefaultProbability and RecoveryRate.

Data Types: double

'Period' - Coupons per year
2 per year (default) | vector
Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

```
'IssueDate' - Bond issue date
scalar for serial nonnegative date number | scalar for date character vector
```

Bond issue date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char
'FirstCouponDate' - Irregular first coupon date
scalar for serial nonnegative date number | scalar for date character vector
Irregular first coupon date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: char | double
'LastCouponDate' - Irregular last coupon date
scalar for serial nonnegative date number | scalar for date character vector
Irregular last coupon date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char

```
'Face' - Face value
100 (default) | scalar of nonnegative value | cell array of nonnegative values
```

Face value, specified as an NINST-by-1 scalar of nonnegative face values or an NINST-by- 1 cell array where each element is a NumDates-by- 2 cell array. The first column of the NumDates-by- 2 cell array is dates and the second column is the associated face value. The date indicates the last day that the face value is valid.

Data Types: cell | double

'CallStrike ' - Call strike price for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as:

- For a European call option - NINST-by-1 vector of nonnegative integers
- For a Bermuda call option — NINST-by-NSTRIKES matrix of strike price values, where each row is the schedule for one call option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American call option — NINST-by-1 vector of strike price values for each call option.

Data Types: single | double

'CallExDates ' - Call exercise date for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers

Call exercise date for European, Bermuda, or American option, specified as:

- For a European option - NINST-by-1 vector of nonnegative integers
- For a Bermuda option - NINST-by-NSTRIKES matrix of exercise dates, where each row is the schedule for one call option. For a European option, there is only one CallExDate on the option expiry date.
- For an American option - NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each instrument, the call option can be exercised on any tree date between or including the pair of dates on that row. If CallExDates is NINST-by-1, the call option can be exercised between the ValuationDate of the EQP stock tree and the single listed CallExDate.

[^0]
'AmericanCall' - Call option type indicator

0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive integers [0,1]

Call option type, specified as NINST-by- 1 positive integer scalar flags with values 0 or 1 .

- For a European or Bermuda option - AmericanCall is 0 for each European or Bermuda option.
- For an American option - AmericanCall is 1 for each American option. The AmericanCall argument is required to invoke American exercise rules.

Data Types: single | double

'PutStrike' - Put strike values for European, Bermuda, or American option scalar | vector of positive integers [0,1]

Put strike values for European, Bermuda, or American option, specified as:

- For a European put option - NINST-by-1 vector of nonnegative integers
- For a Bermuda put option - NINST-by-NSTRIKES matrix of put strike price values, where each row is the schedule for one put option. If a put option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American put option - NINST-by-1 vector of strike price values for each put option.

Data Types: single | double

'PutExDates ' - Put exercise date for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers

Put exercise date for European, Bermuda, or American option, specified as:

- For a European option - NINST-by-1 vector of nonnegative integers
- For a Bermuda option - NINST-by-NSTRIKES matrix of exercise dates, where each row is the schedule for one put option. For a European option, there is only one PutExDate on the option expiry date.
- For an American option - NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each instrument, the put option can be exercised on any tree date between or including the pair of dates on that row. If PutExDates is NINST-by-1, the put option can be exercised between the ValuationDate of the EQP stock tree and the single listed PutExDate.

Data Types: char | cell

'AmericanPut ' - Put option type indicator

0 if AmericanPut is NaN or not entered (default) | scalar | vector of positive integers [0, 1]

Put option type, specified as an NINST-by-1 positive integer scalar flags with values 0 or 1.

- For a European or Bermuda option - AmericanPut is 0 for each European or Bermuda option.
- For an American option - AmericanPut is 1 for each American option. The AmericanPut argument is required to invoke American exercise rules.

Data Types: single | double

'ConvDates ' - Convertible dates

MaturityDate (default) | scalar for serial nonnegative date number | scalar for date character vector

Convertible dates, specified as an NINST-by-1 or NINST-by-2 matrix of serial nonnegative date numbers or date character vectors. If ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including the pair of dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of the EQP stock tree and the single listed ConvDates.
Data Types: char | single | double

'DefaultProbability ' - Annual probability of default rate
 0 (default) | nonnegative decimal

Annual probability of default rate, specified as an NINST-by-1 nonnegative decimal.

Note: To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. Do not use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

'RecoveryRate' - Recovery rate

1 (default) | nonnegative decimal
Recovery rate, specified as an NINST-by-1 nonnegative decimal.

Note: To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. Do not use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

Output Arguments

Price - Expected price at time 0
 array

Expected price at time 0, returned as an NINST-by-1 array.
PriceTree - Structure with vector of convertible bond prices at each node tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree structure.

EquityTree - Structure with vector of convertible bond equity component at each node tree structure

Structure with a vector of convertible bond equity component at each node, returned as a tree structure.

DebtTree - Structure with vector of convertible bond debt component at each node tree structure

Structure with a vector of convertible bond debt component at each node, returned as a tree structure.

More About

Callable Convertible

A convertible bond that is callable by the issuer. The issuer of the bond forces conversion, removing the advantage that conversion is at the discretion of the bondholder.

Upon call, the bondholder can either convert the bond or redeem at the call price. This option enables the issuer to control the price of the convertible bond and, if necessary, refinance the debt with a new cheaper one.

Puttable Convertible

A convertible bond with a put feature allows the bondholder to sell back the bond at a premium on a specific date.

This option protects the holder against rising interest rates by reducing the year to maturity.

Algorithms

cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in the form of a price vector and a price tree. . These functions implement the risk in the form of either a credit spread or incorporating the risk of bond default. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional namevalue pair argument Spread. To incorporate default risk into the algorithm, specify the optional name-value pair arguments DefaultProbability and RecoveryRate.

- "Convertible Bond" on page 2-3

References

Tsiveriotis, K., and C. Fernandes. "Valuing Convertible Bonds with Credit Risk." Journal of Fixed Income. Vol. 8, 1998, pp. 95-102.

Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646-649.

See Also

cbondbycrr | crrsens | eqpprice | eqpsens | eqptree | instadd | instcbond | instdisp | intenvset | stockspec

Introduced in R2015a

cbondbyitt

Price convertible bonds from ITT trinomial tree

Syntax

```
Price = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree] = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,
ConvRatio)
[Price,PriceTree,EquityTree,DebtTree] = cbondbyitt(___ ,Name,Value)
```


Description

Price = cbondbyitt(ITTTree,CouponRate, Settle, Maturity, ConvRatio) prices convertible bonds from an ITT trinomial tree using the Tsiveriotis and Fernandes model.
[Price, PriceTree] = cbondbyitt(ITTTree, CouponRate, Settle, Maturity, ConvRatio) prices convertible bonds from an ITT trinomial tree using the Tsiveriotis and Fernandes model.
[Price,PriceTree, EquityTree, DebtTree] = cbondbyitt(\qquad , Name, Value) prices convertible bonds from an ITT trinomial tree using a credit spread or incorporating the risk of bond default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional name-value pair input argument Spread. To incorporate default risk into the algorithm, specify the optional name-value pair input arguments DefaultProbability and RecoveryRate.

Examples

Price a Convertible Bond Using an ITT Tree

Price a convertible bond using the following data for an ITTTree from deriv.mat:

```
load deriv.mat
```

```
Use cbondbyitt to price a convertible bond using an ITT trinomial tree.
CouponRate = 0.05;
Settle = 'Jan-1-2006';
Maturity = 'Jan-1-2008';
Period = 1;
CallStrike = 65;
CallExDates = 'Jan-1-2007';
ConvRatio = 1;
Spread = 0.015;
[Price,PriceTree,EqtTre,DbtTree] = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvR
'Period',Period,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'Ame।
Price =
    58.9170
PriceTree =
    struct with fields:
            FinObj: 'TrinPriceTree'
            PTree: {1\times5 cell}
                tObs: [0 1 2 3 4]
                dObs: [732678 733043 733408 733773 734139]
EqtTre =
        struct with fields:
            FinObj: 'TrinPriceTree'
            PTree: {1\times5 cell}
                tObs: [0 1 2 3 4]
                dObs: [732678 733043 733408 733773 734139]
DbtTree =
        struct with fields:
            FinObj: 'TrinPriceTree'
```

```
PTree: {1\times5 cell}
    tObs: [0 1 2 3 4]
    dObs: [732678 733043 733408 733773 734139]
```


Price a Convertible Bond Using an ITT Tree and Incorporate Default Risk Using DefaultProbability and RecoveryRate

Price a convertible bond using the following data for an ITTTree from deriv.mat:.

```
load deriv.mat
```

Use cbondbyitt to price a convertible bond using an ITT trinomial tree with the DefaultProbability and RecoveryRate arguments.

```
CouponRate = 0.05;
```

Settle = 'Jan-1-2006';
Maturity = 'Jan-1-2008';
Period = 1;
CallStrike = 65;
CallExDates = 'Jan-1-2007';
ConvRatio = 1;
DefaultProbability = .30;
RecoveryRate = .82;
[Price,PriceTree,EqtTre,DbtTree] = cbondbyitt(ITTTree, CouponRate, Settle, Maturity, ConvR
'Period', Period, 'CallExDates', CallExDates, 'CallStrike', CallStrike, 'AmericanCall', 1, ...
'DefaultProbability', DefaultProbability, 'RecoveryRate', RecoveryRate)
Price =
50.6487
PriceTree $=$
FinObj: 'TrinPriceTree'

tObs: [$\left.\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}\right]$
dObs: $\left[\begin{array}{lllll}732678 & 733043 & 733408 & 733773 & 734139\end{array}\right]$
EqtTre =
FinObj: 'TrinPriceTree'
PTree: $\left\{[20.7895][66.344800]\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\right\}$
tObs: [$\left.0 \begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}\right]$
dObs: $\left[\begin{array}{llllll}732678 & 733043 & 733408 & 733773 & 734139\end{array}\right]$
DbtTree $=$

```
FinObj: 'TrinPriceTree'
    PTree: {[29.8591] [0 65 65] [105 105 105 105 105] [0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]}
    tObs: [[0101 2 3 4}
    dObs: [lllin678}733043 733408 733773 734139]
```


Input Arguments

ITTTree - Stock tree structure

structure
Stock tree structure, specified by using itttree.

Data Types: struct

CouponRate - Bond coupon rate
 positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array. The first column of the NumDates-by- 2 cell array is dates and the second column is associated rates. The date indicates the last day that the coupon rate is valid.

Data Types: double | cell

Settle - Settlement date
 scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Note: The Settle date for every convertible bond is set to the ValuationDate of the standard trinomial (STT) stock tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity - Maturity date

scalar for serial nonnegative date number | scalar for date character vector
Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char

ConvRatio - Number of shares convertible to one bond
 scalar for nonnegative number

Number of shares convertible to one bond, specified as an NINST-by- 1 scalar with a nonnegative number.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: [Price,PriceTree,EquityTree,DebtTree] = cbondbyitt(ITTTree, CouponRate,Settle, Maturity, ConvRatio, 'Spread', Spread, 'CallExDates', CallExDates, 'CallStrike', CallStrike, 'A

'Spread ' - Number of basis points over the reference rate 0 (default) | vector

Number of basis points over the reference rate, specified as an NINST-by-1 vector.

Note: To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. Do not use Spread with DefaultProbability and RecoveryRate.

Data Types: double

```
'Period' - Coupons per year
2 per year (default) | vector
```

Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

[^1]Bond issue date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char

```
'FirstCouponDate' - Irregular first coupon date
scalar for serial nonnegative date number | scalar for date character vector
```

Irregular first coupon date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char
'LastCouponDate' - Irregular last coupon date
scalar for serial nonnegative date number | scalar for date character vector
Irregular last coupon date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char
'Face' - Face value
100 (default) | scalar of nonnegative value | cell array of nonnegative values
Face value, specified as anNINST-by-1 scalar of nonnegative face values or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates and the second column is the associated face value. The date indicates the last day that the face value is valid.
Data Types: cell \| double

'CallStrike ' - Call strike price for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as:

- For a European call option - NINST-by-1 vector of nonnegative integers.
- For a Bermuda call option - NINST-by-NSTRIKES matrix of call strike price values, where each row is the schedule for one call option. If a call option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American call option - NINST-by-1 vector of strike price values for each option.

[^2]
'CallExDates ' - Call exercise date for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers

Call exercise date for European, Bermuda, or American option, specified as:

- For a European option - NINST-by-1 vector of nonnegative integers.
- For a Bermuda option - NINST-by-NSTRIKES matrix of exercise dates, where each row is the schedule for one option. For a European option, there is only one CallExDate on the option expiry date.
- For an American option - NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each instrument, the call option can be exercised on any tree date between or including the pair of dates on that row. If CallExDates is NINST-by-1, the option can be exercised between the ValuationDate of the ITT stock tree and the single listed CallExDate.

Data Types: char | cell

'AmericanCall' - Call option type indicator

0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive integers [0,1]

Call option type, specified as an NINST-by-1 positive integer scalar flags with values 0 or 1.

- For a European or Bermuda option - AmericanCall is 0 for each European or Bermuda option.
- For an American option - AmericanCall is 1 for each American option. The AmericanCall argument is required to invoke American exercise rules.

Data Types: single | double

'PutStrike ' - Put strike values for European, Bermuda, or American option scalar | vector of positive integers

Put strike values for European, Bermuda, or American option, specified as:

- For a European put option - NINST-by-1 vector of nonnegative integers.
- For a Bermuda put option - NINST-by-NSTRIKES matrix of strike price values where each row is the schedule for one option. If a put option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American put option - NINST-by-1 vector of strike price values for each option.

Data Types: single | double

'PutExDates ' - Put exercise date for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers

Put exercise date for European, Bermuda, or American option, specified as:

- For a European option - NINST-by-1 vector of nonnegative integers.
- For a Bermuda option - NINST-by-NSTRIKES matrix of exercise dates where each row is the schedule for one option. For a European option, there is only one PutExDate on the option expiry date.
- For an American option - NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each instrument, the put option can be exercised on any tree date between or including the pair of dates on that row. If PutExDates is NINST-by-1, the put option can be exercised between the ValuationDate of the ITT stock tree and the single listed PutExDate.

Data Types: char | cell

'AmericanPut ' - Put option type indicator

0 if AmericanPut is NaN or not entered (default) | scalar | vector of positive integers [0,1]

Put option type, specified as an NINST-by-1 positive integer scalar flags with values 0 or 1.

- For a European or Bermuda option - AmericanPut is 0 for each European or Bermuda option.
- For an American option - AmericanPut is 1 for each American option. The AmericanPut argument is required to invoke American exercise rules.

Data Types: single | double

'ConvDates ' - Convertible dates
 MaturityDate (default) | scalar for serial nonnegative date number | scalar for date character vector

Convertible dates, specified as an NINST-by-1 or NINST-by-2 matrix of serial nonnegative date numbers or date character vectors. If ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including the pair of dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of the ITT stock tree and the single listed ConvDates.
Data Types: char | single | double

'DefaultProbability ' - Annual probability of default rate
 0 (default) | nonnegative decimal

Annual probability of default rate, specified as an NINST-by-1 nonnegative decimal.

Note: To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. Do not use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

```
'RecoveryRate' - Recovery rate
```

1 (default) | nonnegative decimal
Recovery rate, specified as an NINST-by-1 nonnegative decimal.

Note: To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. Do not use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

Output Arguments

Price - Expected price at time 0
 array

Expected price at time 0, returned as an NINST-by-1 array.

PriceTree - Structure with vector of convertible bond prices at each node
 tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree structure.

EquityTree - Structure with vector of convertible bond equity component at each node

 tree structureStructure with a vector of convertible bond equity components at each node, returned as a tree structure.

DebtTree - Structure with vector of convertible bond debt component at each node tree structure

Structure with a vector of convertible bond debt components at each node, returned as a tree structure.

More About

Callable Convertible

A convertible bond that is callable by the issuer. The issuer of the bond forces conversion, removing the advantage that conversion is at the discretion of the bondholder.

Upon call, the bondholder can either convert the bond or redeem at the call price. This option enables the issuer to control the price of the convertible bond and, if necessary, refinance the debt with a new cheaper bond.

Puttable Convertible

A convertible bond with a put feature allows the bondholder to sell back the bond at a premium on a specific date.

This option protects the holder against rising interest rates by reducing the year to maturity.

Algorithms

cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in the form of a price vector and a price tree. . These functions implement the risk in the
form of either a credit spread or incorporating the risk of bond default. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional namevalue pair argument Spread. To incorporate default risk into the algorithm, specify the optional name-value pair arguments DefaultProbability and RecoveryRate.

- "Convertible Bond" on page 2-3

References

Tsiveriotis, K., and C. Fernandes. "Valuing Convertible Bonds with Credit Risk." Journal of Fixed Income. Vol 8, 1998, pp. 95-102.

Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646-649.

See Also

cbondbystt | instadd | instcbond | instdisp | intenvset | ittprice | ittsens | itttree | stockspec

Introduced in R2015b

cbondbystt

Price convertible bonds from standard trinomial tree

Syntax

```
Price = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,
ConvRatio)
[Price,PriceTree,EquityTree,DebtTree] = cbondbystt(___ ,Name,Value)
```


Description

Price = cbondbystt(STTTree,CouponRate,Settle,Maturity, ConvRatio) prices convertible bonds using a standard trinomial (STT) tree using the Tsiveriotis and Fernandes model.
[Price,PriceTree] = cbondbystt(STTTree, CouponRate,Settle, Maturity, ConvRatio) prices convertible bonds using a standard trinomial (STT) tree using the Tsiveriotis and Fernandes model.
[Price,PriceTree,EquityTree, DebtTree] = cbondbystt(\qquad , Name, Value) prices convertible bonds from a standard trinomial (STT) tree using a credit spread or incorporating the risk of bond default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional name-value pair input argument Spread. To incorporate default risk into the algorithm, specify the optional name-value pair input arguments DefaultProbability and RecoveryRate.

Examples

Price a Convertible Bond Using a STTTree
Create a RateSpec.
StartDates = 'Jan-1-2015';

```
EndDates = 'Jan-1-2020';
Rates = 0.025;
Basis = 1;
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,...
'EndDates', EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)
RateSpec =
    struct with fields:
                    FinObj: 'RateSpec'
            Compounding: -1
                        Disc: 0.8825
                            Rates: 0.0250
                EndTimes: 5
            StartTimes: 0
                EndDates: 737791
            StartDates: 735965
        ValuationDate: 735965
            Basis: 1
            EndMonthRule: 1
Create a StockSpec.
AssetPrice = 80;
Sigma = 0.12;
StockSpec = stockspec(Sigma,AssetPrice)
StockSpec =
        struct with fields:
                    FinObj: 'StockSpec'
                        Sigma: 0.1200
            AssetPrice: 80
            DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
```

Create a STTTree.

```
TimeSpec = stttimespec(StartDates, EndDates, 20);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)
STTTree =
    struct with fields:
        FinObj: 'STStockTree'
    StockSpec: [1\times1 struct]
    TimeSpec: [1\times1 struct]
    RateSpec: [1\times1 struct]
        tObs: [1\times21 double]
        dObs: [1\times21 double]
        STree: {1\times21 cell}
        Probs: {1\times20 cell}
```

Define the convertible bond. The convertible bond can be called starting on Jan 1, 2016 with a strike price of 95 .

```
CouponRate = 0.03;
Settle = 'Jan-1-2015';
Maturity = 'April-1-2018';
Period = 1;
CallStrike = 95;
CallExDates = [datenum('Jan-1-2016') datenum('April-1-2018')];
ConvRatio = 1;
Spread = 0.025;
```

Price the convertible bond using the standard trinomial tree model.
[Price,PriceTree, EqtTre,DbtTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity, ConvR 'Period ', Period, 'Spread',Spread, 'CallExDates ', CallExDates, 'CallStrike', CallStrike, 'Ame।

Price =
90.2511

PriceTree = struct with fields:

```
FinObj: 'TrinPriceTree'
    PTree: {1\times21 cell}
        tObs: [1\times21 double]
        dObs: [1\times21 double]
EqtTre =
    struct with fields:
        FinObj: 'TrinPriceTree'
            PTree: {1\times21 cell}
            tObs: [1\times21 double]
            dObs: [1\times21 double]
DbtTree =
    struct with fields:
    FinObj: 'TrinPriceTree'
    PTree: {1\times21 cell}
        tObs: [1\times21 double]
        dObs: [1\times21 double]
```


Spread Effect Analysis for a Convertible Bond Using a STTTree

This example demonstrates the spread effect analysis of a 4% coupon convertible bond, callable at 110 at end of the second year, maturing in five years, with spreads of 0,50 , 100 , and 150 BP .

Define the RateSpec.

```
StartDates = '1-Apr-2015';
EndDates = '1-Apr-2020';
Rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('StartDates',StartDates,'EndDates',EndDates,'Rates',Rates,...
'Compounding',Compounding,'Basis',Basis)
```

RateSpec =

```
struct with fields:
            FinObj: 'RateSpec'
        Compounding: -1
            Disc: 0.7788
            Rates: 0.0500
        EndTimes: 5
    StartTimes: 0
    EndDates: 737882
    StartDates: 736055
ValuationDate: 736055
    Basis: 1
EndMonthRule: 1
```

Define the convertible bond data.

```
Settle = '1-Apr-2015';
Maturity = '1-Apr-2020';
CouponRate = 0.04;
CallStrike = 110;
CallExDates = [datenum('1-Apr-2017') datenum(Maturity)];
ConvRatio = 1;
AmericanCall = 1;
Sigma = 0.3;
Spreads = 0:0.005:0.015;
Prices = 40:10:140;
convprice = zeros(length(Prices),length(Spreads));
```

Define the TimeSpec for the Standard Trinomial Tree, create an STTTree using stttree, and price the convertible bond using cbondbystt.

```
NumSteps = 200;
TimeSpec = stttimespec(StartDates, EndDates, NumSteps);
for PriceIdx = 1:length(Prices)
    StockSpec = stockspec(Sigma, Prices(PriceIdx));
    STTT = stttree(StockSpec, RateSpec, TimeSpec);
    convprice(PriceIdx,:) = cbondbystt(STTT, CouponRate, Settle, Maturity, ConvRatio,
    'Spread', Spreads(:),'CallExDates', CallExDates, 'CallStrike', CallStrike,...
    'AmericanCall', AmericanCall);
end
```

Plot the spread effect analysis for the convertible bond.

```
stock = repmat(Prices',1,length(Spreads));
plot(stock,convprice);
legend({'+0 bp'; '+50 bp'; '+100 bp'; '+150 bp'});
title ('Effect of Spread using Trinomial tree - 200 steps')
xlabel('Stock Price');
ylabel('Convertible Bond Price');
text(50, 150, ['Coupon 4% semiannual,', sprintf('\n'), ...
    '110 Call after 2 years,' sprintf('\n'), ...
        'maturing in 5 years.'],'fontweight','Bold')
```

Effect of Spread using Trinomial tree - 200 steps

Price a Convertible Bond Using an STT Tree and Incorporate Default Risk Using DefaultProbability and RecoveryRate

Create the interest-rate term structure RateSpec.

```
StartDates = 'Jan-1-2015';
EndDates = Jan-1-2020;
Rates = 0.025;
Basis = 1;
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', -1, 'Basis', Basis)
RateSpec =
                    FinObj: 'RateSpec'
    Compounding: -1
                Disc: 0.8825
            Rates: 0.0250
        EndTimes: 5
    StartTimes: 0
        EndDates: 737791
    StartDates: 735965
ValuationDate: 735965
    Basis: 1
EndMonthRule: 1
Create the StockSpec.
AssetPrice = 80;
Sigma = 0.12;
StockSpec = stockspec(Sigma,AssetPrice)
StockSpec =
```

```
                    FinObj: 'StockSpec'
```

 FinObj: 'StockSpec'
 Sigma: 0.1200
 AssetPrice: 80
 DividendType: []
 DividendAmounts: 0
 ExDividendDates: []
    ```

Create the STT tree for the equity.
TimeSpec = stttimespec(StartDates, EndDates, 20); STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree \(=\)
FinObj: 'STStockTree'
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [1x21 double]
dObs: [1x21 double]
```

STree: {1x21 cell}
Probs: {1x20 cell}

```

Define and price the convertible bond using DefaultProbability and RecoveryRate arguments.
```

CouponRate = 0.03;
Settle = 'Jan-1-2015';
Maturity = 'April-1-2018';
Period = 1;
CallStrike = 95;
CallExDates = [datenum('Jan-1-2016') datenum('April-1-2018')];
ConvRatio = 1;
DefaultProbability = .30;
RecoveryRate = .82;
[Price,PriceTree,EqtTre,DbtTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)
Price =
80
PriceTree =
FinObj: 'TrinPriceTree'
PTree: {1x21 cell}
tObs: [1x21 double]
dObs: [1x21 double]
EqtTre =
FinObj: 'TrinPriceTree
PTree: {1x21 cell}
tObs: [1x21 double]
dObs: [1x21 double]
DbtTree =
FinObj: 'TrinPriceTree'
PTree: {1x21 cell}
t0bs: [1\times21 double]
dObs: [1x21 double]

```

\section*{Input Arguments}

STTTree - Stock tree structure for standard trinomial tree
structure
Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

\section*{CouponRate - Bond coupon rate \\ positive decimal value}

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array. The first column of the NumDates-by- 2 cell array is dates and the second column is associated rates. The date indicates the last day that the coupon rate is valid.

Data Types: double | cell

\section*{Settle - Settlement date}
scalar for serial nonnegative date number | scalar for date character vector
Settlement date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Note: The Settle date for every convertible bond is set to the ValuationDate of the standard trinomial (STT) stock tree. The bond argument, Settle, is ignored.

\section*{Data Types: double | char}

\section*{Maturity - Maturity date \\ scalar for serial nonnegative date number | scalar for date character vector}

Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

\section*{Data Types: double | char}

\section*{ConvRatio - Number of shares convertible to one bond}
scalar for nonnegative number
Number of shares convertible to one bond, specified as an NINST-by- 1 scalar with a nonnegative number.

\section*{Data Types: double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: [Price,PriceTree,EquityTree,DebtTree] = cbondbystt (STTTree, CouponRate, Settle, Maturity, ConvRatio, 'Spread', Spread, 'Calle

\section*{'Spread ' - Number of basis points over the reference rate 0 (default) | vector}

Number of basis points over the reference rate, specified as an NINST-by-1 vector.

Note: To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. Do not use Spread with DefaultProbability and RecoveryRate.

Data Types: double
'Period' - Coupons per year
2 per year (default) | vector
Coupons per year, specified as an NINST-by-1 vector.
Data Types: double
```

'IssueDate' - Bond issue date
scalar for serial nonnegative date number | scalar for date character vector

```

Bond issue date, specified as an NINST-by- 1 scalar using a serial nonnegative date number or date character vector.

\section*{Data Types: double | char}

\section*{'FirstCouponDate' - Irregular first coupon date}
scalar for serial nonnegative date number | scalar for date character vector
Irregular first coupon date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char
'LastCouponDate' - Irregular last coupon date
scalar for serial nonnegative date number | scalar for date character vector

Irregular last coupon date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char
'Face' - Face value
100 (default) | scalar of nonnegative value | cell array of nonnegative values
Face value, specified as anNINST-by-1 scalar of nonnegative face values or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates and the second column is the associated face value. The date indicates the last day that the face value is valid.
Data Types: cell \| double

\section*{'CallStrike' - Call strike price for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers}

Call strike price for European, Bermuda, or American option, specified as:
- For a European call option - NINST-by-1 vector of nonnegative integers
- For a Bermuda call option - NINST-by-NSTRIKES matrix of call strike price values, where each row is the schedule for one call option. If a call option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American call option - NINST-by-1 vector of strike price values for each option.

\section*{Data Types: single | double}

\section*{'CallExDates ' - Call exercise date for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers}

Call exercise date for European, Bermuda, or American option, specified as:
- For a European option - NINST-by-1 vector of nonnegative integers.
- For a Bermuda option - NINST-by-NSTRIKES matrix of exercise dates, where each row is the schedule for one option. For a European option, there is only one CallExDate on the option expiry date.
- For an American option - NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each instrument, the call option can be exercised on any tree date between or including the pair of dates on that row. If CallExDates is NINST-by-1,
the option can be exercised between the ValuationDate of the STT stock tree and the single listed CallExDate.

\section*{Data Types: char | cell}

\section*{'AmericanCall' - Call option type indicator}

0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive integers [0, 1]

Call option type, specified as an NINST-by- 1 positive integer scalar flag with values 0 or 1.
- For a European or Bermuda option - AmericanCall is 0 for each European or Bermuda option.
- For an American option - AmericanCall is 1 for each American option. The AmericanCall argument is required to invoke American exercise rules.

\section*{Data Types: single | double}

\section*{'PutStrike' - Put strike values for European, Bermuda, or American option scalar | vector of positive integers}

Put strike values for European, Bermuda, or American option, specified as:
- For a European put option - NINST-by-1 vector of nonnegative integers.
- For a Bermuda put option - NINST-by-NSTRIKES matrix of strike price values where each row is the schedule for one option. If a put option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American put option - NINST-by-1 vector of strike price values for each option.

\section*{Data Types: single | double}
'PutExDates ' - Put exercise date for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers
Put exercise date for European, Bermuda, or American option, specified as:
- For a European option - NINST-by-1 vector of nonnegative integers.
- For a Bermuda option - NINST-by-NSTRIKES matrix of exercise dates where each row is the schedule for one option. For a European option, there is only one PutExDate on the option expiry date.
- For an American option - NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each instrument, the put option can be exercised on any tree date between or including the pair of dates on that row. If PutExDates is NINST-by-1, the put option can be exercised between the ValuationDate of the STT stock tree and the single listed PutExDate.

\section*{Data Types: char | cell}

\section*{'AmericanPut ' - Put option type indicator}

0 if AmericanPut is NaN or not entered (default) | scalar | vector of positive integers [0, 1]

Put option type, specified as an NINST-by-1 positive integer scalar flags with values 0 or 1.
- For a European or Bermuda option - AmericanPut is 0 for each European or Bermuda option.
- For an American option - AmericanPut is 1 for each American option. The AmericanPut argument is required to invoke American exercise rules.

\section*{Data Types: single | double}

\section*{'ConvDates ' - Convertible dates \\ MaturityDate (default) | scalar for serial nonnegative date number | scalar for date character vector}

Convertible dates, specified as an NINST-by-1 or NINST-by-2 matrix of serial nonnegative date numbers or date character vectors. If ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including the pair of dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of the standard trinomial (STT) stock tree and the single listed ConvDates.

Data Types: single | double | char

\section*{'DefaultProbability ' - Annual probability of default rate \\ 0 (default) | nonnegative decimal}

Annual probability of default rate, specified as an NINST-by-1 nonnegative decimal.

Note: To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. Do not use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double
'RecoveryRate' - Recovery rate
1 (default) | nonnegative decimal
Recovery rate, specified as an NINST-by-1 nonnegative decimal.

Note: To incorporate default risk into the algorithm, specify the optional input arguments DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional input argument Spread. Do not use DefaultProbability and RecoveryRate with Spread.

\section*{Data Types: single | double}

\section*{Output Arguments}

\section*{Price - Expected price at time 0}
array
Expected price at time 0, returned as an NINST-by-1 array.
PriceTree - Structure with vector of convertible bond prices at each node tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree structure.

\section*{EquityTree - Structure with vector of convertible bond equity component at each node tree structure}

Structure with a vector of convertible bond equity components at each node, returned as a tree structure.

\section*{DebtTree - Structure with vector of convertible bond debt component at each node tree structure}

Structure with a vector of convertible bond debt components at each node, returned as a tree structure.

\section*{More About}

\section*{Callable Convertible}

A convertible bond that is callable by the issuer. The issuer of the bond forces conversion, removing the advantage that conversion is at the discretion of the bondholder.

Upon call, the bondholder can either convert the bond or redeem at the call price. This option enables the issuer to control the price of the convertible bond and, if necessary, refinance the debt with a new cheaper bond.

\section*{Puttable Convertible}

A convertible bond with a put feature allows the bondholder to sell back the bond at a premium on a specific date.

This option protects the holder against rising interest rates by reducing the year to maturity.

\section*{Algorithms}
cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in the form of a price vector and a price tree. . These functions implement the risk in the form of either a credit spread or incorporating the risk of bond default. To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes model), use the optional namevalue pair argument Spread. To incorporate default risk into the algorithm, specify the optional name-value pair arguments DefaultProbability and RecoveryRate.
- "Convertible Bond" on page 2-3

\section*{References}

Tsiveriotis, K., and C. Fernandes. "Valuing Convertible Bonds with Credit Risk." Journal of Fixed Income. Vol 8, 1998, pp. 95-102.

Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646-649.
```

See Also
cbondbycrr | cbondbyeqp | instadd | instcbond | instdisp | intenvset | stockspec| sttprice| sttsens|stttree

```

\section*{Introduced in R2015b}

\section*{cfbybdt}

Price cash flows from Black-Derman-Toy interest-rate tree

\section*{Syntax}
[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, Settle, Basis, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline BDTTree & Forward-rate tree structure created by bdttree. \\
\hline CFlowAmounts & Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs . \\
\hline CFlowDates & NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date number of the corresponding cash flow in CFlowAmounts. \\
\hline Settle & Settlement date. A vector of serial date numbers or date character vectors. The Settle date for every cash flow is set to the ValuationDate of the BDT tree. The cash flow argument, Settle, is ignored. \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/ 360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from a BDT interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

Price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the instruments.
```

load deriv.mat;

```

The valuation date (settle date) specified in BDTTree is January 1, 2000 (date number 730486).

BDTTree.RateSpec.ValuationDate

730486
Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947;
730852, 731217, 731582, 731947];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, ...
CFlowDates, BDTTree.RateSpec.ValuationDate)

```

\section*{Price =}
74.0112
74.3671

PriceTree =
```

FinObj: 'BDTPriceTree
tObs: [0 1.00 2.00 3.00 4.00]
PTree: {1x5 cell}

```

You can visualize the prices of the two cash flow instruments with the treeviewer function.
treeviewer(PriceTree)


\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ bdtprice | bdttree | cfamounts | instcf \\ Introduced before R2006a
}

\section*{cfbybk}

Price cash flows from Black-Karasinski interest-rate tree

\section*{Syntax}
[Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates, Settle, Basis, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline BKTree & Forward-rate tree structure created by bktree. \\
\hline CFlowAmounts & Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs. \\
\hline CFlowDates & NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date number of the corresponding cash flow in CFlowAmounts. \\
\hline Settle & Settlement date. A vector of serial date numbers or date character vectors. The Settle date for every cash flow is set to the ValuationDate of the BK tree. The cash flow argument, Settle, is ignored. \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from a Black-Karasinski interest-rate tree.

Price is an NINST-by- 1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

Price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2005 to January 1, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the instruments.
```

load deriv.mat;

```

The valuation date (settle date) specified in BKTree is January 1, 2004 (date number 731947).

BKTree.RateSpec.ValuationDate
ans \(=\)

Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408,733774;
732678, 733034, 733408, 734774];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates,...

```
BKTree. RateSpec.ValuationDate)
Price =
    93.3600
    81.6218
PriceTree =
    FinObj: 'BKPriceTree'
        tObs: [0 \(\left.1 \begin{array}{llll}0 & 3 & 4\end{array}\right]\)
        PTree: \{[2x1 double] [2x3 double] [2x5 double] [2×5
double] [2x5 double]\}
    Connect: \{[2] [2 3 4] [2 2344 4]\}
    Probs: \{[3x1 double] [3x3 double] [3x5 double]\}

You can visualize the prices of the two cash flow instruments with the treeviewer function.
treeviewer(PriceTree)


\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ bkprice | bktree | cfamounts | instcf \\ Introduced before R2006a
}

\section*{cfbyhim}

Price cash flows from Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}
[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts, CFlowDates, Settle, Basis, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline HJMTree & Forward-rate tree structure created by hjmtree. \\
\hline CFlowAmounts & Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs. \\
\hline CFlowDates & NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date number of the corresponding cash flow in CFlowAmounts. \\
\hline Settle & Settlement date. A vector of serial date numbers or date character vectors. The Settle date for every cash flow is set to the ValuationDate of the HJM tree. The cash flow argument, Settle, is ignored. \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from an HJM interestrate tree.

Price is an NINST-by-1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

Price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the instruments.
```

load deriv.mat;

```

The valuation date (settle date) specified in HJMTree is January 1, 2000 (date number 730486).

HWTree. RateSpec.ValuationDate

730486
Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 O 6 105];
CFlowDates = [730852, NaN, 731582, 731947;
730852, 731217, 731582, 731947];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,...

```
CFlowDates, HJMTree.RateSpec.ValuationDate)

Price =
96.7805
97.2188

PriceTree =
```

FinObj: 'HJMPriceTree'
tObs: [0 1.00 2.00 3.00 4.00]
PBush: {1x5 cell}

```

You can visualize the prices of the two cash flow instruments with the treeviewer function.
treeviewer(PriceTree)


\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ cfamounts | hjmprice | hjmtree | instcf \\ Introduced before R2006a
}

\section*{cfbyhw}

Price cash flows from Hull-White interest-rate tree

\section*{Syntax}
[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates, Settle, Basis, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline HWTree & Forward-rate tree structure created by hwtree. \\
\hline CFlowAmounts & Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs. \\
\hline CFlowDates & NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date number of the corresponding cash flow in CFlowAmounts. \\
\hline Settle & Settlement date. A vector of serial date numbers or date character vectors. The Settle date for every cash flow is set to the ValuationDate of the HW tree. The cash flow argument, Settle, is ignored. \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- \(3=\) actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from a Hull-White interest-rate tree.

Price is an NINST-by- 1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

Price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2005 to January 1, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the instruments.
```

load deriv.mat;

```

The valuation date (settle date) specified in HWTree is January 1, 2004 (date number 731947).

HWTree.RateSpec.ValuationDate
ans \(=\)

Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408, 733774;
732678, 733034, 733408, 734774];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates,...

```
HWTree. RateSpec.ValuationDate)
Price =
    93.3789
    81.7651
PriceTree =
    FinObj: 'HWPriceTree'
            tObs: [lllll \(\left.0 \begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}\right]\)
        PTree: \{[2x1 double] [2x3 double] [2x5 double] [2×5
double] [2x5 double]\}
    Connect: \{[2] [2 3 4] [2 2 3 4 4]\}
    Probs: \{[3x1 double] [3x3 double] [3x5 double]\}

You can visualize the prices of the two cash flow instruments with the treeviewer function.
treeviewer(PriceTree)


\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ cfamounts | hwprice | hwtree | instcf \\ Introduced before R2006a
}

\section*{cfbyzero}

Price cash flows from set of zero curves

\section*{Syntax}

Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle, Basis)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
Structure containing the properties of an interest-rate \\
structure. See intenvset for information on creating \\
RateSpec.
\end{tabular} \\
\hline CFlowAmounts & \begin{tabular}{l} 
Number of instruments (NINST) by maximum number of cash \\
flows (MOSTCFS) matrix with entries listing cash flow amounts \\
corresponding to each date in CFlowDates. Each row is a list of \\
cash flow values for one instrument. If an instrument has fewer \\
than MOSTCFS cash flows, the end of the row is padded with \\
NaNs.
\end{tabular} \\
\hline CFlowDates & \begin{tabular}{l} 
NINST-by-MOSTCFS matrix of cash flow dates. Each entry \\
contains the serial date of the corresponding cash flow in \\
CFlowAmounts.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
Settlement date on which the cash flows are priced. Settle \\
must be either a scalar or NINST-by-1 vector of serial date \\
numbers or date character vectors of the same value which \\
represent the settlement date for each cash flow. Settle must \\
be earlier than Maturity.
\end{tabular} \\
\hline Basis & \begin{tabular}{l} 
(Optional) Day-count basis of the instrument. A vector of \\
integers. \\
- \\
-
\end{tabular} \\
\hline & \(1=30 / 360\) actual/actual (default) \\
- \(2=\) actual/360 \\
- \(3=\) actual/365
\end{tabular}
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.

\section*{Description}

Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle, Basis) computes Price, an NINST-by-NUMCURVES matrix of cash flows prices. Each column arises from one of the zero curves.

\section*{Examples}

\section*{Compute the Price and Sensitivity From the Interest-Rate Term Structure}

This example shows how to price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2000 to January 1, 2004.
Load the file deriv.mat, which provides ZeroRateSpec. The ZeroRateSpec structure contains the interest-rate information needed to price the instruments.
```

load deriv.mat
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947;
730852, 731217, 731582, 731947];
Settle = 730486;
Price = cfbyzero(ZeroRateSpec, CFlowAmounts, CFlowDates, Settle)

```

\section*{Price =}
96.7804
97.2187
- "Pricing Using Interest-Rate Term Structure" on page 2-57

\section*{More About}
- "Understanding the Interest-Rate Term Structure" on page 2-40
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bondbyzero | fixedbyzero | floatbyzero | swapbyzero \\ Introduced before R2006a
}

\section*{chooserbybls}

Price European simple chooser options using Black-Scholes model

\section*{Syntax}

Price = chooserbybls(RateSpec, StockSpec, Settle, Maturity, Strike)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline ChooseDate & NINST-by-1 vector of chooser dates. \\
\hline
\end{tabular}

\section*{Description}

Price = chooserbybls(RateSpec, StockSpec, Settle,
Maturity, Strike) computes the price for European simple chooser options using the Black-Scholes model.

Price is a NINST-by-1 vector of expected prices.

Note: Only dividends of type continuous can be considered for choosers.

\section*{Examples}

\section*{Price European Simple Chooser Options Using the Black-Scholes Model}

Consider a European chooser option with an exercise price of \(\$ 60\) on June 1, 2007. The option expires on December 2, 2007. Assume the underlying stock provides a continuous dividend yield of \(5 \%\) per annum, is trading at \(\$ 50\), and has a volatility of \(20 \%\) per annum. The annualized continuously compounded risk-free rate is \(10 \%\) per annum. Assume that the choice must be made on August 31, 2007. Using this data:
```

AssetPrice = 50;
Strike = 60;
Settlement = 'Jun-1-2007';
Maturity = 'Dec-2-2007';
ChooseDate = 'Aug-31-2007';
RiskFreeRate = 0.1;
Sigma = 0.20;
Yield = 0.05
Yield =
0.0500

```

Define the RateSpec and StockSpec.
```

RateSpec = intenvset('Compounding', -1, 'Rates', RiskFreeRate, 'StartDates',...
Settlement, 'EndDates', Maturity);
StockSpec = stockspec(Sigma, AssetPrice,'continuous',Yield);
Price the chooser option.

```
```

Price = chooserbybls(RateSpec, StockSpec, Settlement, Maturity,...

```
Price = chooserbybls(RateSpec, StockSpec, Settlement, Maturity,...
Strike, ChooseDate)
Price =
```

8.9308

- "Pricing Using the Black-Scholes Model" on page 3-142

More About

- "Supported Equity Derivatives" on page 3-24

References

Rubinstein, Mark. "Options for the Undecided." Risk. Vol. 4, 1991.

See Also
blsprice | intenvset
Introduced in R2008b

classfin

Create financial structure or return financial structure class name

Syntax

```
Obj = classfin(ClassName)
Obj = classfin(Struct, ClassName)
ClassName = classfin(Obj)
```


Arguments

| ClassName | Character vector containing the name of a financial structure class. |
| :--- | :--- |
| Struct | MATLAB structure to be converted into a financial structure. |
| Obj | Name of a financial structure. |

Description

Obj = classfin(ClassName) and Obj = classfin(Struct, ClassName) create a financial structure of class ClassName.

ClassName = classfin(Obj) returns a character vector containing a financial structure's class name.

Examples

Create a Financial Structure

This example shows how to create a financial structure HJMTimeSpec and complete its fields. (Typically, the function hjmtimespec is used to create HJMTimeSpec structures).

```
TimeSpec = classfin('HJMTimeSpec');
TimeSpec.ValuationDate = datenum('Dec-10-1999');
TimeSpec.Maturity = datenum('Dec-10-2002');
TimeSpec.Compounding = 2;
TimeSpec.Basis = 0;
```

```
TimeSpec.EndMonthRule = 1;
TimeSpec
TimeSpec =
    struct with fields:
            FinObj: 'HJMTimeSpec'
    ValuationDate: 730464
            Maturity: 731560
        Compounding: 2
            Basis: 0
    EndMonthRule: 1
```


Convert an Existing MATLAB Structure into a Financial Structure

This example shows how to convert an existing MATLAB structure into a financial structure.

```
TSpec.ValuationDate = datenum('Dec-10-1999');
TSpec.Maturity = datenum('Dec-10-2002');
TSpec.Compounding = 2;
TSpec.Basis = 0;
TSpec.EndMonthRule = 0;
TimeSpec = classfin(TSpec, 'HJMTimeSpec')
TimeSpec =
    struct with fields:
    ValuationDate: 730464
            Maturity: 731560
            Compounding: 2
            Basis: 0
            EndMonthRule: 0
                        FinObj: 'HJMTimeSpec'
```


Return a Character Vector Containing a Financial Structure's Class Name

This example shows how to obtain a character vector containing a financial structure's class name.

```
load deriv.mat
ClassName = classfin(HJMTree)
ClassName =
HJMFwdTree
```

- "Portfolio Creation" on page 1-7

More About

- "Instrument Constructors" on page 1-18
- "Hedging" on page 4-2

See Also

isafin

Introduced before R2006a

compoundbycrr

Price compound option from Cox-Ross-Rubinstein binomial tree

Syntax

[Price, PriceTree] = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

Arguments

| CRRTree | Stock tree structure created by crrtree. |
| :--- | :--- |
| UOptSpec | Character vector with value of 'Call' or 'Put '. |
| UStrike | 1-by-1 vector of strike price values. |
| USettle | 1-by-1 vector of Settle dates. |
| UExerciseDates | For a European option (UAmericanOpt = 0):
 1-by-1 vector of exercise dates. For a European option, there
 is only one exercise date, the option expiry date. |
| | For an American option (UAmericanOpt = 1):
 1-by-2 vector of exercise date boundaries. The option can be
 exercised on any tree date. If only one non-NaN date is listed,
 or if ExerciseDates is 1-by-1, the option can be exercised
 between the valuation date of the stock tree and the single
 listed exercise date. |
| UAmericanOpt | If UAmericanOpt = 0, NaN, or is unspecified, the option is
 a European option. If UAmericanOpt = 1, the option is an
 American option. |
| COptSpec | NINST-by-1 list of character vector values for 'Call' or
 'Put ' of the compound option. |
| CStrike | NINST-by-1 vector of strike price values. Each row is the
 schedule for one option. |

| CSettle | 1-by-1 vector containing the settlement or trade date. |
| :--- | :--- |
| CExerciseDates | For a European option (CAmericanOpt $=0$):
 NINST-by-1 vector of exercise dates. Each row is the schedule
 for one option. For a European option, there is only one
 exercise date, the option expiry date.
 For an American option (CAmericanOpt = 1):

 NINST-by-2 vector of exercise date boundaries. For each
 instrument, the option can be exercised on any tree date
 between or including the pair of dates on that row. If only one
 non-NaN date is listed, or if ExerciseDates is NINST-by-1,
 the option can be exercised between the valuation date of the
 stock tree and the single listed exercise date.
 CAmericanOpt
 (Optional) If CAmericanOpt = 0, NaN, or is unspecified,
 the option is a European option. If CAmericanOpt = 1, the
 option is an American option. |

Description

[Price, PriceTree] = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates the value of a compound option.

Price is a NINST-by- 1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

Examples

Price a Compound Option Using a CRR Binomial Tree

This example shows how to price a compound option using a CRR binomial tree by loading the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.

```
load deriv.mat
UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006';
UAmericanOpt = 1;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2003';
CExerciseDates = '01-Jan-2005';
Price = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle, ...
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...
CExerciseDates)
Price =
    2.8482
```

- "Computing Prices Using CRR" on page 3-120
- "Graphical Representation of Equity Derivative Trees" on page 3-131

More About

- "Compound Option" on page 3-28
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

References

Rubinstein, Mark. "Double Trouble." Risk. Vol. 5, 1991, p. 73.

See Also
crrtree | instcompound

Introduced before R2006a

compoundbyeqp

Price compound option from Equal Probabilities binomial tree

Syntax

[Price, PriceTree] = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

Arguments

| EQPTree | Stock tree structure created by eqptree. |
| :--- | :--- |
| UOptSpec | Character vector value of 'Call ' or 'Put'. |
| UStrike | 1-by-1 vector of strike price values. |
| USettle | 1-by-1 vector of Settle dates. |
| UExerciseDates | For a European option (UAmericanOpt $=$ 0):
 1-by-1 vector of exercise dates. For a European option, there
 is only one exercise date, the option expiry date.
 For an American option (UAmericanOpt $=1$ 1):
 1-by-2 vector of exercise date boundaries. The option can be
 exercised on any tree date. If only one non-NaN date is listed,
 or if ExerciseDates is 1-by-1, the option can be exercised
 between the valuation date of the stock tree and the single
 listed exercise date. |
| UAmericanOpt | If UAmericanOpt = 0, NaN, or is unspecified, the option is
 a European option. If UAmericanOpt = 1, the option is an
 American option. |
| COptSpec | NINST-by-1 list of character vector values for 'Call ' or
 'Put ' of the compound option. |
| CStrike | NINST-by-1 vector of strike price values. Each row is the
 schedule for one option. |

| CSettle | 1-by-1 vector containing the settlement or trade date. |
| :--- | :--- |
| CExerciseDates | For a European option (CAmericanOpt = 0):
 NINST-by-1 vector of exercise dates. Each row is the
 schedule for one option. For a European option, there is only
 one exercise date, the option expiry date. |
| | For an American option (CAmericanOpt = 1):
 NINST-by-2 vector of exercise date boundaries. For each
 instrument, the option can be exercised on any tree date
 between or including the pair of dates on that row. If only
 one non-NaN date is listed, or if ExerciseDates is NINST-
 by-1, the option can be exercised between the valuation date
 of the stock tree and the single listed exercise date. |
| CAmericanOpt | If CAmericanOpt = 0, NaN, or is unspecified, the option is
 a European option. If CAmericanOpt = 1, the option is an
 American option. |

Description

[Price, PriceTree] = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates the value of a compound option.

Price is a NINST-by- 1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

Examples

Price a Compound Option Using an EQP Equity Tree

This example shows how to price a compound option using a EQP equity tree by loading the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.
load deriv.mat
UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006';
UAmericanOpt = 1;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2003';
CExerciseDates = '01-Jan-2005';
Price = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, ... UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ... CExerciseDates)

Price =
3.3931

- "Computing Prices Using EQP" on page 3-122
- "Graphical Representation of Equity Derivative Trees" on page 3-131

More About

- "Compound Option" on page 3-28
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

References

Rubinstein, Mark. "Double Trouble." Risk. Vol. 5, 1991, p. 73.

See Also
eqptree | instcompound
Introduced before R2006a

compoundbyitt

Price compound options using implied trinomial tree (ITT)

Syntax

[Price, PriceTree] = compoundbyitt(ITTTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

Arguments

| ITTTree | Stock tree structure created by itttree. |
| :--- | :--- |
| UOptSpec | Character vector value of 'call' or 'put '. |
| UStrike | 1-by-1 vector of strike price values. |
| USettle | 1-by-1 vector of Settle dates. |
| UExerciseDates | For a European option (UAmericanOpt $=0$):
 1-by-1 vector of exercise dates. For a European option, there is
 only one exercise date, the option expiry date.
 For an American option (UAmericanOpt $=1$ 1):
 1-by-2 vector of exercise date boundaries. The option can be
 exercised on any tree date. If only one non-NaN date is listed,
 or if ExerciseDates is 1-by-1, the option can be exercised
 between the valuation date of the stock tree and the single
 listed exercise date. |
| UAmericanOpt | If UAmericanOpt = 0, NaN, or is unspecified, the option is
 a European option. If UAmericanOpt $=1$, the option is an
 American option. |
| COptSpec | NINST-by-1 list of character vector values for 'Call' or 'Put '
 of the compound option. |
| CStrike | NINST-by-1 vector of strike price values. Each row is the
 schedule for one option. |

| CSettle | 1-by-1 vector containing the settlement or trade date. |
| :--- | :--- |
| CExerciseDates | For a European option (CAmericanOpt $=0$):
 NINST-by-1 vector of exercise dates. Each row is the schedule
 for one option. For a European option, there is only one
 exercise date, the option expiry date.
 For an American option (CAmericanOpt = 1):
 NINST-by-2 vector of exercise date boundaries. For each
 instrument, the option can be exercised on any tree date
 between or including the pair of dates on that row. If only one
 non-NaN date is listed, or if ExerciseDates is NINST-by-1, the
 option can be exercised between the valuation date of the stock
 tree and the single listed exercise date. |
| CAmericanOpt | (Optional) If CAmericanOpt = 0, NaN, or is unspecified, the
 option is a European option. If CAmericanOpt = 1, the option
 is an American option. |

Description

[Price, PriceTree] = compoundbyitt(ITTTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates the value of a compound option by an ITT trinomial tree.

Price is a NINST-by- 1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

Note: The Settle date is set to the ValuationDate of the stock tree.

Examples

Price a Compound Option Using an ITT Tree

This example shows how to price a compound option using a ITT tree by loading the file deriv.mat, which provides ITTTree. The ITTTree structure contains the stock specification and time information needed to price the option.

```
load deriv.mat
UOptSpec = 'Call';
UStrike = 99;
USettle = '01-Jan-2006';
UExerciseDates = '01-Jan-2010';
UAmericanOpt = 1;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2006';
CExerciseDates = '01-Jan-2010';
Price = compoundbyitt(ITTTree, UOptSpec, UStrike, USettle, ...
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...
CExerciseDates)
```

Price =
2.7271

- "Computing Prices Using ITT" on page 3-124
- "Graphical Representation of Equity Derivative Trees" on page 3-131

More About

- "Compound Option" on page 3-28
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

References

Rubinstein, Mark. "Double Trouble." Risk. Vol. 5, 1991, p. 73.

See Also
instcompound | itttree
Introduced in R2007a

compoundbystt

Price compound options using standard trinomial tree

Syntax

[Price,PriceTree] = compoundbystt(STTTree,UOptSpec,UStrike,USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates) [Price,PriceTree] = compoundbystt(\qquad , Name, Value)

Description

[Price,PriceTree] = compoundbystt(STTTree,UOptSpec,UStrike,USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates) prices compound options using a standard trinomial (STT) tree.
[Price,PriceTree] = compoundbystt(\qquad , Name, Value) prices compound options using a standard trinomial (STT) tree with an optional name-value pair argument for CAmericanOpt.

Examples

Price a Compound Option Using the Standard Trinomial Tree Model

Create a RateSpec.

```
StartDates = 'Jan-1-2009';
EndDates = 'Jan-1-2013';
Rates = 0.035;
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)
```

RateSpec =

```
struct with fields:
    FinObj: 'RateSpec'
    Compounding: -1
        Disc: 0.8694
            Rates: 0.0350
        EndTimes: 4
    StartTimes: 0
        EndDates: 735235
    StartDates: 733774
ValuationDate: 733774
    Basis: 1
EndMonthRule: 1
Create a StockSpec.
AssetPrice = 85;
Sigma = 0.15;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
    struct with fields:
                    FinObj: 'StockSpec'
                            Sigma: 0.1500
            AssetPrice: 85
            DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
Create an STTTree.
NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)
STTTree =
    struct with fields:
```

```
    FinObj: 'STStockTree
StockSpec: [1\times1 struct]
    TimeSpec: [1×1 struct]
    RateSpec: [1×1 struct]
        tObs: [[0 1 1 2 3 4]
        dObs: [733774 734139 734504 734869 735235]
        STree: {1\times5 cell}
        Probs: {[3\times1 double] [3\times3 double] [ 3\times5 double] [3\times7 double]}
```

Define the compound option and compute the price.

```
USettle = '1/1/09';
UExerciseDates = '1/1/12';
UOptSpec = 'call';
UStrike = 95;
UAmericanOpt = 1;
CSettle = '1/1/09';
CExerciseDates = '1/1/11';
COptSpec = 'put';
CStrike = 5;
CAmericanOpt = 1;
```

Price= compoundbystt(STTTree, UOptSpec, UStrike, USettle, UExerciseDates,...
UAmericanOpt, COptSpec, CStrike, CSettle,CExerciseDates, CAmericanOpt)
Price =
1.7090

Input Arguments

STTTree - Stock tree structure for standard trinomial tree

 structureStock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

UOptSpec - Definition of underlying option

character vector with value 'call' or 'put'

Definition of underlying option, specified as 'call' or 'put ' using a character vector.

Data Types: char

UStrike - Underlying option strike price value nonnegative integer

Underlying option strike price value, specified with a nonnegative integer using a 1-by-1 vector.

Data Types: double

USettle - Underlying option settlement date or trade date
 nonnegative integer | date character vector

Underlying option settlement date or trade date, specified as a 1-by-1 vector using a serial date number or character vector.

Data Types: double | char

UExerciseDates - Underlying option exercise date

nonnegative integer | date character vector
Underlying option exercise date, specified as a nonnegative scalar integer or date character vector:

- For a European option, use a1-by-1 vector of the underlying exercise date. For a European option, there is only one ExerciseDates on the option expiry date.
- For an American option, use a 1-by-2 vector of the underlying exercise date boundaries. The option can be exercised on any tree date. If only one non- NaN date is listed, or if ExerciseDates is 1-by-1, the option can be exercised between ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

UAmericanOpt - Underlying option type

0 European (default) | scalar with values [0,1]
Underlying option type, specified as NINST-by-1 positive integer scalar flags with values:

- 0 - European
- 1 -American

Data Types: single | double

COptSpec - Definition of compound option

character vector with value 'call' or 'put ' | cell array of character vectors with values 'call' or 'put'

Definition of compound option, specified as 'call' or 'put' using a character vector or a cell array of character vectors with values 'call' or 'put'.

Data Types: char | cell

CStrike - Compound option strike price values

nonnegative integers
Compound option strike price values for a European and American option, specified with a nonnegative integer using a NINST-by-1 matrix. Each row is the schedule for one option.

Data Types: double

CSettle - Compound option settlement date or trade date

nonnegative integer | date character vector
Compound option settlement date or trade date, specified as a 1-by-1 vector using a serial date number or date character vector.

Data Types: double | char

CExerciseDates - Compound option exercise dates

nonnegative integer | date character vector
Compound option exercise dates, specified as nonnegative integers or date character vectors:

- For a European option, use aNINST-by-1 matrix of the compound exercise dates. Each row is the schedule for one option. For a European option, there is only one ExerciseDates on the option expiry date.
- For an American option, use a NINST-by-2 vector of the compound exercise date boundaries. For each instrument, the option can be exercised on any tree date. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Example: Price = compoundbystt (STTTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt , COp

'CAmerican0pt' - Compound option type

0 European (default) | scalar with values [0,1]
Compound option type, specified as NINST-by-1 positive integer scalar flags with values:

- 0 - European
- 1 -American

Data Types: single | double

Output Arguments

Price - Expected prices for compound options at time 0
 matrix

Expected prices for compound options at time 0, returned as a NINST-by-1 matrix.
PriceTree - Structure with vector of compound option prices at each node
tree structure
Structure with a vector of compound option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of observation times for each node.

PriceTree. PTree contains the prices.
PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

More About

- "Compound Option" on page 3-28
- "Supported Equity Derivatives" on page 3-24

See Also
instcompound | sttprice | sttsens | stttimespec | stttree
Introduced in R2015b

crrprice

Instrument prices from Cox-Ross-Rubinstein tree

Syntax

[Price, PriceTree] = crrprice(CRRTree, InstSet, Options)

Arguments

| CRRTree | Stock price tree structure created by crrtree. |
| :--- | :--- |
| InstSet | Variable containing a collection of NINST instruments. Instruments
 are categorized by type; each type can have different data fields.
 The stored data field is a row vector or character vector for each
 instrument. For more information about how to create the InstSet
 structure, see instadd. |
| Options | (Optional) Derivatives pricing options structure created with
 derivset. |

Description

[Price, PriceTree] = crrprice(CRRTree, InstSet, Options) computes stock option prices using a CRR binomial tree created with crrtree.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the stock tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of observation times for each node.

PriceTree. PTree contains the prices.
PriceTree.tObs contains the observation times.
PriceTree.dObs contains the observation dates.
crrprice handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond', 'Lookback', 'OptStock'. See instadd to construct defined types.

Related single-type pricing functions are:

- asianbycrr: Price an Asian option from a CRR tree.
- barrierbycrr: Price a barrier option from a CRR tree.
- cbondbycrr: Price convertible bonds from a CRR tree.
- compoundbycrr: Price a compound option from a CRR tree.
- lookbackbycrr: Price a lookback option from a CRR tree.
- optstockbycrr: Price an American, Bermuda, or European option from a CRR tree.

Examples

Load the CRR tree and instruments from the data file deriv.mat. Price the barrier and lookback options contained in the instrument set.

```
load deriv.mat;
CRRSubSet = instselect(CRRInstSet,'Type', ...
{'Barrier', 'Lookback'});
instdisp(CRRSubSet)
%Table of instrument portfolio partially displayed:
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec ...
1 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui ...
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity
2 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookback1 7
L Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9
[Price, PriceTree] = crrprice(CRRTree, CRRSubSet)
Price =
    12.1272
    7.6015
    11.7772
PriceTree =
    FinObj: 'BinPriceTree'
    PTree: {1x5 cell}
        tObs: [l0 1 2 3 3 4]
        dObs: [731582 731947 732313 732678 733043]
```

You can use treeviewer to see the prices of these three instruments along the price tree.
treeviewer(PriceTree, CRRSubSet)

Lookback2

More About

- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

See Also

cbondbycrr | crrsens | crrtree | instadd | instcbond

11 Functions - Alphabetical List

Introduced before R2006a

crrsens

Instrument prices and sensitivities from Cox-Ross-Rubinstein tree

Syntax

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)

Arguments

| CRRTree | Interest-rate tree structure created by crrtree. |
| :--- | :--- |
| InstSet | Variable containing a collection of NINST instruments. Instruments
 are categorized by type; each type can have different data fields.
 The stored data field is a row vector or character vector for each
 instrument. |
| Options | (Optional) Derivatives pricing options structure created with
 derivset. |

Description

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options) computes dollar sensitivities and prices for instruments using a binomial tree created with crrtree. NINST instruments from a financial instrument variable, InstSet, are priced. crrsens handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond', 'Lookback', 'OptStock'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the stock price. Delta is computed by finite differences in calls to crrtree. See crrtree for information on the stock tree.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the stock price. Gamma is computed by finite differences in calls to crrtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility of the stock. Vega is computed by finite differences in calls to crrtree.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Examples

Compute Sensitivities for Barrier and Lookback Instruments Using a crrtree

Load the CRR tree and instruments from the data file deriv.mat. Compute the Delta and Gamma sensitivities of the barrier and lookback options contained in the instrument set.

```
load deriv.mat;
CRRSubSet = instselect(CRRInstSet,'Type', ...
{'Barrier', 'Lookback'});
instdisp(CRRSubSet)
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec Bar।
1 Barrier call 105 01-Jan-2003 01-Jan-2006 1 l ui 102
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quan
2 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookback1 7
3 Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9
```

Obtain the Delta and Gamma for the barrier and lookback options contained in the instrument set.

```
[Delta, Gamma] = crrsens(CRRTree, CRRSubSet)
```

Delta =
0.6885
0.6049
0.8187

Gamma =
0.0310

- 0.0000

0

- "Computing Prices Using CRR" on page 3-120
- "Graphical Representation of Equity Derivative Trees" on page 3-131

More About

- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

See Also
cbondbycrr | crrprice | crrtree | instcbond
Introduced before R2006a

crrtimespec

Specify time structure for Cox-Ross-Rubinstein tree

Syntax

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)

Arguments

| ValuationDate | Scalar date indicating the pricing date and first observation in
 the tree. A serial date number or date character vector. |
| :--- | :--- |
| Maturity | Scalar date indicating depth of the tree. |
| NumPeriods | Scalar determining number of time steps in the tree. |

Description

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods) sets the number of levels and node times for a CRR binomial tree.

TimeSpec is a structure specifying the time layout for a CRR binomial tree.

Examples

Set the Number of Levels and Node Times for a CRR Binomial Tree

This example shows how to specify a four-period CRR tree with time steps of 1 year.

```
ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4)
```

TimeSpec =

```
struct with fields:
    FinObj: 'BinTimeSpec'
    ValuationDate: 731398
        Maturity: 732859
        NumPeriods: 4
            Basis: 0
    EndMonthRule: 1
        tObs: [lllllll}
        dObs: [l731398 731763 732128 732493 732859]
```

- "Building Equity Binary Trees" on page 3-3
- "Examining Equity Trees" on page 3-18

More About

- "Understanding Equity Trees" on page 3-2
- "Differences Between CRR and EQP Tree Structures" on page 3-22
- "Supported Equity Derivatives" on page 3-24

See Also
crrtree | stockspec
Introduced before R2006a

crrtree

Construct Cox-Ross-Rubinstein stock tree

Syntax

CRRTree $=$ crrtree (StockSpec, RateSpec, TimeSpec)

Arguments

| StockSpec | Stock specification. See stockspec for information on creating a
 stock specification. |
| :--- | :--- |
| RateSpec | Interest-rate specification for the initial risk free rate curve. See
 intenvset for information on declaring an interest-rate variable. |
| TimeSpec | Tree time layout specification. Defines the observation dates of the
 CRR binomial tree. See crrtimespec for information on the tree
 structure. |

Note The standard CRR tree assumes a constant interest rate, but RateSpec allows you to specify an interest-rate curve with varying rates. If you specify variable interest rates, the resulting tree will not be a standard CRR tree.

Description

CRRTree $=$ crrtree(StockSpec, RateSpec, TimeSpec) creates a structure specifying the time layout for a CRR binomial tree.

Examples

Using the data provided, create a stock specification (StockSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a CRR tree with crrtree.

```
Sigma = 0.20;
```

```
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';
'01-Oct-2003'}
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
StockSpec =
                    FinObj: 'StockSpec'
                        Sigma: 0.2000
            AssetPrice: 50
        DividendType: 'cash'
    DividendAmounts: [4x1 double]
    ExDividendDates: [4x1 double]
```

```
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
```

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'01-Jan-2003', 'EndDates', '31-Dec-2003')
RateSpec =
FinObj: 'RateSpec'
Compounding: 2
Disc: 0.9519
Rates: 0.0500
EndTimes: 1.9945
StartTimes: 0
EndDates: 731946
StartDates: 731582
ValuationDate: 731582
Basis: 0
EndMonthRule: 1
ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4)
TimeSpec =
FinObj: 'BinTimeSpec'
ValuationDate: 731582
Maturity: 731946
NumPeriods: 4
Basis: 0
EndMonthRule: 1

```
```

tObs: [0 0.2493 0.4986 0.7479 0.9972]
dObs: [l731582 731673 731764 731855 731946]

```
```

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

```
CRRTree \(=\)
FinObj: 'BinStockTree'
    Method: 'CRR'
StockSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: \(\left[\begin{array}{lllll}0 & 0.2493 & 0.4986 & 0.7479 & 0.9972\end{array}\right]\)

        STree: \{1x5 cell\}
    UpProbs: [ 0.53700 .53700 .53700 .5370\(]\)

Use treeviewer to observe the tree you have created.


\section*{More About}
- "Understanding Equity Trees" on page 3-2
- "Differences Between CRR and EQP Tree Structures" on page 3-22
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ crrtimespec | intenvset | stockspec \\ Introduced before R2006a
}

\section*{cvtree}

Convert inverse-discount tree to interest-rate tree

\section*{Syntax}

RateTree = cvtree(Tree)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Tree & \begin{tabular}{l} 
Heath-Jarrow-Morton, Black-Derman-Toy, Hull-White, or Black- \\
Karasinski tree structure using inverse-discount notation for forward \\
rates.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

RateTree = cvtree(Tree) converts a tree structure using inverse-discount notation to a tree structure using rate notation for forward rates.

\section*{Examples}

Convert a Hull-White tree using inverse-discount notation to a Hull-White tree displaying interest-rate notation.
```

load deriv.mat;
HWTree
HWTree =

```
```

 FinObj: 'HWFwdTree'
    ```
    FinObj: 'HWFwdTree'
    VolSpec: [1x1 struct]
    VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        tObs: [0 1 2 3]
        dObs: [731947 732313 732678 733043]
        dObs: [731947 732313 732678 733043]
    CFlowT: {[4x1 double] [3\times1 double] [2x1 double] [4]}
```

 CFlowT: {[4x1 double] [3\times1 double] [2x1 double] [4]}
    ```
```

 Probs: {[3x1 double] [3x3 double] [3x5 double]}
 Connect: {[2] [2 3 4 4] [2 2 2 3 4 4]}
FwdTree: {1x4 cell}

```
```

HWTree.FwdTree{1}

```
```

ans =
1.0279

```

\section*{HWTree.FwdTree\{2\}}
ans =
```

 1.0528 1.0356 1.0186
    ```

Use treeviewer to display the path of interest rates expressed in inverse-discount notation.
treeviewer(HWTree)


Use cvtree to convert the inverse-discount notation to interest-rate notation.
RTree \(=\) cvtree (HWTree)
RTree =
```

 FinObj: 'HWRateTree'
 VolSpec: [1x1 struct]
 TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [00 1 2 3]
dObs: [731947 732313 732678 733043]
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
RateTree: {1x4 cell}

```

\section*{RTree.RateTree\{1\}}
```

ans =

```
    0.0275

\section*{RTree.RateTree\{2\}}
ans \(=\)
```

 0.0514
 0.0349
 0.0185
    ```

Now use treeviewer to display the converted tree, showing the path of interest rates expressed as forward rates.


\author{
See Also \\ disc2rate | rate2disc \\ Introduced before R2006a
}

\section*{date2time}

Time and frequency from dates

\section*{Syntax}
[Times, F] = date2time(Settle, Dates, Compounding, Basis, EndMonthRule)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Settle & Settlement date. A vector of serial date numbers or date character vectors. \\
\hline Dates & Vector of dates corresponding to the compounding value. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors: \\
Compounding \(=1,2,3,4,6,12(\) Default \(=2\). \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units; for example, \(\mathrm{T}=\mathrm{F}\) is one year. \\
Compounding \(=365\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis. \\
Compounding \(=-1\) \\
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- \(1=30 / 360\) (SIA) \\
- \(2=\) actual/ 360 \\
- \(3=\) actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline
\end{tabular}

\section*{Description}
[Times, F] = date2time(Settle, Dates, Compounding, Basis, EndMonthRule) computes time factors appropriate to compounded rate quotes beyond the settlement date.

Times is a vector of time factors.
F is a scalar of related compounding frequencies.

Note To obtain accurate results from this function, the Basis and Dates arguments must be consistent. If the Dates argument contains months that have 31 days, Basis
must be one of the values that allow months to contain more than 30 days; for example, Basis \(=0,3\), or 7 .
date2time is the inverse of time2date.

\section*{More About}
- "Understanding the Interest-Rate Term Structure" on page 2-40

\section*{See Also}
cftimes | disc2rate | rate2disc | time2date

\section*{Related Examples}
- "Modeling the Interest-Rate Term Structure" on page 2-52
- "Interest-Rate Term Conversions" on page 2-47
- "Interest Rates Versus Discount Factors" on page 2-40
- "Graphical Representation of Trees" on page 2-142

\section*{Introduced before R2006a}

\section*{datedisp}

Display date entries

\section*{Syntax}
datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline NumMat & Numeric matrix to display. \\
\hline DateForm & \begin{tabular}{l} 
(Optional) Date format. See datestr for available and default \\
format flags.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
datedisp(NumMat, DateForm) displays the matrix with the serial dates formatted as date character vectors, using a matrix with mixed numeric entries and serial date number entries. Integers between datenum ('01-Jan-1900') and datenum ('01-Jan-2200') are assumed to be serial date numbers, while all other values are treated as numeric entries.

CharMat is a character array representing NumMat. If no output variable is assigned, the function prints the array to the display (CharMat = datedisp(NumMat, DateForm)).

\section*{Examples}
```

NumMat = [730730, 0.03, 1200, 730100;
730731, 0.05, 1000, NaN]

```

NumMat \(=\)
\(1.0 \mathrm{e}+05\) *
```

 7.3073 0.0000 0.0120 7.3010
 7.3073 0.0000 0.0100 NaN
 datedisp(NumMat)
01-Sep-2000 0.03 1200 11-Dec-1998

```

\section*{More About}

\section*{Tips}

This function is identical to the datedisp function in Financial Toolbox software.
- "Understanding the Interest-Rate Term Structure" on page 2-40

\author{
See Also \\ datenum | datestr
}

Introduced before R2006a

\section*{derivget}

Get derivatives pricing options

\section*{Syntax}
```

Value = derivget(Options, 'Parameter')

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Options & \begin{tabular}{l} 
Existing options specification structure, probably created from \\
previous call to derivset.
\end{tabular} \\
\hline Parameter & \begin{tabular}{l} 
Must be 'Diagnostics ', 'Warnings ', 'ConstRate ' , or \\
'BarrierMethod '. It is sufficient to type only the leading \\
characters that uniquely identify the parameter. Case is ignored for \\
parameter names.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Value = derivget(Options, 'Parameter') extracts the value of the named parameter from the derivative options structure Options. Parameter values can be 'off' or 'on', except for 'BarrierMethod', which can be 'unenhanced' or 'interp'. Specifying 'unenhanced' uses no correction calculation. Specifying 'interp' uses an enhanced valuation interpolating between nodes on barrier boundaries.

\section*{Examples}

Example 1. Create an Options structure with the value of Diagnostics set to 'on '.
```

Options = derivset('Diagnostics','on')

```

Use derivget to extract the value of Diagnostics from the Options structure.
```

Value = derivget(Options, 'Diagnostics')

```

\section*{Value =}
on
Example 2. Use derivget to extract the value of ConstRate.
Value = derivget(Options, 'ConstRate')
Value =
on
Because the value of 'ConstRate' was not previously set with derivset, the answer represents the default setting for 'ConstRate'.

Example 3. Find the value of 'BarrierMethod ' in this structure.
derivget(Options ,'BarrierMethod')
ans \(=\)
unenhanced

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2

\section*{See Also}
barrierbycrr | barrierbyeqp | derivset

Introduced before R2006a

\section*{derivset}

Set or modify derivatives pricing options

\section*{Syntax}
```

Options = derivset(Options, 'Parameter1', Value1,
... 'Parameter4', Value4)
Options = derivset(OldOptions, NewOptions)
Options = derivset
derivset

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Options & (Optional) Existing options specification structure, probably created from a previous call to derivset. \\
\hline Parametern & The parameter must be 'Diagnostics', 'Warnings ', 'ConstRate', or 'BarrierMethod'. Parameters can be entered in any order. \\
\hline Valuen & \begin{tabular}{l}
(BDT, BK, HJM, or HW pricing only) The parameter values for the following three options can be 'on' or 'off': \\
- 'Diagnostics' 'on' generates diagnostic information. The default is 'Diagnostics' 'off'. \\
- 'Warnings' 'on' (default) displays a warning message when executing a pricing function. \\
- 'ConstRate' 'on' (default) assumes a constant rate between tree nodes. \\
For pricing barrier options, the 'BarrierMethod ' pricing option can be 'unenhanced ' (default) or 'interp'. Specifying 'unenhanced' uses no correction calculation. Specifying 'interp' uses an enhanced valuation interpolating between nodes on barrier boundaries.
\end{tabular} \\
\hline OldOptions & Existing options specification structure. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline NewOptions & New options specification structure. \\
\hline
\end{tabular}

\section*{Description}
```

Options = derivset(Options, 'Parameter1', Value1,

```
... 'Parameter4', Value4) creates a derivatives pricing options structure Options
in which the named parameters have the specified values. Any unspecified value is set
to the default value for that parameter when Options is passed to the pricing function.
It is sufficient to type only the leading characters that uniquely identify the parameter
name. Case is also ignored for parameter names.

If the optional input argument Options is specified, derivset modifies an existing pricing options structure by changing the named parameters to the specified values.

Note For parameter values, correct case and the complete character vector values are required; if an invalid character vector value is provided, the default is used.

Options = derivset(OldOptions, NewOptions) combines an existing options structure OldOptions with a new options structure NewOptions. Any parameters in NewOptions with nonempty values overwrite the corresponding old parameters in OldOptions.

Options = derivset creates an options structure Options whose fields are set to the default values.
derivset with no input or output arguments displays all parameter names and information about their possible values.

\section*{Examples}

Options = derivset('Diagnostics', 'on')
enables the display of additional diagnostic information that appears when executing pricing functions.
```

Options = derivset(Options, 'ConstRate', 'off')

```
changes the ConstRate parameter in the existing Options structure so that the assumption of constant rates between tree nodes no longer applies.

With no input or output arguments, derivset displays all parameter names and information about their possible values.
derivset
```

Diagnostics: [on | {off}]
Warnings: [{on} | off]
ConstRate: [{on} | off]
BarrierMethod: [{unenhanced} | interp]

```

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2

\section*{See Also}
barrierbycrr | barrierbyeqp | derivget
Introduced before R2006a

\section*{disc2rate}

Interest rates from cash flow discounting factors

\section*{Syntax}

Usage 1: Interval points are input as times in periodic units.
```

Rates = disc2rate(Compounding, Disc, EndTimes)
Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)

```

Usage 2: ValuationDate is passed and interval points are input as dates.
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc, EndDates, StartDates, ValuationDate)
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc, EndDates, StartDates, ValuationDate, Basis, EndMonthRule)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Compounding & \begin{tabular}{l}
Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors (Disc): \\
- Compounding \(=0\) for simple interest \\
- Disc \(=1 /(1+Z * T)\), where \(T\) is time in years and simple interest assumes annual times \(F=1\). \\
- Compounding \(=1,2,3,4,6,12\) \\
- Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units, for example, \(T=F\) is one year. \\
- Compounding \(=365\) \\
- Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- Compounding \(=-1\) \\
- Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
\end{tabular} \\
\hline Disc & Number of points (NPOINTS) by number of curves (NCURVES) matrix of discounts. Disc are unit bond prices over investment intervals from StartTimes, when the cash flow is valued, to EndTimes, when the cash flow is received. \\
\hline \multirow[t]{2}{*}{EndTimes} & NPOINTS-by-1 vector or scalar of times in periodic units ending the interval to discount over. \\
\hline & Note: When ValuationDate is not passed, the EndTimes and StartTimes arguments are interpreted as times. \\
\hline StartTimes & (Optional) NPOINTS-by-1 vector or scalar of times in periodic units starting the interval to discount over. Default \(=0\). \\
\hline \multirow[t]{2}{*}{EndDates} & NPOINTS-by- 1 vector or scalar of serial maturity dates ending the interval to discount over. \\
\hline & Note: When ValuationDate is passed, EndDates and StartDates arguments are interpreted as dates. The date ValuationDate is used as the zero point for computing the times. \\
\hline StartDates & (Optional) NPOINTS-by-1 vector or scalar of serial dates starting the interval to discount over. Default = ValuationDate. StartDates must be earlier than EndDates. \\
\hline ValuationDate & Scalar value in serial date number form representing the observation date of the investment horizons entered in StartDates and EndDates. Required in Usage 2. Omitted or passed as an empty matrix to invoke Usage 1. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument when using Usage 2. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- 10 = actual/365 (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule when using Usage 2. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline
\end{tabular}

\section*{Description}

Usage 1: Rates = disc2rate(Compounding, Disc, EndTimes) or Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes) where interval points are input as times in periodic units.

Usage 2: [Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc, EndDates, StartDates, ValuationDate) or [Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc, EndDates, StartDates, ValuationDate, Basis, EndMonthRule) where ValuationDate is passed and interval points are input as dates.
disc2rate computes the yields over a series of NPOINTS time intervals given the cash flow discounts over those intervals. NCURVES different rate curves can be translated at once if they have the same time structure. The time intervals can represent a zero or a forward curve.

Rates is an NPOINTS-by-NCURVES column vector of yields in decimal form over the NPOINTS time intervals.

Specify the investment intervals with either input times (Usage 1) or input dates (Usage 2). Entering ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time interpretations.

\section*{For Usage 1:}
- StartTimes is an NPOINTS-by-1 column vector of times starting the interval to discount over, measured in periodic units.
- EndTimes is an NPOINTS-by-1 column vector of times ending the interval to discount over, measured in periodic units.

\section*{For Usage 2:}
- StartDates is an NPOINTS-by-1 column vector of serial dates starting the interval to discount over, measured in days.
- EndDates is an NPOINTS-by-1 column vector of serial date ending the interval to discount over, measured in days.

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days for Usage 2. Otherwise, for Usage 1, the arguments contain values, \(T\), computed from SIA semiannual time factors, Tsemi, by the formula \(T=T s e m i / 2\) * \(F\), where \(F\) is the compounding frequency.

\section*{More About}
- "Understanding the Interest-Rate Term Structure" on page 2-40

\section*{See Also}
rate2disc | ratetimes

\section*{Related Examples}
- "Modeling the Interest-Rate Term Structure" on page 2-52
- "Interest-Rate Term Conversions" on page 2-47
- "Interest Rates Versus Discount Factors" on page 2-40

Introduced before R2006a

\section*{eqpprice}

Instrument prices from Equal Probabilities binomial tree

\section*{Syntax}
```

[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline EQPTree & Stock price tree structure created by eqptree. \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of NINST instruments. Instruments \\
are categorized by type; each type can have different data fields. \\
The stored data field is a row vector or character vector for each \\
instrument.
\end{tabular} \\
\hline Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options structure created with \\
derivset.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options) computes stock option prices using an EQP binomial tree created with eqptree.

Price is a number of instruments NINST-by- 1 vector of prices for each instrument.
The prices are computed by backward dynamic programming on the stock tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of observation times for each node.

PriceTree.PTree contains the prices.
PriceTree.tObs contains the observation times.
PriceTree.dObs contains the observation dates.
eqpprice handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond', 'Lookback', 'OptStock'. See instadd to construct defined types.

Related single-type pricing functions are:
- asianbyeqp: Price an Asian option from an EQP tree.
- barrierbyeqp: Price a barrier option from an EQP tree.
- cbondbyeqp: Price convertible bonds from an EQP tree.
- compoundbyeqp: Price a compound option from an EQP tree.
- lookbackbyeqp: Price a lookback option from an EQP tree.
- optstockbyeqp: Price an American, Bermuda, or European option from an EQP tree.

\section*{Examples}

Load the EQP tree and instruments from the data file deriv.mat. Price the put options contained in the instrument set.
```

load deriv.mat;
EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...
'Data', 'put')
instdisp(EQPSubSet)
%Table of instrument portfolio partially displayed:
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name...
1 OptStock put 105 01-Jan-2003 01-Jan-2006 0 Put 105..
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType...
2 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic...
3 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic...
[Price, PriceTree] = eqpprice(EQPTree, EQPSubSet)
Price =
2.6375
4.7444
3.9178
PriceTree =
FinObj: 'BinPriceTree'
PTree: {1x5 cell}

```
```

tObs: [0 1 1 2 3 4]
dObs: [731582 731947 732313 732678 733043]

```

You can use treeviewer to see the prices of these three instruments along the price tree.
```

treeviewer(PriceTree, EQPSubSet)

```


Putl


Asian 11


Asian2

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\section*{See Also \\ cbondbyeqp | eqpsens | eqptimespec | eqptree | instadd | instcbond}

11 Functions - Alphabetical List

Introduced before R2006a

\section*{eqpsens}

Instrument prices and sensitivities from Equal Probabilities binomial tree

\section*{Syntax}
[Delta, Gamma, Vega, Price] = eqpsens(EQPTree, InstSet, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline EQPTree & Interest-rate tree structure created by eqptree. \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of NINST instruments. Instruments \\
are categorized by type; each type can have different data fields. \\
The stored data field is a row vector or character vector for each \\
instrument.
\end{tabular} \\
\hline Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options structure created with \\
derivset.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
[Delta, Gamma, Vega, Price] = eqpsens(EQPTree, InstSet, Options) computes dollar sensitivities and prices for instruments using a binomial tree created with eqptree. NINST instruments from a financial instrument variable, InstSet, are priced. eqpsens handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond', 'Lookback', and 'OptStock'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the stock price. Delta is computed by finite differences in calls to eqptree. See eqptree for information on the stock tree.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the stock price. Gamma is computed by finite differences in calls to eqptree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility of the stock. Vega is computed by finite differences in calls to eqptree.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

\section*{Examples}

\section*{Compute Sensitivities for Instruments Using an eqptree}

Load the EQP tree and instruments from the data file deriv.mat. Compute the Delta and Gamma sensitivities of the put options contained in the instrument set.
```

load deriv.mat;
EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...
'Data', 'put')
instdisp(EQPSubSet)
EQPSubSet =
struct with fields:
FinObj: 'Instruments'
IndexTable: [1\times1 struct]
Type: {5\times1 cell}
FieldName: {5\times1 cell}
FieldClass: {5\times1 cell}
FieldData: {5\times1 cell}

| Index | Type | OptSpec Strike Settle | ExerciseDates | AmericanOpt Name | Quantity | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 1 | OptStock put | 105 | $01-J a n-2003$ | $01-J a n-2006$ | 0 | Put1 | 5 |

| Index | Type OptSpec Strike Settle | ExerciseDates | AmericanOpt AvgType AvgPric | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | Asian put | 110 | $01-$ Jan-2003 | $01-$ Jan-2006 | 0 | arithmetic NaN |
| 3 | Asian put | 110 | $01-$ Jan-2003 | $01-$ Jan-2007 | 0 | arithmetic NaN |

```

Obtain the Delta and Gamma for the put options contained in the instrument set.
[Delta, Gamma] = eqpsens(EQPTree, EQPSubSet)

Delta =
\(-0.2336\)
\(-0.5443\)
\(-0.4516\)

Gamma =
0.0218
0.0000
0.0000
- "Computing Prices Using EQP" on page 3-122
- "Graphical Representation of Equity Derivative Trees" on page 3-131

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
cbondbyeqp | eqpprice | eqptree | instcbond

Introduced before R2006a

\section*{eqptimespec}

Specify time structure for Equal Probabilities binomial tree

\section*{Syntax}

TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ValuationDate & \begin{tabular}{l} 
Scalar date indicating the pricing date and first observation in \\
the tree. A serial date number or date character vector.
\end{tabular} \\
\hline Maturity & Scalar date indicating depth of the tree. \\
\hline NumPeriods & Scalar determining number of time steps in the tree. \\
\hline
\end{tabular}

\section*{Description}

TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods) sets the number of levels and node times for an equal probabilities tree.

TimeSpec is a structure specifying the time layout for an equal probabilities tree.

\section*{Examples}

\section*{Set the Number of Levels and Node Times for an EQP Tree}

This example shows how to set the number of levels and node times for an EQP tree by specifying a four-period tree with time steps of 1 year.
```

ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4)

```

TimeSpec =
```

 struct with fields:
    ```
            FinObj: 'BinTimeSpec'
    ValuationDate: 731398
            Maturity: 732859
        NumPeriods: 4
            Basis: 0
    EndMonthRule: 1
        tObs: [lllll \(001212 c c c]\)
        dObs: [lllllll
- "Computing Prices Using EQP" on page 3-122
- "Graphical Representation of Equity Derivative Trees" on page 3-131

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ eqptree | stockspec \\ Introduced before R2006a
}

\section*{eqptree}

Construct Equal Probabilities stock tree

\section*{Syntax}

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline StockSpec & \begin{tabular}{l} 
Stock specification. See stockspec for information on creating a \\
stock specification.
\end{tabular} \\
\hline RateSpec & \begin{tabular}{l} 
Interest-rate specification for the initial risk free rate curve. See \\
intenvset for information on declaring an interest-rate variable.
\end{tabular} \\
\hline TimeSpec & \begin{tabular}{l} 
Tree time layout specification. Defines the observation dates of the \\
equal probabilities binomial tree. See eqptimespec for information \\
on the tree structure.
\end{tabular} \\
\hline
\end{tabular}

Note The standard equal probabilities tree assumes a constant interest rate, but RateSpec allows you to specify an interest-rate curve with varying rates. If you specify variable interest rates, the resulting tree will not be a standard equal probabilities tree.

\section*{Description}

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec) constructs an equal probabilities stock tree.

EQPTree is a MATLAB structure specifying the time layout for an equal probabilities stock tree.

\section*{Examples}

Using the data provided, create a stock specification (StockSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create an EQP tree with eqptree.
```

Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';
01-Oct-2003'}
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
StockSpec =
FinObj: 'StockSpec'
Sigma: 0.2000
AssetPrice: 50
DividendType: 'cash'
DividendAmounts: [4x1 double]
ExDividendDates: [4x1 double]
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'01-Jan-2003', 'EndDates', '31-Dec-2003')
RateSpec =
FinObj: 'RateSpec'
Compounding: 2
Disc: 0.9519
Rates: 0.0500
EndTimes: 1.9945
StartTimes: 0
EndDates: 731946
StartDates: 731582
ValuationDate: 731582
Basis: 0
EndMonthRule: 1
ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4)
TimeSpec =

```
```

 FinObj: 'BinTimeSpec'
 ValuationDate: 731582
 Maturity: 731946
 NumPeriods: 4
 Basis: O
 EndMonthRule: 1
 tObs: [0 0.2493 0.4986 0.7479 0.9972]
 dObs: [731582 731673 731764 731855 731946]
 EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)
EQPTree =
FinObj: 'BinStockTree'
Method: 'EQP'
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [[0 0.2493 0.4986 0.7479 0.9972]
dObs: [l731582 731672 731763 731856 731946]
STree: {1x5 cell}
UpProbs: [0.5000 0.5000 0.5000 0.5000]

```

Use treeviewer to observe the tree you have created.


\section*{More About}
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ eqptimespec | intenvset | stockspec \\ Introduced before R2006a
}

\section*{fixedbybdt}

Price fixed-rate note from Black-Derman-Toy interest-rate tree

\section*{Syntax}
[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity)
[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) [Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Name, Value)

\section*{Input Arguments}
\begin{tabular}{|l|l|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline CouponRate & Decimal annual rate. \\
\hline Settle & \begin{tabular}{l} 
Settlement dates. Number of instruments (NINST-by-1) vector of \\
dates representing the settlement dates of the fixed-rate note.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity dates of the \\
fixed-rate note.
\end{tabular} \\
\hline
\end{tabular}

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Reset}

NINST-by-1 vector representing the frequency of payments per year.
Default: 1

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{Principal}

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

\section*{Options}

Derivatives pricing options structure created with derivset.

\section*{Default:}

\section*{EndMonthRule}

End-of-month rule. A NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.
Default: False

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by-1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{Description}
[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity) computes the price of a fixed-rate note from a BDT interest-rate tree.
[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a fixed-rate note from a BDT interest-rate tree using additional input arguments.
[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Name, Value) computes the price of a price of a fixed-rate note from a BDT interest-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is an NINST-by- 1 vector of expected prices of the fixed-rate note at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every fixed-rate note is set to the ValuationDate of the BDT tree. The fixed-rate note argument Settle is ignored.

\section*{Examples}

\section*{Price a 10\% Fixed-Rate Note Using a BDT Interest-Rate Tree}

This example shows how to price a \(10 \%\) fixed-rate note using a BDT interest-rate tree by loading the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the note.
```

load deriv.mat
CouponRate = 0.10;
Settle = '01-Jan-2000';

```
```

Maturity = '01-Jan-2004';
Reset = 1;
Price = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset)
Price =
92.9974

```
- "Computing Instrument Prices" on page 2-84
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bdttree | bondbybdt | capbybdt | cfbybdt | floatbybdt | floorbybdt | swapbybdt

Introduced before R2006a

\section*{fixedbybk}

Price fixed-rate note from Black-Karasinski interest-rate tree

\section*{Syntax}
[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle, Maturity)
[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) [Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle, Maturity, Name, Value)

\section*{Input Arguments}
\begin{tabular}{|l|l|}
\hline BKTree & Interest-rate tree structure created by bktree. \\
\hline CouponRate & Decimal annual rate. \\
\hline Settle & \begin{tabular}{l} 
Settlement dates. NINST-by-1 vector of dates representing the \\
settlement dates of the fixed-rate note.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity dates of the \\
fixed-rate note.
\end{tabular} \\
\hline
\end{tabular}

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Reset}

NINST-by-1 vector representing the frequency of payments per year.
Default: 1

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{Principal}

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

\section*{Options}

Derivatives pricing options structure created with derivset.

\section*{Default:}

\section*{EndMonthRule}

End-of-month rule. A NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.

\section*{Default: False}

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by-1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{Description}
[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle, Maturity) computes the price of a fixed-rate note from a Black-Karasinski tree.
[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a fixed-rate note from a Black-Karasinski tree using optional input arguments.
[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle, Maturity, Name, Value) computes the price of a price of a fixed-rate note from a Black-Karasinski interest-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is an NINST-by- 1 vector of expected prices of the fixed-rate note at time 0.
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every fixed-rate note is set to the ValuationDate of the BK tree. The fixed-rate note argument Settle is ignored.

\section*{Examples}

Price a 5\% Fixed-Rate Note Using a Black-Karasinski Interest-Rate Tree
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the note.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.05;

```
Settle = '01-Jan-2005';

Maturity = '01-Jan-2006';
Use fixedbybk to compute the price of the note.
Price = fixedbybk(BKTree, CouponRate, Settle, Maturity)
Warning: Fixed rate notes are valued at Tree ValuationDate rather than Settle
Price =
103.5126
- "Pricing Using Interest-Rate Tree Models" on page 2-84

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bktree | bondbybk | capbybk | cfbybk | floatbybk | floorbybk | swapbybk \\ Introduced before R2006a
}

\section*{fixedbyhim}

Price fixed-rate note from Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}
[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity)
[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) [Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity, Name, Value)

\section*{Input Arguments}
\begin{tabular}{|l|l|}
\hline HJMTree & Forward-rate tree structure created by hjmtree. \\
\hline CouponRate & Decimal annual rate. \\
\hline Settle & \begin{tabular}{l} 
Settlement dates. Number of instruments (NINST-by-1) vector of \\
dates representing the settlement dates of the fixed-rate note.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity dates of the \\
fixed-rate note.
\end{tabular} \\
\hline
\end{tabular}

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Reset}

NINST-by-1 vector representing the frequency of payments per year.
Default: 1

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{Principal}

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

\section*{Options}

Derivatives pricing options structure created with derivset.

\section*{Default:}

\section*{EndMonthRule}

End-of-month rule. A NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.
Default: False

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by-1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{Description}
[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity) computes the price of a fixed-rate note from a HJM forward-rate tree.
[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a fixed-rate note from a HJM forward-rate tree using optional input asrguments.
[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity, Name, Value) computes the price of a price of a fixed-rate note from a HJM forward-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is an NINST-by- 1 vector of expected prices of the fixed-rate note at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PBush contains the clean prices.
PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every fixed-rate note is set to the ValuationDate of the HJM tree. The fixed-rate note argument Settle is ignored.

\section*{Examples}

\section*{Price a 4\% Fixed-Rate Note Using an HJM Forward-Rate Tree}

This example shows how to price a \(4 \%\) fixed-rate note using an HJM forward-rate tree by loading the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the note.
```

load deriv.mat
CouponRate = 0.04;
Settle = '01-Jan-2000';

```
```

Maturity = '01-Jan-2003';
Price = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity)
Price =

```
    98.7159
- "Computing Instrument Prices" on page 2-84

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2
```

See Also
bondbyhjm | capbyhjm| cfbyhjm | floatbyhjm| floorbyhjm| hjmtree |
swapbyhjm
Introduced before R2006a

```

\section*{fixedbyhw}

Price fixed-rate note from Hull-White interest-rate tree

\section*{Syntax}
[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle, Maturity)
[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) [Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle, Maturity, Name,Value)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline HWTree & Interest-rate tree structure created by hwtree. \\
\hline CouponRate & Decimal annual rate. \\
\hline Settle & \begin{tabular}{l} 
Settlement dates. NINST-by-1 vector of dates representing the \\
settlement dates of the fixed-rate note.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity dates of the \\
fixed-rate note.
\end{tabular} \\
\hline
\end{tabular}

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Reset}

NINST-by-1 vector representing the frequency of payments per year.

\section*{Default: 1}

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{Principal}

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

\section*{Options}

Derivatives pricing options structure created with derivset.

\section*{Default:}

\section*{EndMonthRule}

End-of-month rule. A NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.
Default: False

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{Description}
[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle, Maturity) computes the price of a fixed-rate note from a Hull-White tree.
[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a fixed-rate note from a Hull-White tree using optional input arguments.
[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle, Maturity, Name, Value) computes the price of a price of a fixed-rate note from a HullWhite tree with additional options specified by one or more Name, Value pair arguments.

Price is an NINST-by- 1 vector of expected prices of the fixed-rate note at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every fixed-rate note is set to the ValuationDate of the HW tree. The fixed-rate note argument Settle is ignored.

\section*{Examples}

Price a 5\% Fixed-Rate Note Using a Hull-White Interest-Rate Tree
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the note.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.05;

```
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use fixedbyhw to compute the price of the note.
Price = fixedbyhw(HWTree, CouponRate, Settle, Maturity)
Warning: Fixed rate notes are valued at Tree ValuationDate rather than Settle
Price =
103.5126
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bondbyhw | capbyhw | cfbyhw | floatbyhw | floorbyhw | hwtree | swapbyhw Introduced before R2006a
}

\section*{fixedbyzero}

Price fixed-rate note from set of zero curves

\section*{Syntax}
```

[Price, DirtyPrice, CFlowAmounts, CFlowDates] =
fixedbyzero(RateSpec, CouponRate, Settle, Maturity)
[Price, DirtyPrice, CFlowAmounts, CFlowDates] =
fixedbyzero(RateSpec, CouponRate, Settle, Maturity,
Reset, Basis, Principal, EndMonthRule)
[Price, DirtyPrice, CFlowAmounts, CFlowDates] =
fixedbyzero(RateSpec, CouponRate, Settle, Maturity,
Name, Value)

```

\section*{Description}
[Price, DirtyPrice, CFlowAmounts, CFlowDates] = fixedbyzero(RateSpec, CouponRate, Settle, Maturity) computes the price of a fixed-rate note from a set of zero curves. All inputs are either scalars or NINST-by- 1 vectors unless otherwise specified. Any date may be a serial date number or date character vector. An optional argument may be passed as an empty matrix [].
> [Price, DirtyPrice, CFlowAmounts, CFlowDates] = fixedbyzero(RateSpec, CouponRate, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) computes the price of a fixed-rate note from a set of zero curves using optional input arguments. All inputs are either scalars or NINST-by- 1 vectors unless otherwise specified. Any date may be a serial date number or date character vector. An optional argument may be passed as an empty matrix [ ].

[Price, DirtyPrice, CFlowAmounts, CFlowDates] = fixedbyzero(RateSpec, CouponRate, Settle, Maturity,
Name, Value) computes the price of a fixed-rate note from a set of zero curves with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{RateSpec}

Structure containing the properties of an interest-rate structure. See intenvset for information on creating RateSpec.

\section*{CouponRate}

Decimal annual rate.

\section*{Settle}

Settlement date. Settle must be either a scalar or NINST-by- 1 vector of serial date numbers or date character vectors of the same value which represent the settlement date for each bond. Settle must be earlier than Maturity.

\section*{Maturity}

Maturity date.

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Reset}

NINST-by-1 vector representing the frequency of payments per year.

\section*{Default: 1}

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual/ 360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{Principal}

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

\section*{EndMonthRule}

End-of-month rule. A NINST-by- 1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.

\section*{Default: False}

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

\section*{Default: actual}

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{Output Arguments}

\section*{Price}

A number of instruments (NINST) by number of curves (NUMCURVES) matrix of fixed-rate note prices. Each column arises from one of the zero curves.

\section*{DirtyPrice}

A NINST-by-NUMCURVES matrix of dirty bond price (clean + accrued interest). Each column arises from one of the zero curves.

\section*{CFlowAmounts}

A NINST-by-NUMCFS matrix of cash flows for each bond.

\section*{CFlowDates}

A NINST-by-NUMCFS matrix of payment dates for each bond.

\section*{Examples}

\section*{Price a 4\% Fixed-Rate Note Using a Set of Zero Curves}

This example shows how to price a \(4 \%\) fixed-rate note using a set of zero curves by loading the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the note.
```

load deriv.mat
CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Price = fixedbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)
Price =

```
    98.7159

\section*{Pricing a Fixed-Fixed Cross Currency Swap}

Assume that a financial institution has an existing swap with three years left to maturity where they are receiving \(5 \%\) per year in yen and paying \(8 \%\) per year in USD. The reset frequency for the swap is annual, the principals for the two legs are 1200 million yen and \(\$ 10\) million USD, and both term structures are flat.
```

Settle = datenum('15-Aug-2015');
Maturity = datenum('15-Aug-2018');
Reset = 1;
r_d = .09;

```
```

r_f = .04;
FixedRate_d = .08;
FixedRate_f = .05;
Principal_d = 10000000;
Principal_f = 1200000000;
SO = 1/110;

```

Construct term structures.
```

RateSpec_d = intenvset('StartDate',Settle, 'EndDate',Maturity, 'Rates',r_d,'Compounding'

```
RateSpec_f = intenvset('StartDate',Settle,'EndDate', Maturity,'Rates', r_f,'Compounding'

Use fixedbyzero:
B_d = fixedbyzero(RateSpec_d,FixedRate_d,Settle,Maturity,'Principal',Principal_d,'Rese B_f = fixedbyzero(RateSpec_f,FixedRate_f,Settle,Maturity,'Principal',Principal_f,'Rese

Compute swap price. Based on Hull (see References), a cross currency swap can be valued with the following formula V_swap = SO*B_f - B_d.

V_swap \(=\) S0*B_f - B_d

V_swap =
\(1.5430 e+06\)
- "Pricing Using Interest-Rate Term Structure" on page 2-57

\section*{More About}
- "Understanding the Interest-Rate Term Structure" on page 2-40
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Hull, J. Options, Futures, and Other Derivatives. Prentice-Hall, 2011.

\author{
See Also \\ bondbyzero | cfbyzero | floatbyzero | swapbyzero \\ Introduced before R2006a
}

\section*{floatbybdt}

Price floating-rate note from Black-Derman-Toy interest-rate tree

\section*{Syntax}
```

[Price, PriceTree] = floatbybdt(BDTTree, Spread,
Settle, Maturity)
[Price, PriceTree] = floatbybdt(BDTTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule)
[Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle,
Maturity,Name,Value)

```

\section*{Input Arguments}
\begin{tabular}{|l|l|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline Spread & \begin{tabular}{l} 
Number of instruments (NINST-by-1) vector of number of basis \\
points over the reference rate.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
Settlement dates. NINST-by-1 vector of dates representing the \\
settlement dates of the floating-rate note.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Note: The Settle date for every floating-rate note is set to the \\
ValuationDate of the BDT Tree. The floating-rate note argument \\
Settle is ignored.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity dates of the \\
floating-rate note.
\end{tabular} \\
\hline
\end{tabular}

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Reset}

NINST-by- 1 vector representing the frequency of payments per year.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Default: 1}

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- \(12=\) actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{Principal}

NINST-by-1 vector of notional principal amounts or NINST-by-1 cell array. For the latter case, each element of the cell array is a NumDates-by-2 matrix where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

\section*{Options}

Derivatives pricing options structure created with derivset.

\section*{Default:}

\section*{EndMonthRule}

End-of-month rule. NINST-by- 1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.
Default: false

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{CapRate}

NINST-by- 1 decimal annual rate or NINST-by- 1 cell array, where each element is a NumDates-by- 2 cell array, and the cell array first column is dates, and the second column is associated cap rates. The date indicates the last day that the cap rate is valid.

\section*{Default:}

\section*{FloorRate}

NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by- 2 cell array, and the cell array first column is dates, and the second column is associated floor rates. The date indicates the last day that the floor rate is valid.

\section*{Default:}

\section*{Description}
[Price, PriceTree] = floatbybdt(BDTTree, Spread,
Settle, Maturity) computes the price of a floating-rate note from a BDT tree.
[Price, PriceTree] = floatbybdt(BDTTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule) computes the price of a floating-rate note with optional inputs from a BDT tree.
[Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle,

Maturity, Name, Value) computes the price of a floating-rate note from a BDT tree with additional options specified by one or more Name, Value pair arguments.

Price is an NINST-by- 1 vector of expected prices of the floating-rate note at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the BDT tree. The floating-rate note argument Settle is ignored.

\section*{Examples}

\section*{Price a Floating-Rate Note Using a BDT Tree}

Price a 20 -basis point floating-rate note using a BDT interest-rate tree.
Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the note.
```

load deriv.mat;

```

Define the floating-rate note using the required arguments. Other arguments use defaults.
```

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

```

Use floatbybdt to compute the price of the note.
```

Price = floatbybdt(BDTTree, Spread, Settle, Maturity)

```
Price =

\section*{Price an Amortizing Floating-Rate Note}

Price an amortizing floating-rate note using the Principal input argument to define the amortization schedule.

Create the RateSpec.
```

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];

```
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = \{'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'\};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
    struct with fields:
```

 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [5×1 double]
 Rates: [5\times1 double]
 EndTimes: [5\times1 double]
 StartTimes: [5\times1 double]
 EndDates: [5\times1 double]
 StartDates: 734822
 ValuationDate: 734822
 Basis: 0
 EndMonthRule: 1
    ```

Create the floating-rate instrument using the following data:
```

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

```

Define the floating-rate note amortizing schedule.
```

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

```

Build the BDT tree and assume volatility is \(10 \%\).
```

MatDates = {'15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15.
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.10;
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))')
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);
Compute the price of the amortizing floating-rate note.

```
```

Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'Principal', Principal)

```
Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'Principal', Principal)
Price =
    100.3059
```


Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input argument to define the collar pricing.

Create the RateSpec.
Rates $=$ [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];

```
ValuationDate = '1-April-2012';
```

StartDates = ValuationDate;
EndDates = \{'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'\};
Compounding = 1;

Create the RateSpec.

```
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
```

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build the BDT tree and assume volatility is 5%.

```
MatDates = {'1-April-2013'; '1-April-2014';'1-April-2015';'1-April-2016';'1-April-2017
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.05;
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))')
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);
Create the floating rate note instrument.
```

```
Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = 10;
Principal = 100;
```

Compute the price of a collared floating-rate note.

```
CapStrike = {{'1-April-2013' 0.03; '1-April-2015' 0.055}};
FloorStrike = {{'1-April-2013' 0.025; '1-April-2015' 0.04}};
Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'CapRate',...
CapStrike, 'FloorRate', FloorStrike)
```

Price =
101.2414

Pricing a Floating-Rate Note When the Reset Dates Are Not Tree Level Dates

When using floatbybdt to price floating-rate notes, there are cases where the dates specified in the BDT tree TimeSpec are not aligned with the cash flow dates.

Price floating-rate notes using the following data:

```
ValuationDate = '01-Sep-2013';
Rates = [0.0235; 0.0239; 0.0311; 0.0323];
EndDates = {'01-Sep-2014'; '01-Sep-2015'; '01-Sep-2016';'01-Sep-2017'};
```

Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates',... ValuationDate, 'EndDates',EndDates, 'Rates', Rates,'Compounding', 1);

Build the BDT tree.

```
VolCurve = [.10; .11; .11; .12];
BDTVolatilitySpec = bdtvolspec(RateSpec.ValuationDate, EndDates,...
    VolCurve);
BDTTimeSpec = bdttimespec(RateSpec.ValuationDate, EndDates, 1);
BDTT = bdttree(BDTVolatilitySpec, RateSpec, BDTTimeSpec);
```

Compute the price of the floating-rate note using the following data:

```
Spread = 5;
Settle = 01-Sep-2013';
Maturity = '01-Dec-2015';
Reset = 2;
Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'Reset', Reset)
Warning: Not all cash flows are aligned with the tree. Result will be approximated.
> In floatengbybdt at 204
    In floatbybdt at }12
Error using floatengbybdt (line 299)
Instrument '1 ' has cash flow dates that span across tree nodes
Error in floatbybdt (line 123)
[Price, PriceTree, CFTree, TLPpal] = floatengbybdt(BDTTree, Spread, Settle, Maturity, OArgs{:});
```

This error indicates that it is not possible to determine the applicable rate used to calculate the payoff at the reset dates, given that the applicable rate needed cannot be calculated (the information was lost due to the recombination of the tree nodes). Note, if the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates. The simplest solution is to place the tree levels at the cash flow dates of the instrument, which is done by specifying BDTTimeSpec. It is also acceptable to have reset dates between tree levels, as long as there are reset dates on the tree levels.

To recover from this error, build a tree that lines up with the instrument.

```
Basis = intenvget(RateSpec, 'Basis');
EOM = intenvget(RateSpec, 'EndMonthRule');
resetDates = cfdates(ValuationDate, Maturity, Reset ,Basis, EOM);
BDTTimeSpec = bdttimespec(RateSpec.ValuationDate,resetDates,Reset);
BDTT = bdttree(BDTVolatilitySpec, RateSpec, BDTTimeSpec);
Price = floatbybdt(BDTT, Spread, RateSpec.ValuationDate, ...
    Maturity, 'Reset', Reset)
Price =
```

 100.1087
 - "Computing Instrument Prices" on page 2-84
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11

More About

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

```
See Also
bdttree | bondbybdt | capbybdt | cfbybdt | fixedbybdt | floorbybdt | swapbybdt
```

Introduced in R2012b

floarbybk

Price floating-rate note from Black-Karasinski interest-rate tree

Syntax

```
[Price, PriceTree] = floatbybk(BKTree, Spread,
Settle, Maturity)
[Price, PriceTree] = floatbybk(BKTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule)
[Price, PriceTree] = floatbybk(BKTree, Spread, Settle,
Maturity,Name,Value)
```


Input Arguments

| BKTree | Interest-rate tree structure created by bktree. |
| :--- | :--- |
| Spread | Number of instruments (NINST-by-1) vector of number of basis
 points over the reference rate. |
| Settle | Settlement dates. NINST-by-1 vector of dates representing the
 settlement dates of the floating-rate note. |
| | Note: The Settle date for every floating-rate note is set to the
 ValuationDate of the BK tree. The floating-rate note argument
 Settle is ignored. |
| Maturity | NINST-by-1 vector of dates representing the maturity dates of the
 floating-rate note. |

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

Reset

NINST-by- 1 vector representing the frequency of payments per year.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- $2=$ actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- $12=$ actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

Principal

NINST-by-1 vector of notional principal amounts or NINST-by-1 cell array. For the latter case, each element of the cell array is a NumDates-by-2 matrix where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

Default:

EndMonthRule

End-of-month rule. NINST-by- 1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

- $0=$ Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.
Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:

- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

CapRate

NINST-by- 1 decimal annual rate or NINST-by- 1 cell array, where each element is a NumDates-by-2 cell array, and the cell array first column is dates, and the second column is associated cap rates. The date indicates the last day that the cap rate is valid.

Default:

FloorRate

NINST-by- 1 decimal annual rate or NINST-by- 1 cell array, where each element is a NumDates-by-2 cell array, and the cell array first column is dates, and the second column is associated floor rates. The date indicates the last day that the floor rate is valid.

Default:

Description

[Price, PriceTree] = floatbybk(BKTree, Spread, Settle, Maturity) computes the price of a floating-rate note from a Black-Karasinski tree.
[Price, PriceTree] = floatbybk(BKTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a floating-rate note with optional inputs from a Black-Karasinski tree.
[Price, PriceTree] = floatbybk(BKTree, Spread, Settle, Maturity, Name, Value) computes the price of a floating-rate note from a BlackKarasinski tree with additional options specified by one or more Name, Value pair arguments.

Price is an NINST-by- 1 vector of expected prices of the floating-rate note at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the BK tree. The floating-rate note argument Settle is ignored.

Examples

Price a Floating-Rate Note Using a Black-Karasinski Tree

Price a 20 -basis point floating-rate note using a Black-Karasinski interest-rate tree.
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use defaults.

```
Spread = 20;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';
```

Use floatbybk to compute the price of the note.
Price = floatbybk(BKTree, Spread, Settle, Maturity)
Warning: Floating range notes are valued at Tree ValuationDate rather than

Settle.

Price =
100.3825

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the amortization schedule.

Create the RateSpec.

```
Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
    struct with fields:
            FinObj: 'RateSpec'
        Compounding: 1
            Disc: [5\times1 double]
            Rates: [5\times1 double]
            EndTimes: [5\times1 double]
            StartTimes: [5\times1 double]
            EndDates: [5\times1 double]
        StartDates: 734822
        ValuationDate: 734822
            Basis: 0
            EndMonthRule: 1
```

Create the floating-rate instrument using the following data:

```
Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;
```

Define the floating-rate note amortizing schedule.

```
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};
```

Build the BK tree and assume the volatility is 10%.

```
VolDates = ['15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15.
VolCurve = 0.1;
AlphaDates = '15-Nov-2017';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);
```

Compute the price of the amortizing floating-rate note.

```
Price = floatbybk(BKT, Spread, Settle, Maturity, 'Principal', Principal)
Price =
```

 100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input argument to define the collar pricing.

Price a portfolio of collared floating-rate notes using the following data:

```
Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
StartDates = ValuationDate;
EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;
Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
```

Build the BK tree and assume the volatility to be 5%.

```
VolDates = ['1-April-2013';'1-April-2014';'1-April-2015';'1-April-2016';...
'1-April-2017';'1-April-2018'];
VolCurve = 0.05;
AlphaDates = '15-Nov-2018';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);
```

Create the floating-rate note instrument.

```
Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = [15;10];
Principal = 100;
```

Compute the price of the two vanilla floaters.

```
Price = floatbybk(BKT, Spread, Settle, Maturity)
```

Price =
100.5519
100.3680

Compute the price of the collared floating-rate notes.

```
CapStrike = {{'1-April-2013' 0.045; '1-April-2014' 0.05;...
'1-April-2015' 0.06}; 0.06};
FloorStrike = {{'1-April-2013' 0.035; '1-April-2014' 0.04;...
'1-April-2015' 0.05}; 0.03};
PriceCollared = floatbybk(BKT, Spread, Settle, Maturity,...
'CapRate', CapStrike,'FloorRate', FloorStrike)
PriceCollared =
```

 102.8537

Pricing a Floating-Rate Note When the Reset Dates Are Not Tree Level Dates

When using floatbybk to price floating-rate notes, there are cases where the dates specified in the BK tree Time Specs are not aligned with the cash flow dates.

Price floating-rate notes using the following data:

```
ValuationDate = '13-Sep-2013';
ForwardRatesVector = [ 0.0001; 0.0001; 0.0010; 0.0015];
EndDatesVector = ['13-Dec-2013'; '14-Mar-2014'; '13-Jun-2014'; '13-Sep-2014'];
```

Create the RateSpec.

```
RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',...
ValuationDate,'EndDates',EndDatesVector,'Rates',ForwardRatesVector,'Compounding', 1);
```

Build the BK tree.

```
Volcurve = 0.1;
Alpha = 0.01;
BKVolatilitySpec = bkvolspec(RateSpec.ValuationDate, ...
    EndDatesVector, Volcurve,...
    EndDatesVector, Alpha);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, EndDatesVector, 1);
BKT = bktree(BKVolatilitySpec, RateSpec, BKTimeSpec);
```

Create the floating-rate note instrument using the following data;

```
Spread = 0;
Maturity = 13-Jun-2014;
reset = 4;
```

Compute the price of the floating-rate note.

```
Price = floatbybk(BKT, Spread, RateSpec.ValuationDate,...
Maturity, 'Reset', reset)
Warning: Not all cash flows are aligned with the tree. Result will be approximated.
> In floatengbytrintree at 214
    In floatbybk at 136
Error using floatengbytrintree (line 319)
Instrument '1 ' has cash flow dates that span across tree nodes
Error in floatbybk (line 136)
[Price, PriceTree, CFTree] = floatengbytrintree(BKTree, Spread, Settle, Maturity, OArgs{:});
```

This error indicates that it is not possible to determine the applicable rate used to calculate the payoff at the reset dates, given that the applicable rate needed cannot be calculated (the information was lost due to the recombination of the tree nodes). Note,
if the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates. The simplest solution is to place the tree levels at the cash flow dates of the instrument, which is done by specifying BKTimeSpec. It is also acceptable to have reset dates between tree levels, as long as there are reset dates on the tree levels.

To recover from this error, build a tree that lines up with the instrument.

```
Basis = intenvget(RateSpec, 'Basis');
EOM = intenvget(RateSpec, 'EndMonthRule');
resetDates = cfdates(ValuationDate, Maturity,reset,Basis,EOM);
BKTimeSpec = bktimespec(RateSpec.ValuationDate,resetDates,reset);
BKT = bktree(BKVolatilitySpec, RateSpec, BKTimeSpec);
Price = floatbybk(BKT, Spread, RateSpec.ValuationDate, ...
        Maturity, 'Reset', reset)
Price =
```

 100.0004
 - "Pricing Using Interest-Rate Tree Models" on page 2-84

More About

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

See Also

bktree | bondbybk | capbybk | cfbybk | fixedbybk | floorbybk | swapbybk
Introduced in R2012b

floatbyhim

Price floating-rate note from Heath-Jarrow-Morton interest-rate tree

Syntax

```
[Price, PriceTree] = floatbybk(HJMTree, Spread,
Settle, Maturity)
[Price, PriceTree] = floatbybk(HJMTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule)
[Price, PriceTree] = floatbybk(HJMTree, Spread, Settle,
Maturity,Name,Value)
```


Input Arguments

| HJMTree | Forward-rate tree structure created by hjmtree. |
| :--- | :--- |
| Spread | Number of instruments (NINST-by-1) vector of number of basis
 points over the reference rate. |
| Settle | Settlement dates. NINST-by-1 vector of dates representing the
 settlement dates of the floating-rate note. |
| | Note: The Settle date for every floating-rate note is set to the
 ValuationDate of the HJM tree. The floating-rate note argument
 Settle is ignored. |
| Maturity | NINST-by-1 vector of dates representing the maturity dates of the
 floating-rate note. |

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

Reset

NINST-by-1 vector representing the frequency of payments per year.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- $3=$ actual $/ 365$
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

Principal

NINST-by-1 vector of notional principal amounts or NINST-by-1 cell array. For the latter case, each element of the cell array is a NumDates-by-2 matrix where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

Default:

EndMonthRule

End-of-month rule. NINST-by- 1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

- $0=$ Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:

- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by- 1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

CapRate

NINST-by- 1 decimal annual rate or NINST-by- 1 cell array, where each element is a NumDates-by- 2 cell array, and the cell array first column is dates, and the second column is associated cap rates. The date indicates the last day that the cap rate is valid.

Default:

FloorRate

NINST-by- 1 decimal annual rate or NINST-by- 1 cell array, where each element is a NumDates-by- 2 cell array, and the cell array first column is dates, and the second column is associated floor rates. The date indicates the last day that the floor rate is valid.

Default:

Description

[Price, PriceTree] = floatbybk(HJMTree, Spread, Settle, Maturity) computes the price of a floating-rate note from an HJM tree.
[Price, PriceTree] = floatbybk(HJMTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a floating-rate note with optional inputs from an HJM tree.
[Price, PriceTree] = floatbybk(HJMTree, Spread, Settle, Maturity, Name, Value) computes the price of a floating-rate note from an HJM tree with additional options specified by one or more Name, Value pair arguments.

Price is an NINST-by- 1 vector of expected prices of the floating-rate note at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the HJM tree. The floating-rate note argument Settle is ignored.

Examples

Price a Floating-Rate Note Using an HJM Tree

Price a 20 -basis point floating-rate note using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and interest-rate information needed to price the note.

```
load deriv.mat;
```

Define the floating-rate note using the required arguments. Other arguments use defaults.

```
Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
```

Use floatbyhjm to compute the price of the note.

```
Price = floatbyhjm(HJMTree, Spread, Settle, Maturity)
```

Price =
100.5529

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the amortization schedule.

Create the RateSpec.
Rates $=[0.03583 ; 0.042147 ; 0.047345 ; 0.052707 ; 0.054302] ;$

```
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
    struct with fields:
            FinObj: 'RateSpec'
        Compounding: 1
            Disc: [5\times1 double]
            Rates: [5\times1 double]
            EndTimes: [5\times1 double]
        StartTimes: [5\times1 double]
        EndDates: [5\times1 double]
        StartDates: 734822
        ValuationDate: 734822
            Basis: 0
            EndMonthRule: 1
```

Create the floating-rate instrument using the following data:

```
Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;
```

Define the floating-rate note amortizing schedule.

```
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};
```

Build the HJM tree using the following data:

```
MatDates = {'15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);
```

Compute the price of the amortizing floating-rate note.

```
Price = floatbyhjm(HJMT, Spread, Settle, Maturity, 'Principal', Principal)
```

Price =
100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input argument to define the collar pricing.

Price a portfolio of collared floating-rate notes using the following data:

```
Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
StartDates = ValuationDate;
EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;
```

Create the RateSpec.

```
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
```

Build the HJM tree with the following data:

```
MatDates = {'1-April-2013'; '1-April-2014';'1-April-2015';...
1-April-2016';'1-April-2017';'1-April-2018'};
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);
```

Create the floating-rate note instrument.

```
Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = 10;
Principal = 100;
```

Compute the price of two capped collared floating-rate notes.

```
CapStrike = [0.04;0.055];
PriceCapped = floatbyhjm(HJMT, Spread, Settle, Maturity,...
'CapRate', CapStrike)
PriceCapped =
```

 98.9986
 100.2051
 Compute the price of two collared floating-rate notes.

```
FloorStrike = [0.035;0.040];
PriceCollared = floatbyhjm(HJMT, Spread, Settle, Maturity,...
'CapRate', CapStrike, 'FloorRate', FloorStrike)
PriceCollared =
```

 99.9246
 102.2321
 - "Computing Instrument Prices" on page 2-84

More About

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

```
See Also
bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floorbyhjm| hjmtree |
swapbyhjm
Introduced in R2012b
```


floatbyhw

Price floating-rate note from Hull-White interest-rate tree

Syntax

```
[Price, PriceTree] = floatbyhw(HWTree, Spread,
Settle, Maturity)
[Price, PriceTree] = floatbyhw(HWTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule)
[Price, PriceTree] = floatbyhw(HWTree, Spread, Settle,
Maturity,Name,Value)
```


Input Arguments

| HWTree | Interest-rate tree structure created by hwtree. |
| :--- | :--- |
| Spread | Number of instruments (NINST-by-1) vector of number of basis
 points over the reference rate. |
| Settle | Settlement dates. NINST-by-1 vector of dates representing the
 settlement dates of the floating-rate note. |
| | Note: The Settle date for every floating-rate note is set to the
 ValuationDate of the HW tree. The floating-rate note argument
 Settle is ignored. |
| Maturity | NINST-by-1 vector of dates representing the maturity dates of the
 floating-rate note. |

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

Reset

NINST-by-1 vector representing the frequency of payments per year.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- $2=$ actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- $12=$ actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

Principal

NINST-by-1 vector of notional principal amounts or NINST-by-1 cell array. For the latter case, each element of the cell array is a NumDates-by-2 matrix where the first column is
dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

Default:

EndMonthRule

End-of-month rule. NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

- $0=$ Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:

- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

CapRate

NINST-by- 1 decimal annual rate or NINST-by- 1 cell array, where each element is a NumDates-by- 2 cell array, and the cell array first column is dates, and the second column is associated cap rates. The date indicates the last day that the cap rate is valid.

Default:

FloorRate

NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by- 2 cell array, and the cell array first column is dates, and the second column is associated floor rates. The date indicates the last day that the floor rate is valid.

Default:

Description

[Price, PriceTree] = floatbyhw(HWTree, Spread,
Settle, Maturity) computes the price of a floating-rate note from a Hull-White tree.
[Price, PriceTree] = floatbyhw(HWTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a floating-rate note with optional inputs from a Hull-White tree.
[Price, PriceTree] = floatbyhw(HWTree, Spread, Settle,

Maturity, Name, Value) computes the price of a floating-rate note from a Hull-White tree with additional options specified by one or more Name, Value pair arguments.

Price is an NINST-by- 1 vector of expected prices of the floating-rate note at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the HW tree. The floating-rate note argument Settle is ignored.

Examples

Price a Floating-Rate Note Using a Hull-White Tree

Price a 20 -basis point floating-rate note using a Hull-White interest-rate tree.
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the note.

```
load deriv.mat;
```

Define the floating-rate note using the required arguments. Other arguments use defaults.

```
Spread = 20;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';
```

Use floatbyhw to compute the price of the note.
Price = floatbyhw(HWTree, Spread, Settle, Maturity)
Warning: Floating range notes are valued at Tree ValuationDate rather than Settle.

Price =

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the amortization schedule.

Create the RateSpec.

```
Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
```

ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = \{'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'\};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:

```
            FinObj: 'RateSpec'
        Compounding: 1
            Disc: [5×1 double]
            Rates: [5\times1 double]
            EndTimes: [5\times1 double]
        StartTimes: [5\times1 double]
            EndDates: [5\times1 double]
            StartDates: 734822
        ValuationDate: 734822
            Basis: 0
            EndMonthRule: 1
```

Create the floating-rate instrument using the following data:

```
Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;
```

Define the floating-rate note amortizing schedule.

```
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};
```

Build the HW tree and assume the volatility is 10%.

```
VolDates = ['15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15.
VolCurve = 0.1;
AlphaDates = '15-Nov-2017';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);
```

Compute the price of the amortizing floating-rate note.

```
Price = floatbyhw(HWT, Spread, Settle, Maturity, 'Principal', Principal)
```

Price =
100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input argument to define the collar pricing.

Price two collared floating-rate notes using the following data:

```
Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
StartDates = ValuationDate;
EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;
Create the RateSpec.
```

```
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
```

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

```

Build the HW tree and assume the volatility to be \(5 \%\).
```

VolDates = ['1-April-2013';'1-April-2014';'1-April-2015';...
'1-April-2016';'1-April-2017';'1-April-2018'];
VolCurve = 0.05;

```
```

AlphaDates = '15-Nov-2018';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

```

Create the floating-rate note instrument.
```

Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = 10;
Principal = 100;

```

Compute the price of a vanilla floater.
```

Price = floatbyhw(HWT, Spread, Settle, Maturity)

```
Price \(=\)
    100.3680

Compute the price of the collared floating-rate notes.
```

CapStrike = {{'1-April-2014' 0.045; '1-April-2015' 0.05;...
'1-April-2016' 0.06}; 0.06};
FloorStrike = {{'1-April-2014' 0.035; '1-April-2015' 0.04;...
'1-April-2016' 0.05}; 0.03};
PriceCollared = floatbyhw(HWT, Spread, Settle, Maturity,....
'CapRate', CapStrike,'FloorRate', FloorStrike)

```
PriceCollared =
    102.0458
    100.9299

\section*{Pricing a Floating-Rate Note When the Reset Dates Are Not Tree Level Dates}

When using floatbyhw to price floating-rate notes, there are cases where the dates specified in the HW tree TimeSpec are not aligned with the cash flow dates.

Price floating-rate notes using the following data:
```

ValuationDate = '01-Sep-2013';
Rates = [0.0001; 0.0001; 0.0010; 0.0015];
EndDates = ['01-Dec-2013'; '01-Mar-2014'; '01-Jun-2014'; '01-Sep-2014'];
Create the RateSpec.

```
```

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',...

```
RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',...
ValuationDate,'EndDates',EndDates,'Rates',Rates,'Compounding', 1);
```

ValuationDate,'EndDates',EndDates,'Rates',Rates,'Compounding', 1);

```

Build the HW tree.
```

Volcurve = 0.1;
Alpha = 0.01;
HWVolatilitySpec = hwvolspec(RateSpec.ValuationDate, ...
EndDates, Volcurve,...
EndDates, Alpha);

```
HWTimeSpec \(=\) hwtimespec (RateSpec.ValuationDate, EndDates, 1);
HWT = hwtree(HWVolatilitySpec, RateSpec, HWTimeSpec);

Compute the price of the floating-rate note using the following data.
```

Spread = 10;
Settle = '01-Sep-2013';
Maturity = '01-Jun-2014';
Reset = 2;
Price = floatbyhw(HWT, Spread, Settle, Maturity, 'Reset', Reset)
Error using floatengbytrintree (line 318)
Instrument '1 ' has cash flow dates that span across tree nodes.
Error in floatbyhw (line 136)
[Price, PriceTree, CFTree] = floatengbytrintree(HWTree, Spread, Settle, Maturity, OArgs{:});

```

This error indicates that it is not possible to determine the applicable rate used to calculate the payoff at the reset dates, given that the applicable rate needed cannot be calculated (the information was lost due to the recombination of the tree nodes). Note, if the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates. The simplest solution is to place the tree levels at the cash flow dates of the instrument, which is done by specifying HWTimeSpec. It is also acceptable to have reset dates between tree levels, as long as there are reset dates on the tree levels.

To recover from this error, build a tree that lines up with the instrument.
```

Basis = intenvget(RateSpec, 'Basis');
EOM = intenvget(RateSpec, 'EndMonthRule');

```
```

resetDates = cfdates(ValuationDate, Maturity, Reset, Basis, EOM);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate,resetDates, Reset);
HWT = hwtree(HWVolatilitySpec, RateSpec, HWTimeSpec);
Price = floatbyhw(HWT, Spread, RateSpec.ValuationDate, ...
Maturity, 'Reset', Reset)
Price =
100.0748

```
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2
```

See Also
bondbyhw | capbyhw | cfbyhw | fixedbyhw | floorbyhw | hwtree | swapbyhw

```
Introduced in R2012b

\section*{floatbyzero}

Price floating-rate note from set of zero curves

\section*{Syntax}
```

[Price,DirtyPrice,OutputCashFlows,CFlowDates] =
floatbyzero(RateSpec,Spread,Settle,Maturity)
[Price,DirtyPrice,OutputCashFlows,CFlowDates] =
floatbyzero(RateSpec,Spread,Settle,Maturity,
Reset,Basis,Principal,EndMonthRule)
[Price,DirtyPrice,OutputCashFlows,CFlowDates] =
floatbyzero(RateSpec,Spread,Settle,Maturity,Name,Value)

```

\section*{Description}
[Price,DirtyPrice,OutputCashFlows,CFlowDates] = floatbyzero(RateSpec,Spread, Settle, Maturity) computes the price of a floating-rate note from a set of zero curves.
[Price,DirtyPrice,OutputCashFlows,CFlowDates] = floatbyzero(RateSpec,Spread,Settle, Maturity, Reset, Basis, Principal, EndMonthRule) computes the price of a floating-rate note from a set of zero curves using optional input arguments.
[Price,DirtyPrice,OutputCashFlows,CFlowDates] = floatbyzero(RateSpec,Spread, Settle, Maturity, Name, Value) computes the price of a floating-rate note from a set of zero curves with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{RateSpec}

Structure containing the properties of an interest-rate structure. See intenvset for information on creating RateSpec.

\section*{Spread}

Number of basis points over the reference rate.

\section*{Settle}

Settlement date. Settle must be either a scalar or NINST-by- 1 vector of serial date numbers or date character vectors of the same value which represent the settlement date for each bond. Settle must be earlier than Maturity.

\section*{Maturity}

Maturity date.

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{Reset}

NINST-by- 1 vector representing the frequency of payments per year.

\section*{Default: 1}

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual \(/ 360\)
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{Principal}

NINST-by-1 vector of notional principal amounts or NINST-by-1 cell array. For the latter case, each element of the cell array is a NumDates-by-2 matrix where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Default: 100

\section*{EndMonthRule}

End-of-month rule. NINST-by- 1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- \(1=\) Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by- 1 of logicals.
Default: false

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by- 1 cell array with possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{LatestFloatingRate}

Rate for the next floating payment set at the last reset date. NINST-by-1 of scalars.
Default: If no LatestFloatingRate is specified, the floating rate at the previous reset date is computed from the RateSpec.

\section*{ProjectionCurve}

The rate curve to be used in generating floating cash flows of the floater instruments. This structure must be created using intenvset. The ProjectionCurve can be specified as either a forward or a zero curve.

Default: If no ProjectionCurve is specified, the RateSpec is used both for discounting and generating floating cash flows for the floater instrument.

\section*{Output Arguments}

\section*{Price}

Number of instruments (NINST) by number of curves (NUMCURVES) matrix of floating-rate note prices. Each column arises from one of the zero curves.

\section*{DirtyPrice}

NINST-by-NUMCURVES matrix of dirty bond price (clean + accrued interest). Each column arises from one of the zero curves.

\section*{OutputCashFlows}

NINST-by-NUMCFS matrix of cash flows for each bond.

Note: If there is more than one curve specified in the RateSpec input, then the first NCURVES rows correspond to the first bond, the second NCURVES rows correspond to the second bond, and so on.

\section*{CFlowDates}

NINST-by-NUMCFS matrix of payment dates for each bond.

\section*{Examples}

\section*{Price a Floating-Rate Note Using a Set of Zero Curves}

Price a 20 -basis point floating-rate note using a set of zero curves.
Load deriv.mat, which provides ZeroRateSpec, the interest-rate term structure, needed to price the bond.
```

load deriv.mat;

```

Define the floating-rate note using the required arguments. Other arguments use defaults.
```

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

```

Use floatbyzero to compute the price of the note.
Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)

Price =

\section*{Price an Amortizing Floating-Rate Note}

Price an amortizing floating-rate note using the Principal input argument to define the amortization schedule.

Create the RateSpec.
```

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:

```
\begin{tabular}{rl} 
FinObj: & 'RateSpec' \\
Compounding: & 1 \\
Disc: & {\([5 \times 1\) double \(]\)} \\
Rates: & {\([5 \times 1\) double \(]\)} \\
EndTimes: \([5 \times 1\) double \(]\) \\
StartTimes: \([5 \times 1\) double \(]\) \\
EndDates: \([5 \times 1\) double \(]\) \\
StartDates: 734822 \\
ValuationDate: & 734822 \\
Basis: & 0 \\
EndMonthRule : 1
\end{tabular}

Create the floating-rate instrument using the following data:
```

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

```

Define the floating-rate note amortizing schedule.
```

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

```

Compute the price of the amortizing floating-rate note.
```

Price = floatbyzero(RateSpec, Spread, Settle, Maturity, 'Principal', Principal)

```

Price =
100.3059

\section*{Specify the Rate at the Instrument's Starting Date When It Cannot Be Obtained from the RateSpec}

If Settle is not on a reset date of a floating-rate note, floatbyzero attempts to obtain the latest floating rate before Settle from RateSpec or the LatestFloatingRate parameter. When the reset date for this rate is out of the range of RateSpec (and LatestFloatingRate is not specified), floatbyzero fails to obtain the rate for that date and generates an error. This example shows how to use the LatestFloatingRate input parameter to avoid the error.

Create the error condition when a floating-rate instrument's StartDate cannot be determined from the RateSpec.
```

load deriv.mat;
Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Dec-2003';
Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)
Error using floatbyzero (line 256)
The rate at the instrument starting date cannot be obtained from RateSpec.
Its reset date (01-Dec-1999) is out of the range of dates contained in RateSpec.
This rate is required to calculate cash flows at the instrument starting date.
Consider specifying this rate with the 'LatestFloatingRate' input parameter.

```

Here, the reset date for the rate at Settle was 01-Dec-1999, which was earlier than the valuation date of ZeroRateSpec (01-Jan-2000). This error can be avoided by specifying the rate at the instrument's starting date using the LatestFloatingRate name-value pair argument.

Define LatestFloatingRate and calculate the floating-rate price.
```

Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity, 'LatestFloatingRate', 0.03)
Price =

```

\section*{Price a Floating-Rate Note Using a Different Curve to Generate Floating Cash Flows}

Define the OIS and Libor rates.
```

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [. 0018 .0019 .0021 .0023 .0031 .006 .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .011 .016 .022 . 026 . 030 .0348]';
Plot the dual curves.
figure,plot(CurveDates,OISRates,'r');hold on;plot(CurveDates,LiborRates,'b')
datetick
legend({'OIS Curve', 'Libor Curve'})

```


Create an associated RateSpec for the OIS and Libor curves.
OISCurve = intenvset('Rates',OISRates,'StartDate', Settle,'EndDates',CurveDates); LiborCurve = intenvset('Rates', LiborRates,'StartDate',Settle,'EndDates',CurveDates);

Define the floating-rate note.
```

Maturity = datenum('15-Mar-2018'); % Five year swap
FloatSpread = 0;
FixedRate = .025;
SwapRates = [FixedRate FloatSpread];

```

Compute the price for the floating-rate note. The LiborCurve term structure will be used to generate the floating cash flows of the floater instrument. The OISCurve term structure will be used for discounting the cash flows.
```

floatbyzero(OISCurve,0,Settle,Maturity,'ProjectionCurve',LiborCurve)

```
ans =
102.4214

Some instruments require using different interest-rate curves for generating the floating cash flows and discounting. This is when the ProjectionCurve parameter is useful. When you provide both RateSpec and ProjectionCurve, floatbyzero uses the RateSpec for the purpose of discounting and it uses the ProjectionCurve for generating the floating cash flows.
- "Pricing Using Interest-Rate Term Structure" on page 2-57

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bondbyzero | cfbyzero | fixedbyzero | intenvset | swapbyzero
Introduced before R2006a

\section*{floorbybdt}

Price floor instrument from Black-Derman-Toy interest-rate tree

\section*{Syntax}
[Price, PriceTree] = floorbybdt(BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline Strike & Number of instruments (NINST-by-1) vector of rates at which the floor is exercised. \\
\hline Settle & Settlement date. NINST-by-1 vector of dates representing the settlement dates of the floor. The Settle date for every floor is set to the ValuationDate of the BDT tree. The floor argument Settle is ignored. \\
\hline Maturity & NINST-by- 1 vector of dates representing the maturity dates of the floor. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 of notional principal amounts or NINST-by- 1 cell array where each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = floorbybdt(BDTTree, Strike, Settlement, Maturity, Reset, Basis, Principal, Options) computes the price of a floor instrument from a BDT interest-rate tree.

Price is an NINST-by- 1 vector of the expected prices of the floor at time 0 .
PriceTree is the tree structure with values of the floor at each node.

Note: Use the optional name-value pair argument, Principal, to pass a schedule to compute price for an amortizing floor.

\section*{Examples}

Price a \(\mathbf{1 0 \%}\) Floor Instrument Using a BDT Interest-Rate Tree
Load the file deriv.mat, which provides BDTTree. BDTTree contains the time and interest-rate information needed to price the floor instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use floorbybdt to compute the price of the floor instrument.
```

Price = floorbybdt(BDTTree, Strike, Settle, Maturity)

```
Price =
    0.2428

\section*{Price a 10\% Floor Instrument Using a Newly Created BDT Interest-Rate Tree}

First set the required arguments for the three needed specifications.
```

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

```

Create the specifications.
```

RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

```

Create the BDT tree from the specifications.
```

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

```
BDTTree =
    struct with fields:
```

 FinObj: 'BDTFwdTree'
 VolSpec: [1×1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1\times1 struct]
tObs: [00 1 2 2 3 4]
dObs: [730486 730852 731217 731582 731947]
TFwd: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [4]}
CFlowT: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [5]}
FwdTree: {1\times5 cell}

```

Set the floor arguments. Remaining arguments will use defaults.
```

FloorStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002';
FloorReset = 1;

```

Use floorbybdt to find the price of the floor instrument.
```

Price= floorbybdt(BDTTree, FloorStrike, Settlement, Maturity,...

```
FloorReset)
Price =
    0.0863

\section*{Compute the Price of an Amortizing Floor Using the BDT Model}

Define the RateSpec.
```

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

```
RateSpec =
```

struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [5×1 double]
Rates: [5\times1 double]
EndTimes: [5\times1 double]
StartTimes: [5\times1 double]
EndDates: [5\times1 double]
StartDates: 734822
ValuationDate: 734822
Basis: 0
EndMonthRule: 1

```

Define the floor instrument.
```

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = 0.039;
Reset = 1;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

```

Build the BDT Tree.
```

BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
Volatility = 0.10;
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility*ones(1,length(EndDates))')
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

```
BDTTree =
struct with fields:
```

 FinObj: 'BDTFwdTree
 VolSpec: [1\times1 struct]
 TimeSpec: [1×1 struct]
 RateSpec: [1\times1 struct]
 tObs: [0 0 1 2 3 4 4]
 dObs: [734822 735188 735553 735918 736283]
 TFwd: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [4]}
 CFlowT: {[5\times1 double] [4\times1 double] [3\times1 double] [2\times1 double] [5]}
 FwdTree: {1\times5 cell}

```

Price the amortizing floor.
Basis = 0;
Price = floorbybdt(BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal)

Price =
0.3060
- "Computing Instrument Prices" on page 2-84
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bdttree | capbybdt | cfbybdt | swapbybdt \\ Introduced before R2006a
}

\section*{floorbybk}

Price floor instrument from Black-Karasinski interest-rate tree

\section*{Syntax}
[Price, PriceTree] = floorbybk(BKTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline BKTree & Interest-rate tree structure created by bktree. \\
\hline Strike & Number of instruments (NINST-by-1) vector of rates at which the floor is exercised. \\
\hline Settle & Settlement date. NINST-by-1 vector of dates representing the settlement dates of the floor. The Settle date for every floor is set to the ValuationDate of the BK tree. The floor argument Settle is ignored. \\
\hline Maturity & NINST-by- 1 vector of dates representing the maturity dates of the floor. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual \(/ 360\) \\
- 3 = actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 9 = actual/360 (ICMA) \\
- \(10=\mathrm{actual} / 365\) (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = floorbybk(BKTree, Strike, Settlement, Maturity, Reset, Basis, Principal, Options) computes the price of a floor instrument from a Black-Karasinski tree.

Price is an NINST-by- 1 vector of the expected prices of the floor at time 0.
PriceTree is the tree structure with values of the floor at each node.

Note: Use the optional name-value pair argument, Principal, to pass a schedule to compute price for an amortizing floor.

\section*{Examples}

Price a 3\% Floor Instrument Using a Black-Karasinski Interest-Rate Tree
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest rate information needed to price the floor instrument.
load deriv.mat;

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

```

Use floorbybk to compute the price of the floor instrument.
Price = floorbybk(BKTree, Strike, Settle, Maturity)

Price =
0.2061

\section*{Compute the Price of an Amortizing and Vanilla Floors Using the BK Model}

Load deriv.mat to specify the BKTree and then define the floor instrument.
```

load deriv.mat;

```
Settle = '01-Jan-2004';
Maturity = '01-Jan-2008';
Strike = 0.045;
Reset = 1;
Principal =\{\{'01-Jan-2005' 100;'01-Jan-2006' 60;'01-Jan-2007' 30;'01-Jan-2008' 30\};...
    100\};

Price the amortizing and vanilla floors.
Basis = 1;
Price = floorbybk(BKTree, Strike, Settle, Maturity, Reset, Basis, Principal)

Price =
2.2000
2.5564
- "Pricing Using Interest-Rate Tree Models" on page 2-84

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bktree | capbybk | cfbybk | swapbybk
Introduced before R2006a

\section*{floorbyblk}

Price floors using Black option pricing model

\section*{Syntax}
[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle, Maturity, Volatility)
[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle, Maturity, Volatility, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded rate term structure. For \\
more information, see intenvset.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
NINST-by-1 vector of rates at which the floor is exercised, as a \\
decimal number.
\end{tabular} \\
\hline Settle & Scalar representing the settle date of the floor. \\
\hline Maturity & Scalar representing the maturity date of the floor. \\
\hline Volatility & \begin{tabular}{l} 
NINST-by-1 vector of volatilities. The Volatility input is not \\
intended for volatility surfaces or cubes. If you specify a matrix for \\
the Volatility input, floorbyblk will internally convert it into \\
a vector. floorbyblk assumes that the volatilities specified in the \\
Volatility input are flat volatilities, which are applied equally to \\
each of the floorlets.
\end{tabular} \\
\hline Reset & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the frequency of \\
payments per year. Default is 1.
\end{tabular} \\
\hline Principal & \begin{tabular}{l} 
(Optional) NINST-by-1 of notional principal amounts or NINST- \\
by-1 cell array where each element is a NumDates-by-2 cell array \\
where the first column is dates and the second column is associated \\
principal amount. The date indicates the last day that the principal \\
value is valid. Default is 100.
\end{tabular} \\
\hline Basis & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the basis used when \\
annualizing the input forward rate.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 0 = actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- \(3=\) actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline ValuationDate & (Optional) Scalar representing the observation date of the investment horizons. The default is the Settle date. \\
\hline ProjectionCurv & (Optional) The rate curve to be used in generating the future forward rates. This structure must be created using intenvset. Use this optional input if the forward curve is different from the discount curve. If ProjectionCurve is not specified, then RateSpec is used both for discounting cash flows and projecting future forward rates. \\
\hline
\end{tabular}

Note: All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. You can specify parameter name/value pairs in any order. Names are case-insensitive and partial matches are allowed provided no ambiguities exist.

\section*{Description}
[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle,

Maturity, Volatility) to price floors using the Black option pricing model.
[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle, Maturity, Volatility, 'Name1', Value1...) to price floors using the Black option pricing model with optional name-value pair arguments.

The outputsfloorbyblk for are:
- FloorPrice - NINST-by-1 expected prices of the floor.
- Floorlets - NINST-by-NCF array of floorlets, padded with NaNs.

Note: Use the optional name-value pair argument, Principal, to pass a schedule to compute price for an amortizing floor.

\section*{Examples}

\section*{Price a Floor Using the Black Option Pricing Model}

This example shows how to price a floor using the Black option pricing model. Consider an investor who gets into a contract that floors the interest rate on a \(\$ 100,000\) loan at \(6 \%\) quarterly compounded for 3 months, starting on January 1, 2009. Assuming that on January 1,2008 the zero rate is \(6.9394 \%\) continuously compounded and the volatility is \(20 \%\), use this data to compute the floor price.
```

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.069394;
Compounding = -1;
Basis = 1;
% calculate the RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);
Settle = 'Jan-01-2009'; % floor starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
FloorRate = 0.06;
FloorReset = 4;

```
```

Principal=100000;
FloorPrice = floorbyblk(RateSpec, FloorRate, Settle, Maturity, Volatility,...
'Reset',FloorReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)
FloorPrice =

```
    37.4864

\section*{Price a Floor Using a Different Curve to Generate the Future Forward Rates}

Define the OIS and Libor rates.
```

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006 .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .0109 .0162 .0216 .0262 .0309 .0348]';

```

Create an associated RateSpec for the OIS and Libor curves.
OISCurve = intenvset('Rates',OISRates,'StartDate', Settle,'EndDates', CurveDates, 'Compour LiborCurve = intenvset('Rates',LiborRates,'StartDate', Settle,'EndDates',CurveDates,'Co

Define the Floor instruments.
```

Maturity = {'15-Mar-2018';'15-Mar-2020'};
Strike = [.04;.05];
BlackVol = .2;

```

Price the floor instruments using the term structure OISCurve both for discounting the cash flows and generating future forward rates.
```

[Price, Floorlets] = floorbyblk(OISCurve, Strike, Settle, Maturity, BlackVol)

```
Price =
    9.9808
    16.9057

Floorlets =
\begin{tabular}{lllllrr}
3.6783 & 3.0706 & 1.8275 & 0.7280 & 0.6764 & NaN & NaN \\
4.6753 & 4.0587 & 2.7921 & 1.4763 & 1.3442 & 1.4130 & 1.1462
\end{tabular}

Price the floor instruments using the term structure LiborCurve to generate future forward rates. The term structure OISCurve is used for discounting the cash flows.
[PriceLC, FloorletsLC] = floorbyblk(OISCurve, Strike, Settle, Maturity, BlackVol,'Proj

\section*{PriceLC =}
\[
8.0524
\]
14.3184

FloorletsLC =
\begin{tabular}{lrlllrr}
3.2385 & 2.5338 & 1.2895 & 0.5889 & 0.4017 & NaN & NaN \\
4.2355 & 3.5219 & 2.2286 & 1.2751 & 0.9169 & 1.1698 & 0.9706
\end{tabular}

\section*{Compute the Price of an Amortizing Floor Using the Black Model}

Define the RateSpec.
```

Rates = [0.0358; 0.0421; 0.0473; 0.0527; 0.0543];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [5\times1 double]
Rates: [5\times1 double]
EndTimes: [5\times1 double]

```
```

 StartTimes: [5×1 double]
 EndDates: [5\times1 double]
 StartDates: 734822
 ValuationDate: 734822
Basis: 0
EndMonthRule: 1

```

Define the floor instrument.
```

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = 0.05;
Reset = 2;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

```

Price the amortizing floor.
Volatility = 0.20;
Price = floorbyblk(RateSpec, Strike, Settle, Maturity, Volatility,... 'Reset', Reset,'Principal', Principal)

Price =
1.9315

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
capbyblk | intenvset

\section*{Introduced in R2009a}

\section*{floorbyhim}

Price floor instrument from Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}
[Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline HJMTree & Forward-rate tree structure created by hjmtree. \\
\hline Strike & Number of instruments (NINST-by-1) vector of rates at which the floor is exercised. \\
\hline Settle & Settlement date. NINST-by-1 vector of dates representing the settlement dates of the floor. The Settle date for every floor is set to the ValuationDate of the HJM tree. The floor argument Settle is ignored. \\
\hline Maturity & NINST-by- 1 vector of dates representing the maturity dates of the floor. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 9 = actual/360 (ICMA) \\
- \(10=\mathrm{actual} / 365\) (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settlement, Maturity, Reset, Basis, Principal, Options) computes the price of a floor instrument from an HJM tree.

Price is an NINST-by- 1 vector of the expected prices of the floor at time 0.
PriceTree is the tree structure with values of the floor at each node.

Note: Use the optional name-value pair argument, Principal, to pass a schedule to compute price for an amortizing floor.

\section*{Examples}

\section*{Price a 3\% Floor Instrument Using an HJM Forward-Rate Tree}

This example shows how to price a \(3 \%\) floor instrument using an HJM forward-rate tree by loading the file deriv. mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the floor instrument.
```

load deriv.mat;
Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Price = floorbyhjm(HJMTree, Strike, Settle, Maturity)
Price =
0.0486

```

\section*{Compute the Price of an Amortizing Floor Using the HJM Model}

Load deriv.mat to specify the HJMTree and then define the floor instrument.
```

load deriv.mat;

```
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Strike = 0.05;
Reset = 1;
Principal =\{\{'01-Jan-2001' 100;'01-Jan-2002' 80;'01-Jan-2003' 70;'01-Jan-2004' 30\}\};

Price the amortizing floor.
Price = floorbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Principal)

Price =
2.8215
- "Computing Instrument Prices" on page 2-84

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ capbyhjm|cfbyhjm \| hjmtree \| swapbyhjm \\ Introduced before R2006a
}

\section*{floorbyhw}

Price floor instrument from Hull-White interest-rate tree

\section*{Syntax}
[Price, PriceTree] = floorbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline HWTree & Interest-rate tree structure created by hwtree. \\
\hline Strike & Number of instruments (NINST-by-1) vector of rates at which the floor is exercised. \\
\hline Settle & Settlement date. NINST-by- 1 vector of dates representing the settlement dates of the floor. The Settle date for every floor is set to the ValuationDate of the HW tree. The floor argument Settle is ignored. \\
\hline Maturity & NINST-by- 1 vector of dates representing the maturity dates of the floor. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual \(/ 360\) \\
- 3 = actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 9 = actual/360 (ICMA) \\
- \(10=\mathrm{actual} / 365\) (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = floorbyhw(HWTree, Strike, Settlement, Maturity, Reset, Basis, Principal, Options) computes the price of a floor instrument from an HW tree.

Price is an NINST-by- 1 vector of the expected prices of the floor at time 0.
PriceTree is the tree structure with values of the floor at each node.

Note: Use the optional name-value pair argument, Principal, to pass a schedule to compute price for an amortizing floor.

\section*{Examples}

Price a 3\% Floor Instrument Using a Hull-White Interest-Rate Tree
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest rate information needed to price the floor instrument.
load deriv.mat;

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

```

Use floorbyhw to compute the price of the floor instrument.
```

Price = floorbyhw(HWTree, Strike, Settle, Maturity)

```
Price =
    0.4186

\section*{Compute the Price of an Amortizing and Vanilla Floors Using the HW Model}

Define the RateSpec.
```

Rates = [0.035; 0.042; 0.047; 0.052; 0.054];
ValuationDate = '01-April-2014';
StartDates = ValuationDate;
EndDates = {'01-April-2019'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [5\times1 double]
Rates: [5\times1 double]
EndTimes: [5\times1 double]
StartTimes: [5\times1 double]
EndDates: 737516
StartDates: 735690
ValuationDate: 735690
Basis: 0
EndMonthRule: 1

```

Define the floor instruments.
```

Settle ='01-April-2014';
Maturity = '01-April-2018';
Strike = 0.05;
Reset = 1;
Principal ={{'01-April-2015' 100;'01-April-2016' 60;'01-April-2017' 40;'01-April-2018'
100};

```

Build the HW Tree.
```

VolDates = ['01-April-2015';'01-April-2016';'01-April-2017';'01-April-2018'];
VolCurve = 0.05;
AlphaDates = '01-April-2018';
AlphaCurve = 0.10;
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)
HWTree =
struct with fields:
FinObj: 'HWFwdTree'
VolSpec: [1\times1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1\times1 struct]
tObs: [0 1 1 2 3]
dObs: [735690 736055 736421 736786]
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [l2 3 4 5 6]}
FwdTree: {[1.0350] [1.1300 1.0363 0.9503] [1\times5 double] [1\times7 double]}

```

Price the amortizing and vanilla floors.
```

Basis = 0;
Price = floorbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal)
Price =

```
4.8675
10.3881
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
capbyhw | cfbyhw | hwtree | swapbyhw
Introduced before R2006a

\section*{floorbylg2f}

Price floor using Linear Gaussian two-factor model

\section*{Syntax}

FloorPrice \(=\) floorbylg2f(ZeroCurve, \(a, b\), sigma, eta, rho, Strike, Maturity)
FloorPrice = floorbylg2f( __ , Name, Value)

\section*{Description}

FloorPrice \(=\) floorbylg2f(ZeroCurve, \(a, b\), sigma, eta, rho, Strike, Maturity) returns the floor price for a two-factor additive Gaussian interest-rate model.

FloorPrice = floorbylg2f( \(\qquad\) , Name, Value) returns the floor price for a twofactor additive Gaussian interest-rate model using optional name-value pairs.

Note: Use the optional name-value pair argument, Notional, to pass a schedule to compute the price for an amortizing floor.

\section*{Examples}

\section*{Price a Floor Using a Linear Gaussian Two-Factor Model}

Define the ZeroCurve, a, b, sigma, eta, and rho parameters to compute the floor price.
```

Settle = datenum('15-Dec-2007');
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

```
```

a = .07
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
FloorMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
Price = floorbylg2f(irdc,a,b,sigma,eta,rho,Strike,FloorMaturity)
Price =
0
0.4041
0.8282
1.3103
1.8346
3.0636
4.9172
7.7614
9.7166
11.4163
12.7628

```

\section*{Price an Amortizing Floor Using a Linear Gaussian Two-Factor Model}

Define the ZeroCurve, a, b, sigma, eta, rho, and Notional parameters for the amortizing floor.
```

Settle = datenum('15-Dec-2007');
% Define ZeroCurve
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
% Define a, b, sigma, eta, and rho
a = .07;
b = .5;
sigma = .01;

```
```

eta = .006;
rho = -.7;
% Define the amortizing floors
FloorMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
Strike = [0.025 0.036 0.037 0.038 0.039 0.041 0.043 0.045 0.046 0.046 0.046]';
Notional = {{'15-Dec-2012' 100;'15-Dec-2017' 70;'15-Dec-2022' 40;'15-Dec-2037' 10}};
% Price the amortizing floors
Price = floorbylg2f(irdc,a,b,sigma,eta,rho,Strike,FloorMaturity,'Notional',Notional)
Price =
0
0.2633
0.6438
1.0815
1.5637
2.5196
3.9061
5.4326
6.0416
6.2033
6.3316

```
- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation"

\section*{Input Arguments}

\section*{ZeroCurve - Zero curve for Linear Gaussian two-factor model \\ structure}

Zero curve for the Linear Gaussian two-factor model, specified using IRDataCurve or RateSpec.

Data Types: struct
a - Mean reversion for first factor for Linear Gaussian two-factor model
scalar

Mean reversion for the first factor for the Linear Gaussian two-factor model, specified as a scalar.

Data Types: single | double

\section*{b - Mean reversion for second factor for Linear Gaussian two-factor model scalar}

Mean reversion for the second factor for the Linear Gaussian two-factor model, specified as a scalar.

Data Types: single | double

\section*{sigma - Volatility for first factor for Linear Gaussian łwo-factor model scalar}

Volatility for the first factor for the Linear Gaussian two-factor model, specified as a scalar.

Data Types: single | double

\section*{eta - Volatility for second factor for Linear Gaussian łwo-factor model \\ scalar}

Volatility for the second factor for the Linear Gaussian two-factor model, specified as a scalar.

Data Types: single | double

\section*{rho - Scalar correlation of factors}
scalar
Scalar correlation of the factors, specified as a scalar.
Data Types: single | double

\section*{Strike - Floor strike price}
nonnegative integer | vector of nonnegative integers
Floor strike price specified, as a nonnegative integer using a NumFloors-by-1 vector of floor strike prices.

Data Types: single | double

\section*{Maturity - Floor maturity date}
nonnegative integer | vector of nonnegative integers | date character vector

Floor maturity date, specified using a NumFloors-by-1 vector of serial date numbers or date character vectors.

Data Types: single | double | char | cell

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Example: Price =
floorbylg2f(irdc, a, b, sigma, eta, rho, Strike, FloorMaturity, 'Reset', 1, 'Notional', 1

\section*{'Reset ' - Frequency of floor payments per year}

2 (default) | positive integer from the set [1,2,3,4,6,12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of floor payments per year, specified as positive integers for the values [ \(1,2,4,6,12\) ] in a NumFloors-by-1 vector.

Data Types: single | double

\author{
'Notional' - Notional value of floor \\ 100 (default) | nonnegative integer | vector of nonnegative integers
}

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is the associated principal amount. The date indicates the last day that the principal value is valid.

Data Types: single | double

\section*{Output Arguments}

\section*{FloorPrice - Floor price}
scalar | vector
Floor price, returned as a scalar or a NumFloors-by-1 vector.

\section*{More About}

\section*{Algorithms}

The following defines the two-factor additive Gaussian interest-rate model, given the ZeroCurve, a, b, sigma, eta, and rho parameters:
\[
\begin{aligned}
& r(t)=x(t)+y(t)+\phi(t) \\
& d x(t)=-a(x)(t) d t+\sigma\left(d W_{1}(t), x(0)=0\right. \\
& d y(t)=-b(y)(t) d t+\eta\left(d W_{2}(t), y(0)=0\right.
\end{aligned}
\]
where \(d W_{1}(t) d W_{2}(t)=\rho d t\) is a two-dimensional Brownian motion with correlation \(\rho\) and \(\phi\) is a function chosen to match the initial zero curve.
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}
[1] Brigo, D. and F. Mercurio, Interest Rate Models - Theory and Practice. Springer Finance, 2006.

\author{
See Also \\ LinearGaussian2F | capbylg2f | swaptionbylg2f \\ Introduced in R2013a
}

\section*{floorvolstrip}

Strip floorlet volatilities from flat floor volatilities

\section*{Syntax}
[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip(ZeroCurve,FloorSettle,FloorMaturity,FloorVolatility) [FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip( ___Name, Value)

\section*{Description}
[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip(ZeroCurve,FloorSettle,FloorMaturity,FloorVolatility) strips floorlet volatilities from the flat floor volatilities by using the bootstrapping method. The floor volatilities are interpolated on each floorlet payment date before stripping the floorlet volatilities.
[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip (__ Name, Value) strips floorlet volatilities from the flat floor volatilities by using the bootstrapping method and optional name-value pair arguments. The floor volatilities are interpolated on each floorlet payment date before stripping the floorlet volatilities.

\section*{Examples}

\section*{Stripping Floorlet Volatilities from At-The-Money (ATM) Floors}

Compute the zero curve for discounting and projecting forward rates.
```

ValuationDate = datenum('10-Aug-2015');
ZeroRates = [0.12 0.24 0.40 0.73 1.09 1.62]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)
ZeroCurve =

```
```

 Type: Zero
 Settle: 736186 (10-Aug-2015)
 Compounding: 2
 Basis: O (actual/actual)
 InterpMethod: linear
Dates: [6x1 double]
Data: [6x1 double]

```

Define the ATM floor volatility data.
```

FloorSettle = datenum('12-Aug-2015');
FloorMaturity = datenum({'12-Aug-2016';'14-Aug-2017';'13-Aug-2018'; ...
12-Aug-2019', ;'12-Aug-2020'});
FloorVolatility = [0.31;0.39;0.43;0.42;0.40];

```

Strip floorlet volatilities from ATM floors.
```

[FloorletVols, FloorletPaymentDates, ATMFloorStrikes] = floorvolstrip(ZeroCurve,...

```
    FloorSettle, FloorMaturity, FloorVolatility);
PaymentDates = cellstr(datestr(FloorletPaymentDates));
format;
table(PaymentDates, FloorletVols, ATMFloorStrikes)
ans =
\begin{tabular}{|c|c|c|}
\hline PaymentDates & FloorletVols & ATMFloorStrikes \\
\hline '12-Aug-2016 ' & 0.31 & 0.0056551 \\
\hline '13-Feb-2017' & 0.3646 & 0.0073508 \\
\hline '14-Aug-2017' & 0.41948 & 0.0090028 \\
\hline '12-Feb-2018' & 0.43152 & 0.010827 \\
\hline '13-Aug-2018' & 0.46351 & 0.012617 \\
\hline '12-Feb-2019' & 0.40407 & 0.013862 \\
\hline '12-Aug-2019' & 0.39863 & 0.015105 \\
\hline '12-Feb-2020' & 0.3674 & 0.016369 \\
\hline '12-Aug-2020' & 0.35371 & 0.01762 \\
\hline
\end{tabular}

\section*{Stripping Floorlet Volatilities from Floors with the Same Strikes}

Compute the zero curve for discounting and projecting forward rates.
```

ValuationDate = datenum('10-Jun-2015');
ZeroRates = [0.02 0.10 0.28 0.75 1.15 1.80]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)
ZeroCurve =
Type: Zero
Settle: 736125 (10-Jun-2015)
Compounding: 2
Basis: O (actual/actual)
InterpMethod: linear
Dates: [6x1 double]
Data: [6x1 double]

```

Define the floor volatility data.
```

FloorSettle = datenum('12-Jun-2015');

```
FloorMaturity = datenum(\{'13-Jun-2016';'12-Jun-2017';'12-Jun-2018'; ...
    '12-Jun-2019';'12-Jun-2020'\});
FloorVolatility \(=\) [0.41;0.43;0.43;0.41;0.38];
FloorStrike = 0.015;

Strip floorlet volatilities from floors with the same strike.
[FloorletVols, FloorletPaymentDates, FloorStrikes] = floorvolstrip(ZeroCurve, ...
    FloorSettle, FloorMaturity, FloorVolatility, 'Strike', FloorStrike);
PaymentDates = cellstr(datestr(FloorletPaymentDates));
format;
table(PaymentDates, FloorletVols, FloorStrikes)
ans \(=\)
    PaymentDates FloorletVols FloorStrikes
    '13-Jun-2016'
'12-Dec-2016'
'12-Jun-2017'
'12-Dec-2017'
'12-Jun-2018'
'12-Dec-2018'
\begin{tabular}{rr}
0.41 & 0.015 \\
0.42 & 0.015 \\
0.43433 & 0.015 \\
0.43001 & 0.015 \\
0.43 & 0.015 \\
0.39173 & 0.015
\end{tabular}
```

12-Jun-2019' 0.37244 0.015
12-Dec-2019' 0.32056 0.015
12-Jun-2020' 0.28308 0.015

```

\section*{Stripping Floorlet Volatilities Using Manually Specified Floorlet Dates}

Compute the zero curve for discounting and projecting forward rates.
```

ValuationDate = datenum('19-May-2015');
ZeroRates = [0.02 0.07 0.23 0.63 1.01 1.60]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)
zeroCurve =
Type: Zero
Settle: 736103 (19-May-2015)
Compounding: 2
Basis: 0 (actual/actual)
InterpMethod: linear
Dates: [6x1 double]
Data: [6x1 double]

```

Define the floor volatility data.
```

FloorSettle = datenum('19-May-2015');
FloorMaturity = datenum({'19-May-2016';'19-May-2017';'21-May-2018'; ...
20-May-2019';'19-May-2020'});
FloorVolatility = [0.39;0.42;0.43;0.42;0.40];
FloorStrike = 0.010;

```

Specify the quarterly and semiannual dates.
```

FloorletDates = [cfdates(FloorSettle, '19-May-2016', 4)...
cfdates('19-May-2016', '19-May-2020', 2)]';
FloorletDates(~isbusday(FloorletDates)) = ...
busdate(FloorletDates(~isbusday(FloorletDates)), 'modifiedfollow');

```

Strip floorlet volatilities using specified FloorletDates.
[FloorletVols, FloorletPaymentDates, FloorStrikes] = floorvolstrip(ZeroCurve, ... FloorSettle, FloorMaturity, FloorVolatility, 'Strike', FloorStrike, ... 'FloorletDates', FloorletDates);
```

PaymentDates = cellstr(datestr(FloorletPaymentDates));
format;
table(PaymentDates, FloorletVols, FloorStrikes)
ans =
PaymentDates FloorletVols FloorStrikes

| '19-Nov-2015' | 0.39 | 0.01 |
| :---: | :---: | :---: |
| ' 19-Feb-2016' | 0.39 | 0.01 |
| '19-May-2016' | 0.39 | 0.01 |
| '21-Nov-2016' | 0.4058 | 0.01 |
| '19-May-2017' | 0.4307 | 0.01 |
| '20-Nov-2017' | 0.43317 | 0.01 |
| '21-May-2018' | 0.44309 | 0.01 |
| '19-Nov-2018' | 0.40831 | 0.01 |
| '20-May-2019' | 0.39831 | 0.01 |
| '19-Nov-2019' | 0.3524 | 0.01 |
| '19-May-2020' | 0.32765 | 0.01 |

```

\section*{Input Arguments}

\section*{ZeroCurve - Zero rate curve}

RateSpec or IRDataCurve object
Zero rate curve, specified using a RateSpec or IRDataCurve object containing the zero rate curve for discounting according to its day count convention. ZeroCurve is also used for computing the underlying forward rates if the optional argument ProjectionCurve is not specified. Its observation date specifies the valuation date. For more information on creating a RateSpec, see intenvset. For more information on creating an IRDataCurve object, see IRDataCurve.

\section*{Data Types: struct}

\section*{FloorSettle - Common floor settle date}
serial date number or date character vector
Common floor settle date, specified using a serial date number or date character vector. The FloorSettle date cannot be earlier than the ZeroCurve valuation date.

\section*{Data Types: double | char}

\section*{FloorMaturity - Floor maturity dates \\ serial date numbers or date character vectors}

Floor maturity dates, specified using serial date numbers or date character vectors as an NFloor-by-1 vector.
```

Data Types: double | char

```

\section*{FloorVolatility - Flat floor volatilities \\ positive decimals}

Flat floor volatilities, specified using positive decimals as a NFloor-by-1 vector.
Data Types: double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: [FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip(ZeroCurve, FloorSettle, FloorMaturity, FloorVolatility, 'Strike', .2)

\section*{'Strike' - Floor strike rate}
if not specified, the default is to assume that all floors are at-the-money (ATM) and the ATM strike will be computed for each cap maturing on each floorlet payment date. (default) | decimals

Floor strike rate, specified as decimals. Use Strike to specify a single strike that is equally applied to all floors.

Data Types: double

\section*{'FloorletDates' - Floorlet reset and payment dates}

If not specified, the default is to automatically generate periodic floorlet dates (default) | serial date numbers | date character vectors

Floorlet reset and payment dates, specified as serial date numbers or date character vectors using a NFloorletDates-by-1 vector.

Use FloorletDates to manually specify all floorlet reset and payment dates. For example, some date intervals may be quarterly while others may be semiannual. All dates must be later than FloorSettle and cannot be later than the last FloorMaturity date. Dates are adjusted according to the BusDayConvention and Holidays inputs.

If FloorletDates is not specified, the default is to automatically generate periodic floorlet dates after FloorSettle based on the last FloorMaturity date as the reference date, using the following optional inputs: Reset, EndMonthRule, BusDayConvention, and Holidays

Data Types: double | char

\section*{'Reset' - Frequency of periodic payments per year within a floor}

2 (default) | positive integer with values \(1,2,3,4,6\), or 12
Frequency of periodic payments per year within a floor, specified as a positive integer with values \(1,2,3,4,6\), or 12 .

Note: The input for Reset is ignored if FloorletDates is specified.

\section*{Data Types: double}

\section*{'EndMonthRule ' - End-of-month rule flag for generating floorlet dates}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag for generating floorlet dates is specified as nonnegative integer [0, 1] using a NINST-by-1 vector.
- \(0=\) Ignore rule, meaning that a payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

\section*{Data Types: logical}

\section*{'BusDayConvention' - Business day conventions \\ modifiedfollow (default) | character vector | cell array of character vectors}

Business day conventions, specified by a character vector or N -by- 1 cell array of character vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as weekends plus any other date that businesses are not open (e.g. statutory holidays). Values are:
- actual - Non-business days are effectively ignored. Cash flows that fall on nonbusiness days are assumed to be distributed on the actual date.
- follow - Cash flows that fall on a non-business day are assumed to be distributed on the following business day.
- modifiedfollow - Cash flows that fall on a non-business day are assumed to be distributed on the following business day. However if the following business day is in a different month, the previous business day is adopted instead.
- previous - Cash flows that fall on a non-business day are assumed to be distributed on the previous business day.
- modifiedprevious - Cash flows that fall on a non-business day are assumed to be distributed on the previous business day. However if the previous business day is in a different month, the following business day is adopted instead.

Data Types: char | cell

\section*{' Holidays ' - Holidays used in computing business days}
if not specified, the default is to use holidays.m (default) | MATLAB date numbers
Holidays used in computing business days, specified as MATLAB date numbers using an NHolidays-by- 1 vector.

\section*{Data Types: double}

\section*{' ProjectionCurve' - Rate curve for computing underlying forward rates \\ if not specified, the default is to use the ZeroCurve input for computing the underlying forward rates (default) | RateSpec or IRDatCurve object}

Rate curve for computing underlying forward rates, specified as a RateSpec or IRDatCurve object. For more information on creating a RateSpec, see intenvset and for more information on creating an IRDataCurve object, see IRDataCurve.

Data Types: struct

\section*{'MaturityInterpMethod' - Method used when interpolating floor volatilities on each floorlet maturity date before stripping floorlet volatilities}
linear (default) | character vector with values: linear, nearest, next, previous, spline, pchip

Method used when interpolating the floor volatilities on each floorlet maturity date before stripping the floorlet volatilities, specified using a character vector with values: linear, nearest, next, previous, spline, or pchip. The definitions of the methods are:
- linear - Linear interpolation. The interpolated value at a query point is based on linear interpolation of the values at neighboring grid points in each respective dimension. This is the default interpolation method.
- nearest - Nearest neighbor interpolation. The interpolated value at a query point is the value at the nearest sample grid point.
- next - Next neighbor interpolation. The interpolated value at a query point is the value at the next sample grid point.
- previous - Previous neighbor interpolation. The interpolated value at a query point is the value at the previous sample grid point.
- spline - Spline interpolation using not-a-knot end conditions. The interpolated value at a query point is based on a cubic interpolation of the values at neighboring grid points in each respective dimension.
- pchip - Shape-preserving piecewise cubic interpolation. The interpolated value at a query point is based on a shape-preserving piecewise cubic interpolation of the values at neighboring grid points.

For more information on interpolation methods, see interp1

Note: Constant extrapolation is used for volatilities falling outside the range of usersupplied data.

\section*{Data Types: char}

\section*{' Limit ' - Upper bound of implied volatility search interval \\ 10 (or 1000\% per annum) (default) | positive scalar decimal}

Upper bound of implied volatility search interval, specified as a positive scalar decimal. Data Types: double

\author{
'Tolerance ' - Implied volatility search termination tolerance \\ 1e-5 (default) | positive scalar
}

Implied volatility search termination tolerance, specified as a positive scalar.

\section*{Data Types: double}

\section*{'OmitFirstFloorlet ' - Flag indicating whether to omit the first floorlet payment in the floors}
true always omit the first floorlet (default) | logical
Flag indicating whether to omit the first floorlet payment in the floors, specified as a scalar logical. For example, the first floorlet payment is omitted in spot-starting floors, while it is included in forward-starting floors. Setting this logical to false means to always include the first floorlet.

In general, "spot lag" is the delay between the fixing date and the effective date for LIBOR-like indices. It also determines whether a floor is spot-starting or forwardstarting (Corb, 2012). Floors are considered to be spot-starting if they settle within "spot lag" business days after the valuation date. Those that settle later are considered to be forward-starting. The first floorlet is omitted if floors are spot-starting, while it is included if they are forward-starting (Tuckman, 2012).

Data Types: logical

\section*{Output Arguments}

FloorletVols - Stripped floorlet volatilities
vector in decimals
Stripped floorlet volatilities, returned as a NFloorletVols-by-1 vector in decimals.

Note: floorvolstrip may output NaNs for some floorlet volatilities. This could be the case if no volatility will match the floorlet price implied by the user-supplied floor data.

\section*{FloorletPaymentDates - Payment dates}
vector in date numbers
Payment dates (in date numbers), returned as a NFloorletVols-by-1 vector corresponding to FloorletVols.

\section*{FloorStrikes - Floor strikes}
decimals

Floor strikes, returned as a NFloorletVols-by-1 vector of strikes in decimals for floors maturing on corresponding FloorletPaymentDates.

\section*{Limitations}

When bootstrapping the floorlet volatilities from ATM floors, the floorlet volatilities stripped from the shorter maturity floors are reused in the longer maturity floors without adjusting for the difference in strike. floorvolstrip follows the simplified approach described in Gatarek, 2006.

\section*{More About}

\section*{ATM}

A cap or floor is at-the-money (ATM) if its strike is equal to the forward swap rate.
This is the fixed rate of a swap that makes the present value of the floating leg equal to that of the fixed leg. In comparison, a caplet or floorlet is ATM if its strike is equal to the forward rate (not the forward swap rate). In general (except over a single period), the forward rate is not necessarily equal to the forward swap rate. So, to be precise, the individual caplets in an ATM cap have slightly different moneyness and are actually only approximately ATM (Alexander, 2003). In addition, note that swap rate changes with swap maturity. Similarly, the ATM cap strike also changes with cap maturity, so the ATM cap strikes need to be computed for each cap maturity before stripping the caplet volatilities. As a result, when stripping the caplet volatilities from the ATM caps with increasing maturities, the ATM strikes of the consecutive caps will be different.

\section*{References}

Alexander, C. "Common Correlation and Calibrating the Lognormal Forward Rate Model." Wilmott Magazine, 2003.

Corb, H. "Interest Rate Swaps and Other Derivatives." Columbia Business School Publishing, 2012.

Gatarek, D.P., Bachert, and R. Maksymiuk. The LIBOR Market Model in Practice. Wiley, 2006.

Tuckman, B., Serrat, A. Fixed Income Securities: Tools for Today's Markets. Wiley Finance, 2012.
```

See Also
capvolstrip | intenvset | interp1

```

Introduced in R2016a

\section*{gapbybls}

Determine price of gap digital options using Black-Scholes model

\section*{Syntax}

Price = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 cell array of character vectors with values of \\
'call ' or 'put '.
\end{tabular} \\
\hline Strike & NINST-by-1 vector of payoff strike price values. \\
\hline StrikeThreshold & \begin{tabular}{l} 
NINST-by-1 vector of strike values that determine if the option \\
pays off.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold) computes gap option prices using the BlackScholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

\section*{Examples}

\section*{Compute Gap Option Prices Using the Black-Scholes Option Pricing Model}

This example shows how to compute gap option prices using the Black-Scholes option pricing model. Consider a gap call and put options on a nondividend paying stock with a strike of 57 and expiring on January 1, 2008. On July 1, 2008 the stock is trading at 50. Using this data, compute the price of the option if the risk-free rate is \(9 \%\), the strike threshold is 50 , and the volatility is \(20 \%\).
```

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Compounding = -1;
Rates = 0.09;
% calculate the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);
% define the StockSpec
AssetPrice = 50;
Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);
% define the call and put options
OptSpec = {'call'; 'put'};
Strike = 57;
StrikeThreshold = 50;
% calculate the price
Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, StrikeThreshold)

```

Pgap =
\(-0.0053\)
4.4866
- "Pricing Using the Black-Scholes Model" on page 3-142

\section*{More About}
- "Supported Equity Derivatives" on page 3-24
See Alsoassetbybls | cashbybls | gapsensbybls | supersharebybls
Introduced in R2009a

\section*{gapsensbybls}

Determine price or sensitivities of gap digital options using Black-Scholes model

\section*{Syntax}

PriceSens = gapsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold) PriceSens = gapsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold, OutSpec)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 cell array of character vectors with values of \\
'call ' or 'put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
NINST-by-1 vector of strike price values. \\
\hline StrikeThreshold \\
\hline OutSpec \\
\begin{tabular}{l} 
NINST-by-1 vector of strike values that determine if the option \\
pays off.
\end{tabular} \\
\hline \begin{tabular}{l} 
(Optional) All optional inputs are specified as matching \\
parameter name/value pairs. The parameter name is specified \\
as a character vector, followed by the corresponding parameter \\
value. You can specify parameter name/value pairs may in \\
any order. Names are case-insensitive and partial matches are \\
allowed provided no ambiguities exist. Valid parameter names \\
are: \\
- NOUT-by-1 or 1-by-NOUT cell array of character vectors \\
indicating the nature and order of the outputs for the
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
function. Possible values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'. \\
For example, OutSpec = \{'Price'; 'Lambda'; \\
'Rho' \(\}\) specifies that the output should be Price, Lambda, and Rho, in that order. \\
To invoke from a function: [Price, Lambda, Rho] = gapsensbybls(..., 'OutSpec', \{'Price', 'Lambda', 'Rho'\}) \\
OutSpec \(=\) \{'All' \(\}\) specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};. \\
- Default is OutSpec = \{'Price' \(\}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

PriceSens = gapsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold) computes gap option prices using the Black-Scholes option pricing model.

PriceSens = gapsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold, OutSpec) includes an OutSpec argument defined as parameter/value pairs, and computes gap option prices or sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices or sensitivities.

\section*{Examples}

\section*{Compute Gap Option Prices and Sensitivities Using the Black-Scholes Option Pricing Model}

This example shows how to compute gap option prices and sensitivities using the BlackScholes option pricing model. Consider a gap call and put options on a nondividend
paying stock with a strike of 57 and expiring on January 1, 2008. On July 1, 2008 the stock is trading at 50 . Using this data, compute the price and sensitivity of the option if the risk-free rate is \(9 \%\), the strike threshold is 50 , and the volatility is \(20 \%\).
```

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Compounding = -1;
Rates = 0.09;
%create the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);
% define the StockSpec
AssetPrice = 50;
Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);
% define the call and put options
OptSpec = {'call'; 'put'};
Strike = 57;
StrikeThreshold = 50;
% compute the price
Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, StrikeThreshold)
% compute the gamma and delta
OutSpec = {'gamma'; 'delta'};
[Gamma ,Delta] = gapsensbybls(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, StrikeThreshold, 'OutSpec', OutSpec)
Pgap =
-0.0053
4.4866
Gamma =
0.0724
0.0724
Delta =
0.2852
-0.7148

```
- "Pricing Using the Black-Scholes Model" on page 3-142

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ gapbybls \\ Introduced in R2009a
}

\section*{hedgeopt}

Allocate optimal hedge for target costs or sensitivities

\section*{Syntax}
[PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities, Price, CurrentHolds, FixedInd, NumCosts, TargetCost, TargetSens, ConSet)

\section*{Arguments}
\(\left.\left.\begin{array}{|l|l|}\hline \text { Sensitivities } & \begin{array}{l}\text { Number of instruments (NINST) by number of sensitivities } \\ \text { (NSENS) matrix of dollar sensitivities of each instrument. Each } \\ \text { row represents a different instrument. Each column represents } \\ \text { a different sensitivity. }\end{array} \\ \hline \text { Price } & \text { NINST-by-1 vector of portfolio instrument unit prices. } \\ \hline \text { CurrentHolds } & \text { NINST-by-1 vector of contracts allocated to each instrument. } \\ \hline \text { FixedInd } & \begin{array}{l}\text { (Optional) Number of fixed instruments (NFIXED)-by-1 } \\ \text { vector of indices of instruments to hold fixed. For example, } \\ \text { to hold the first and third instruments of a 10 instrument } \\ \text { portfolio unchanged, set Fixed Ind }=[1 \quad 3] . \text { Default = [ ], no } \\ \text { instruments held fixed. }\end{array} \\ \hline \text { NumCosts } & \begin{array}{l}\text { (Optional) Number of points generated along the cost frontier } \\ \text { when a vector of target costs (TargetCost) is not specified. } \\ \text { The default is 10 equally spaced points between the point of } \\ \text { minimum cost and the point of minimum exposure. When }\end{array} \\ \text { specifying TargetCost, enter NumCosts as an empty matrix } \\ \text { [ ]. }\end{array} \begin{array}{l}\text { (Optional) Vector of target cost values along the cost frontier. } \\ \text { If TargetCost is empty, or not entered, hedgeopt evaluates }\end{array}\right\} \begin{array}{l}\text { NumCosts equally spaced target costs between the minimum } \\ \text { cost and minimum exposure. When specified, the elements of } \\ \text { TargetCost should be positive numbers that represent the }\end{array}\right]\)
\begin{tabular}{|l|l|} 
& \begin{tabular}{l} 
maximum amount of money the owner is willing to spend to \\
rebalance the portfolio.
\end{tabular} \\
\hline TargetSens & \begin{tabular}{l} 
(Optional) 1-by-NSENS vector containing the target sensitivity \\
values of the portfolio. When specifying TargetSens, enter \\
NumCosts and TargetCost as empty matrices [ ].
\end{tabular} \\
\hline ConSet & \begin{tabular}{l} 
(Optional) Number of constraints (NCONS) by number of \\
instruments (NINST) matrix of additional conditions on \\
the portfolio reallocations. An eligible NINST-by-1 vector \\
of contract holdings, PortWts, satisfies all the inequalities \\
A*PortWts <= b, where \\
A = ConSet ( : , 1: end -1\()\) and \(b=\) ConSet ( : , end ).
\end{tabular} \\
\hline
\end{tabular}

Notes The user-specified constraints included in ConSet may be created with the functions pcalims or portcons. However, the portcons default PortHolds positivity constraints are typically inappropriate for hedging problems since short-selling is usually required.
NPOINTS, the number of rows in PortSens and PortHolds and the length of PortCost, is inferred from the inputs. When the target sensitivities, TargetSens, is entered, NPOINTS \(=1\); otherwise NPOINTS \(=\) NumCosts, or is equal to the length of the TargetCost vector.
Not all problems are solvable (for example, the solution space may be infeasible or unbounded, or the solution may fail to converge). When a valid solution is not found, the corresponding rows of PortSens and PortHolds and the elements of PortCost are padded with NaNs as placeholders.

\section*{Description}
[PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities, Price, CurrentHolds, FixedInd, NumCosts, TargetCost, TargetSens, ConSet) allocates an optimal hedge by one of two criteria:
- Minimize portfolio sensitivities (exposure) for a given set of target costs.
- Minimize the cost of hedging a portfolio given a set of target sensitivities.

Hedging involves the fundamental tradeoff between portfolio insurance and the cost of insurance coverage. This function lets investors modify portfolio allocations among
instruments to achieve either of the criteria. The chosen criterion is inferred from the input argument list. The problem is cast as a constrained linear least-squares problem.

PortSens is a number of points (NPOINTS)-by-NSENS matrix of portfolio sensitivities. When a perfect hedge exists, PortSens is zeros. Otherwise, the best hedge possible is chosen.

PortCost is a 1-by-NPOINTS vector of total portfolio costs.
PortHolds is an NPOINTS-by-NINST matrix of contracts allocated to each instrument. These are the reallocated portfolios.

\section*{More About}
- "Instrument Constructors" on page 1-18
- "Hedging" on page 4-2
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
hedgeslf | lsqlin | pcalims | portcons | portopt

\section*{Related Examples}
- "Portfolio Creation" on page 1-7
- "Hedging with hedgeopt" on page 4-4

\section*{Introduced before R2006a}

\section*{hedgeslf}

Self-financing hedge

\section*{Syntax}
[PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities, Price, CurrentHolds, FixedInd, ConSet)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Sensitivities & \begin{tabular}{l} 
Number of instruments (NINST) by number of sensitivities \\
(NSENS) matrix of dollar sensitivities of each instrument. Each \\
row represents a different instrument. Each column represents \\
a different sensitivity.
\end{tabular} \\
\hline Price & NINST-by-1 vector of instrument unit prices. \\
\hline CurrentHolds & NINST-by-1 vector of contracts allocated in each instrument. \\
\hline FixedInd & \begin{tabular}{l} 
(Optional) Empty or number of fixed instruments (NFIXED)- \\
by-1 vector of indices of instruments to hold fixed. The default \\
is FixedInd = 1; the holdings in the first instrument are held \\
fixed. If NFIXED instruments will not be changed, enter all \\
their locations in the portfolio in a vector. If no instruments are \\
to be held fixed, enter FixedInd = [ ].
\end{tabular} \\
\hline ConSet & \begin{tabular}{l} 
(Optional) Number of constraints (NCONS)-by-NINST matrix of \\
additional conditions on the portfolio reallocations. An eligible \\
NINST-by-1 vector of contract holdings, PortHolds, satisfies \\
all the inequalities \\
A*PortHolds < \(=\) b, where \\
A = ConSet ( : , 1: end -1) and b = ConSet ( : , end).
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
[PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities,

Price, CurrentHolds, FixedInd, ConSet) allocates a self-financing hedge among a collection of instruments. hedgeslf finds the reallocation in a portfolio of financial instruments that hedges the portfolio against market moves and that is closest to being self-financing (maintaining constant portfolio value). By default the first instrument entered is hedged with the other instruments.

PortSens is a 1-by-NSENS vector of portfolio dollar sensitivities. When a perfect hedge exists, PortSens is zeros. Otherwise, the best possible hedge is chosen.

PortValue is the total portfolio value (scalar). When a perfectly self-financing hedge exists, PortValue is equal to dot(Price, CurrentWts) of the initial portfolio.

PortHolds is an NINST-by- 1 vector of contracts allocated to each instrument. This is the reallocated portfolio.

\section*{Notes}
- The constraints PortHolds(FixedInd) = CurrentHolds(FixedInd) are appended to any constraints passed in ConSet. Pass FixedInd = [] to specify all constraints through ConSet.
- The default constraints generated by portcons are inappropriate, since they require the sum of all holdings to be positive and equal to one.
- hedgeself first tries to find the allocations of the portfolio that make it closest to being self-financing, while reducing the sensitivities to 0 . If no solution is found, it finds the allocations that minimize the sensitivities. If the resulting portfolio is selffinancing, PortValue is equal to the value of the original portfolio.

\section*{Examples}

Example 1. Perfect sensitivity cannot be reached.
```

Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
WO = [1; 1];
[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, W0)
PortSens =

```
0.0000
0.3200
```

PortValue =
0.7600
PortHolds =
1.0000
-0.4400

```

Example 2. Constraints are in conflict.
```

Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
WO = [1; 1];
ConSet = pcalims([2 2])
% O.K. if nothing fixed.
[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, Wo,...
[], ConSet)
PortSens =
2.8800
0.6400
PortValue =
4.4000

```
PortHolds =
    2
    2
\% WO(1) is not greater than 2.
[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, WO,...
1, ConSet)
??? Error using ==> hedgeslf
Overly restrictive allocation constraints implied by ConSet and
by fixing the weight of instruments(s): 1

Example 3. Constraints are impossible to meet.
```

Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
wo = [1; 1];
ConSet = pcalims([2 2],[1 1]);
[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, WO,...
[],ConSet)
??? Error using ==> hedgeslf
Overly restrictive allocation constraints specified in ConSet

```

\section*{More About}
- "Instrument Constructors" on page 1-18
- "Hedging" on page 4-2
- "Supported Equity Derivatives" on page 3-24

\section*{See Also \\ hedgeopt | lsqlin | portcons}

Introduced before R2006a

\section*{himprice}

Instrument prices from Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}

Price = hjmprice(HJMTree, InstSet, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline HJMTree & \begin{tabular}{l} 
Heath-Jarrow-Morton tree sampling a forward-rate process. See \\
hjmtree for information on creating HJMTree.
\end{tabular} \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of instruments. Instruments are \\
categorized by type. Each type can have different data fields. \\
The stored data field is a row vector or character vector for each \\
instrument.
\end{tabular} \\
\hline Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options structure created with \\
derivset.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = hjmprice(HJMTree, InstSet, Options) computes arbitrage-free prices for instruments using an interest-rate tree created with hjmtree. A subset of NINST instruments from a financial instrument variable, InstSet, are priced.

Price is a NINST-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.
hjmprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat', 'Swap '. See instadd to construct defined types.

Related single-type pricing functions are:
- bondbyhjm - Price a bond from an HJM tree.
- capbyhjm - Price a cap from an HJM tree.
- cfbyhjm - Price an arbitrary set of cash flows from an HJM tree.
- fixedbyhjm — Price a fixed-rate note from an HJM tree.
- floatbyhjm - Price a floating-rate note from an HJM tree.
- floorbyhjm — Price a floor from an HJM tree.
- optbndbyhjm - Price a bond option from an HJM tree.
- optembndbyhjm - Price a bond with embedded option by an HJM tree.
- optfloatbybdt - Price a floating-rate note with an option from an HJM tree.
- optemfloatbybdt - Price a floating-rate note with an embedded option from an HJM tree.
- rangefloatbyhjm - Price range floating note using an HJM tree.
- swapbyhjm - Price a swap from an HJM tree.
- swaptionbyhjm - Price a swaption from an HJM tree.

\section*{Examples}

Price the Cap and Bond Instruments Contained in an Instrument Set
Load the HJM tree and instruments from the data file deriv.mat.
```

load deriv.mat;
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'});
instdisp(HJMSubSet)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & Bond & 0.04 & 01-Jan-2000 & 01-Jan-2003 & 1 & NaN & NaN & Na & NaN & NaN \\
\hline 2 & Bond & 0.04 & 01-Jan-2000 & 01-Jan-2004 & 2 & NaN & NaN & Na & NaN & NaN \\
\hline Index & Type & Strike & Settle & Maturity & CapReset & Basis & Principal & Name & & \\
\hline 3 & Cap & 0.03 & 01-Jan-2000 & 01-Jan-2004 & 1 & NaN & NaN & 3\% Cap & & \\
\hline
\end{tabular}

Use hjmprice to price the instruments.
```

[Price, PriceTree] = hjmprice(HJMTree, HJMSubSet)

```
Warning: Not all cash flows are aligned with the tree. Result will be approximated.
> In checktree (line 289)
    In hjmprice (line 85)
Price =
    98.7159
    97.5280
        6.2831
PriceTree =
        FinObj: 'HJMPriceTree'
        PBush: \{[3×1 double] [3×1×2 double] [3×2x2 double] [3×4×2 double] [3×8 double]\}
        AIBush: \{[3x1 double] [3x1x2 double] [3x2x2 double] [3x4x2 double] [3x8 double]\}
        tObs: [lllll \(\left.0 \begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]\)

You can use treeviewer to see the prices of these three instruments along the price tree.
treeviewer


First 4\% Bond (Maturity 2003)


Second 4\% Bond (Maturity 2004)


\section*{Price Multi-Stepped Coupon Bonds}

The data for the interest-rate term structure is as follows:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

```

Create a RateSpec.
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,... 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS \(=\)
struct with fields:
```

 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [4×1 double]
 Rates: [4×1 double]
 EndTimes: [4\times1 double]
 StartTimes: [4×1 double]
 EndDates: [4\times1 double]
 StartDates: 734139
 ValuationDate: 734139
Basis: 0
EndMonthRule: 1

```

Create a portfolio of stepped coupon bonds with different maturities.
```

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014'
ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

| Index | Type | CouponRate | Settle | Maturity | Period | Basis | EndMonthRule | IssueDat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2011 | 1 | 0 | 1 | NaN |
| 2 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2012 | 1 | 0 | 1 | NaN |
| 3 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2013 | 1 | 0 | 1 | NaN |
| 4 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2014 | 1 | 0 | 1 | NaN |

```

Build the tree with the following data:
```

Volatility = [.2; .19; .18; .17];
CurveTerm = [1; 2; 3; 4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec)
HJMT =
struct with fields:
FinObj: 'HJMFwdTree'
VolSpec: [1\times1 struct]
TimeSpec: [1\times1 struct]

```
```

RateSpec: [1\times1 struct]
tObs: [[0 1 2 3}
dObs: [734139 734504 734869 735235]
TFwd: {[4\times1 double] [3\times1 double] [2\times1 double] [3]}
CFlowT: {[4\times1 double] [}3\times1\mathrm{ double] [2×1 double] [4]}
FwdTree: {[4\times1 double] [3\times1\times2 double] [2\times2\times2 double] [1\times4\times2 double]}

```

Compute the price of the stepped coupon bonds.
```

PHJM = hjmprice(HJMT, ISet)

```

\section*{PHJM =}
100.6763
100.7368
100.9266
101.0115

\section*{Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds}

The data for the interest-rate term structure is as follows:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
Create a RateSpec.
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RS =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4×1 double]
Rates: [4×1 double]

```
```

 EndTimes: [4×1 double]
 StartTimes: [4×1 double]
 EndDates: [4×1 double]
 StartDates: 734139
 ValuationDate: 734139
Basis: 0
EndMonthRule: 1

```

Create an instrument portfolio of three stepped callable bonds and three stepped vanilla bonds and display the instrument portfolio.
```

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014'
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; %Callable in one year
% Bonds with embedded option
ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);
% Vanilla bonds
ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);
instdisp(ISet)

| Index | Type | CouponRate | Settle | Maturity | OptSpec | Strike ExerciseDates |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | OptEmBond | [Cell] | $01-$ Jan-2010 | $01-$ Jan-2012 | call | 100 |
| 2 | OptEmBond | [Cell] | $01-$ Jan-2010 | $01-$ Jan-2013 | call | 100 |
| 3 | OptEmBond | [Cell] | $01-$ Jan-2011 | | | |
| 3 | 010 | $01-$ Jan-2014 -2011 | | | | |

| Index | Type | CouponRate | Settle | Maturity | Period | Basis | EndMonthRule | IssueDa |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2012 | 1 | 0 | 1 | NaN |
| 5 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2013 | 1 | 0 | 1 | NaN |
| 6 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2014 | 1 | 0 | 1 | NaN |

```

Build the tree with the following data:
```

Volatility = [.2; .19; .18; .17];
CurveTerm = [1; 2; 3; 4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);

```
```

HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec)
HJMT =
struct with fields:
FinObj: 'HJMFwdTree'
VolSpec: [1\times1 struct]
TimeSpec: [1×1 struct]
RateSpec: [1×1 struct]
tObs: [0 1 2 3]
dObs: [734139 734504 734869 735235]
TFwd: {[4\times1 double] [3\times1 double] [2\times1 double] [3]}
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
FwdTree: {[4\times1 double] [3\times1\times2 double] [2\times2\times2 double] [1\times4\times2 double]}

```

Price the instrument set using hjmprice.
PHJM = hjmprice(HJMT, ISet)

PHJM =
100.3682
100.1557
99.9232
100.7368
100.9266
101.0115

The first three rows correspond to the price of the stepped callable bonds and the last three rows correspond to the price of the stepped vanilla bonds.

\section*{Compute the Price of a Portfolio of Instruments}

The data for the interest-rate term structure is as follows:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

```

Create a RateSpec.
```

RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RS =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4×1 double]
Rates: [4×1 double]
EndTimes: [4\times1 double]
StartTimes: [4×1 double]
EndDates: [4\times1 double]
StartDates: 734504
ValuationDate: 734504
Basis: 0
EndMonthRule: 1

```

Create an instrument portfolio with two range notes and a floating rate note with the following data and display the results:
```

Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
% First Range Note
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];
% Second Range Note
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates = [0.048 0.059; 0.055 0.068 ; 0.07 0.09];
% Create an InstSet
InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);
% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);
% Display the portfolio instrument

```

\section*{instdisp(InstSet)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Index & Type & Spread & Settle & Maturity & RateSched & FloatReset & Basis & Princ \\
\hline 1 & RangeFloat & 200 & 01-Jan-2011 & 01-Jan-2014 & [Struct] & 1 & 0 & 100 \\
\hline 2 & RangeFloat & 200 & 01-Jan-2011 & 01-Jan-2014 & [Struct] & 1 & 0 & 100 \\
\hline Index & Type Spre & d Sett & & ity & Reset Bas & is Principal & EndM & nthRu \\
\hline 3 & Float 200 & 01-J & an-2011 0 & an-2014 1 & 0 & 100 & 1 & \\
\hline
\end{tabular}

The data to build the tree is as follows:
```

Volatility = [.2; .19; .18; .17];
CurveTerm = [1; 2; 3; 4];
MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
HJMTS = hjmtimespec(ValuationDate, MaTree);
HJMVS = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVS, RS, HJMTS)
HJMT =
struct with fields:
FinObj: 'HJMFwdTree'
VolSpec: [1\times1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1×1 struct]
tObs: [l0 1 1 2 3]
dObs: [734504 734869 735235 735600]
TFwd: {[4\times1 double] [3\times1 double] [2\times1 double] [3]}
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
FwdTree: {[4\times1 double] [}3\times1\times2\mathrm{ double] [2 < 2 2 double] [1×4×2 double]}

```

Price the portfolio.
```

Price = hjmprice(HJMT, InstSet)

```
Price =
    91.1555
    90.6656
    105.5147

\section*{Create a Float-Float Swap and Price with hjmprice}

Use instswap to create a float-float swap and price the swap with hjmprice.
```

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.02 .03],today,datemnth(today,60),[], [], [], [1 1]);
VolSpec = hjmvolspec('Constant', .2);
TimeSpec = hjmtimespec(today,cfdates(today,datemnth(today,60),1));
HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec);
hjmprice(HJMTree,IS)
ans =
-4.3220

```

\section*{Price Multiple Swaps with hjmprice}

Use instswap to create multiple swaps and price the swaps with hjmprice.
```

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[.08 300],today,datemnth(today,60),[], [], [], [1 0]);
VolSpec = hjmvolspec('Constant', .2);
TimeSpec = hjmtimespec(today,cfdates(today,datemnth(today,60),1));
HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec);
hjmprice(HJMTree,IS)
ans =
4.3220
-4.3220
-0.2701

```
- "Computing Instrument Prices" on page 2-84

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
hjmsens | hjmtree | hjmvolspec | instadd | intenvprice | intenvsens
Introduced before R2006a

\section*{himsens}

Instrument prices and sensitivities from Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline HJMTree & \begin{tabular}{l} 
Heath-Jarrow-Morton tree sampling a forward-rate process. See \\
hjmtree for information on creating HJMTree.
\end{tabular} \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of instruments. Instruments are \\
categorized by type. Each type can have different data fields. \\
The stored data field is a row vector or character vector for each \\
instrument.
\end{tabular} \\
\hline Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options structure created with \\
derivset.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with hjmtree. NINST instruments from a financial instrument variable, InstSet, are priced. hjmsens handles instrument types: 'Bond ', 'CashFlow', 'OptBond', 'OptEmBond', 'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat', 'Swap'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to hjmtree. See hjmtree for information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to hjmtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility \(\sigma(t, T)\). Vega is computed by finite differences in calls to hjmtree. See hjmvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by- 1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a \(1 \%\) shift in the volatility process.

\section*{Examples}

\section*{Compute Instrument Sensitivities Using an HJM Interest-Rate Tree}

Load the tree and instruments from the deriv.mat data file. Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.
```

load deriv.mat;
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'});
instdisp(HJMSubSet)

```
\begin{tabular}{lllllll} 
Index & Type CouponRate Settle & Maturity & Period & Basis EndMonthRule & IssueDat \\
1 & Bond 0.04 & \(01-\) Jan-2000 & \(01-\) Jan-2003 & 1 & NaN & NaN \\
2 & Bond 0.04 & \(01-\) Jan-2000 & \(01-\) Jan-2004 & 2 & NaN & NaN
\end{tabular}
\begin{tabular}{lllllll} 
Index Type Strike Settle & Maturity & CapReset Basis Principal Name & Quanti \\
3 & Cap 0.03 & \(01-J a n-2000\) & \(01-J a n-2004\) & 1 & NaN & NaN
\end{tabular}

Compute the Delta and Gamma for the cap and bond instruments.
```

[Delta, Gamma] = hjmsens(HJMTree, HJMSubSet)
Warning: Not all cash flows are aligned with the tree. Result will be
approximated.
Delta =
-272.6462
-347.4315
294.9700
Gamma =
1.0e+03
1.0299
1.6227
6.8526

```
- "Computing Instrument Sensitivities" on page 2-93

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
hjmprice | hjmtree | hjmvolspec | instadd
Introduced before R2006a

\section*{himtimespec}

Specify time structure for Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}

TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline ValuationDate & Scalar date marking the pricing date and first observation in the tree. Specify as serial date number or date character vector. \\
\hline Maturity & Number of levels (depth) of the tree. A number of levels (NLEVELS)-by- 1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. \\
Default =1. This argument determines the formula for the discount factors: \\
Compounding \(=1,2,3,4,6,12\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units; for example, \(\mathrm{T}=\mathrm{F}\) is one year. \\
Compounding \(=365\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis. \\
Compounding \(=-1\) \\
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for an HJM tree and determines the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for hjmtree. The state observation dates are [Settle; Maturity (1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

\section*{Examples}

\section*{Set the Number of Levels and Node Times for an HJM Tree}

This example shows how to specify an eight-period tree with semiannual nodes (every six months) and use exponential compounding to report rates.

Compounding = - 1 ;
ValuationDate = '15-Jan-1999';
Maturity = datemnth(ValuationDate, 6*(1:8)');
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

TimeSpec =
struct with fields:
FinObj: 'HJMTimeSpec'
ValuationDate: 730135
Maturity: [8×1 double]
Compounding: -1
Basis: 0
EndMonthRule: 1
- "Specifying the Time Structure (TimeSpec)" on page 2-70
- "Creating Trees" on page 2-72
- "Examining Trees" on page 2-73

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
hjmtree | hjmvolspec
Introduced before R2006a

\section*{himtree}

Construct Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline VolSpec & \begin{tabular}{l} 
Volatility process specification. Sets the number of factors and \\
the rules for computing the volatility \(\sigma(t, T)\) for each factor. See \\
hjmvolspec for information on the volatility process.
\end{tabular} \\
\hline RateSpec & \begin{tabular}{l} 
Interest-rate specification for the initial rate curve. See intenvset \\
for information on declaring an interest-rate variable.
\end{tabular} \\
\hline TimeSpec & \begin{tabular}{l} 
Tree time layout specification. Defines the observation dates of the \\
HJM tree and the compounding rule for date to time mapping and \\
price-yield formulas. See hjmtimespec for information on the tree \\
structure.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

HJMTree \(=\) hjmtree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and forward-rate information on a bushy tree.

\section*{Examples}

Using the data provided, create an HJM volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create an HJM tree using hjmtree.
```

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ['01-01-2000'; '01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'];
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'; '01-01-2005'];

```

Rates \(=\) [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
CurveTerm \(=\) [1; 2; 3; 4; 5];
HJMVolSpec \(=\) hjmvolspec('Stationary', Volatility , CurveTerm);
RateSpec = intenvset('Compounding', Compounding, ...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);
HJMTimeSpec \(=\) hjmtimespec(ValuationDate, EndDates, Compounding); HJMTree \(=\) hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)

HJMTree \(=\)
FinObj: 'HJMFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct] RateSpec: [ \(1 \times 1\) struct]
tObs: [lllll \(\left.0 \begin{array}{llll}0 & 2 & 3 & 4\end{array}\right]\)
dObs: [730486 730852 731217731582 731947]
TFwd: \{[5x1 double] [4x1 double] [3x1 double] [2x1 double] [4]\}
CFlowT: \{[5x1 double] [4x1 double] [3x1 double] [2x1 double] [5]\}
FwdTree: \{[5x1 double] [4x1x2 double] [3x2x2 double] [2x4x2 double] [1x8x2 double]\}
Use treeviewer to observe the tree you have created.
treeviewer(HJMTree)


\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
hjmprice | hjmtimespec | hjmvolspec | intenvset
Introduced before R2006a

\section*{himvolspec}

Specify Heath-Jarrow-Morton interest-rate volatility process

\section*{Syntax}
```

Volspec = hjmvolspec(varargin)

```

\section*{Arguments}

The arguments to hjmvolspec vary according to the type and number of volatility factors specified when calling the function. Factors are specified by pairs of names and parameter sets. Factor names can be 'Constant', 'Stationary', 'Exponential', 'Vasicek', or 'Proportional'. The parameter set is specific for each of these factor types:
- Constant volatility (Ho-Lee):
```

VolSpec = hjmvolspec('Constant', Sigma_0)

```
- Stationary volatility: VolSpec = hjmvolspec('Stationary', CurveVol, CurveTerm)
- Exponential volatility: VolSpec = hjmvolspec('Exponential', Sigma_0, Lambda)
- Vasicek, Hull-White: VolSpec = hjmvolspec('Vasicek', Sigma_0, CurveDecay, CurveTerm)
- Nearly proportional stationary: VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, MaxSpot)

You can specify more than one factor by concatenating names and parameter sets.
The following table defines the various arguments to hjmvolspec.
\begin{tabular}{ll} 
Argument & Description \\
\hline Sigma_0 & Scalar base volatility over a unit time. \\
Lambda & Scalar decay factor.
\end{tabular}
\begin{tabular}{ll} 
Argument & Description \\
CurveVol & \begin{tabular}{l} 
Number of curves (NCURVES)-by1 vector of Vol values at sample \\
points.
\end{tabular} \\
CurveDecay & \begin{tabular}{l} 
NCURVES-by-1 vector of Decay values at sample points.
\end{tabular} \\
CurveProp & NCURVES-by-1 vector of Prop values at sample points. \\
CurveTerm & NCURVES-by-1 vector of Term sample points. \\
\hline \begin{tabular}{l} 
Note: See the volatility specifications formulas below for a description of Vol, Decay, \\
Prop, and Term.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Volspec \(=\) hjmvolspec(varargin) computes VolSpec, a structure that specifies the volatility model for hjmtree.
hjmvolspec specifies an HJM forward-rate volatility process. Each factor is specified with one of the functional forms.
\begin{tabular}{|l|l|}
\hline Volatility Specification & Formula \\
\hline Constant & \(\sigma(t, T)=\) Sigma_0 \\
\hline Stationary & \(\sigma(t, T)=\) Vol(T-t) \(=\) Vol(Term) \\
\hline Exponential & \(\sigma(t, T)=\) Sigma_0*exp(-Lambda*(T-t)) \\
\hline Vasicek, Hull-White & \(\sigma(t, T)=\) Sigma_0*exp(-Decay(T-t)) \\
\hline Proportional & \(\sigma(t, T)=\operatorname{Prop}(T-\mathrm{t}) * \max (\operatorname{SpotRate}(\mathrm{t})\), MaxSpot \()\) \\
\hline
\end{tabular}

The volatility process is \(\sigma(t, T)\), where \(t\) is the observation time and \(T\) is the starting time of a forward rate. In a stationary process, the volatility term is \(T-t\). Multiple factors can be specified sequentially.

The time values \(T, t\), and Term are in coupon interval units specified by the Compounding input of hjmtimespec. For instance if Compounding \(=2\), Term \(=1\) is a semiannual period (six months).

\section*{Examples}

\section*{Compute the VolSpec Structure to Specify a Proportional Volatility Model for HJMTree}

This example shows how to compute the VolSpec structure to specify the volatility model for hjmtree when volatility is single-factor proportional.
```

CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [1; 2; 3];
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, 1e6)
VolSpec =
struct with fields:
FinObj: 'HJMVolSpec
FactorModels: {'Proportional'}
FactorArgs: {{1\times3 cell}}
SigmaShift: 0
NumFactors: 1
NumBranch: 2
PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]

```

\section*{Compute the VolSpec Structure to Specify an Exponential Volatility Model for HJMTree}

This example shows how to compute the VolSpec structure to specify the volatility model for hjmtree when volatility is two-factor exponential and constant.
```

VolSpec = hjmvolspec('Exponential', 0.1, 1, 'Constant', 0.2)
VolSpec =
struct with fields:
FinObj: 'HJMVolSpec'
FactorModels: {'Exponential' 'Constant'}
FactorArgs: {{1\times2 cell} {1\times1 cell}}
SigmaShift: 0
NumFactors: 2
NumBranch: 3

```
```

 PBranch: [0.2500 0.2500 0.5000]
 Fact2Branch: [2\times3 double]

```
- "Specifying the Volatility Model (VolSpec)" on page 2-67
- "Creating Trees" on page 2-72
- "Examining Trees" on page 2-73

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
hjmtimespec | hjmtree
Introduced before R2006a

\section*{HullWhite IF class}

Create Hull-White one-factor model

\section*{Description}

The Hull-White one-factor model is specified using the zero curve, alpha, and sigma parameters for the equation
\[
d r=[\theta(t)-a(t) r] d t+\sigma(t) d W
\]
where:
\(d r\) is the change in the short-term interest rate over a small interval.
\(r\) is the short-term interest rate.
\(\Theta(t)\) is a function of time determining the average direction in which \(r\) moves, chosen such that movements in \(r\) are consistent with today's zero coupon yield curve.
\(a\) is the mean reversion rate.
\(d t\) is a small change in time.
\(\sigma\) is the annual standard deviation of the short rate.
\(W\) is the Brownian motion.

\section*{Construction}

OBJ = HullWhite1F(ZeroCurve,alpha, sigma) constructs an object for a Hull-White one-factor model.

For example:
Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
```

ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
alpha = .1;
sigma = .01;
HW1F = HullWhite1F(irdc,alpha,sigma);

```

\section*{Properties}

The following properties are from the HullWhite1F class.

\section*{ZeroCurve}

ZeroCurve is specified using the output from IRDataCurve or RateSpec. This is the zero curve used to evolve the path of future interest rates.

\section*{Attributes:}

\section*{SetAccess}
public
GetAccess
public

\section*{Alpha}

Mean reversion specified either as a scalar or function handle which takes time as an input and returns a scalar mean reversion value.

\section*{Attributes:}

SetAccess
GetAccess
public
public

\section*{Sigma}

Volatility specified either as a scalar or function handle which takes time as an input and returns a scalar mean volatility.

\section*{Attributes:}

SetAccess
GetAccess

\section*{Methods}
simTermStructs
public
public

Simulate term structures for Hull-White one-factor model

\section*{Definitions}

\section*{Hull-White One-Factor Model}

The Hull-White model is a single-factor, no-arbitrage yield curve model in which the short-term rate of interest is the random factor or state variable. No-arbitrage means that the model parameters are consistent with the bond prices implied in the zero coupon yield curve.

\section*{Examples}

\section*{Construct a Hull-White One-Factor Model}

Construct a Hull-White one-factor model.
```

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
alpha = .1;
sigma = .01;

```
```

HW1F = HullWhite1F(irdc,alpha,sigma)
HW1F =
HullWhite1F with properties:
ZeroCurve: [1×1 IRDataCurve]
Alpha: @(t,V)inAlpha
Sigma: @(t,V)inSigma

```

Use the simTermStructs method with the HullWhite1F model to simulate term structures.

SimPaths = simTermStructs(HW1F, 10,'nTrials',100);

\section*{Simulate the Price of a Bond Using a Hull-White One-Factor Model Until the Bond's Maturity}

Define the zero curve data.
```

Settle = datenum('4-Apr-2016');
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates =[[0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
ZeroDates = datemnth(Settle,ZeroTimes*12);
RateSpec = intenvset('StartDates', Settle,'EndDates', ZeroDates, 'Rates', ZeroRates)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 2
Disc: [8\times1 double]
Rates: [8\times1 double]
EndTimes: [}8\times1\mathrm{ double]
StartTimes: [}8\times1\mathrm{ double]
EndDates: [8\times1 double]
StartDates: 736424
ValuationDate: 736424
Basis: 0
EndMonthRule: 1

```

Define the bond parameters.
```

Maturity = datemnth(Settle,12*5);
CouponRate = 0;

```

Define the Hull-White parameters.
```

alpha = .1;
sigma = .01;
HW1F = HullWhite1F(RateSpec,alpha,sigma)
HW1F =

```
    HullWhite1F with properties:
    ZeroCurve: [1×1 IRDataCurve]
    Alpha: @(t,V)inAlpha
    Sigma: @(t,V)inSigma

Define the simulation parameters.
```

nTrials = 100;
nPeriods = 12*5;
deltaTime = 1/12;
SimZeroCurvePaths = simTermStructs(HW1F, nPeriods,'nTrials',nTrials,'deltaTime',deltaT:
SimDates = datemnth(Settle,1:nPeriods);
Preallocate and initialize for the simulation.

```
```

SimBondPrice = zeros(nPeriods+1,nTrials);

```
SimBondPrice = zeros(nPeriods+1,nTrials);
SimBondPrice(1,:,:) = bondbyzero(RateSpec,CouponRate,Settle,Maturity);
SimBondPrice(1,:,:) = bondbyzero(RateSpec,CouponRate,Settle,Maturity);
SimBondPrice(end,:,:) = 100;
```

SimBondPrice(end,:,:) = 100;

```

Compute the bond values for each simulation date and path, note that you can vectorize over the trial dimension.
```

for periodidx=1:nPeriods-1
simRateSpec = intenvset('StartDate',SimDates(periodidx),'EndDates',...
datemnth(SimDates(periodidx),ZeroTimes*12),'Rates',squeeze(SimZeroCurvePaths(pe
SimBondPrice(periodidx+1,:) = bondbyzero(simRateSpec,CouponRate,SimDates(periodidx
end
plot([Settle SimDates],SimBondPrice)

```
```

datetick
ylabel('Bond Price')
xlabel('Simulation Dates')
title('Simulated Bond Price')

```


\section*{Simulate the Total Return of a Bond Porifolio Until Maturity}

Define the zero curve data.
```

Settle = datenum('4-Apr-2016');
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates =[[-0.01 -0.009 -0.0075 -0.003 -0.002 -0.001 0.002 0.0075]';
ZeroDates = datemnth(Settle,ZeroTimes*12);
RateSpec = intenvset('StartDates', Settle,'EndDates', ZeroDates, 'Rates', ZeroRates)

```
```

RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 2
Disc: [8\times1 double]
Rates: [}8\times1\mathrm{ double]
EndTimes: [}8\times1\mathrm{ double]
StartTimes: [}8\times1\mathrm{ double]
EndDates: [}8\times1\mathrm{ double]
StartDates: 736424
ValuationDate: 736424
Basis: 0
EndMonthRule: 1

```

Define the bond parameters for the five bonds in the portfolio.
```

Maturity = datemnth(Settle,12*5); % All bonds have the same maturity
CouponRate = [0.035;0.04;0.02;0.015;0.042]; % Different coupon rates for the bonds
nBonds = length(CouponRate);

```

Define the Hull-White parameters.
```

alpha = .1;
sigma = .01;
HW1F = HullWhite1F(RateSpec,alpha,sigma)
HW1F =
HullWhite1F with properties:
ZeroCurve: [1×1 IRDataCurve]
Alpha: @(t,V)inAlpha
Sigma: @(t,V)inSigma

```

Define the simulation parameters.
```

nTrials = 1000;
nPeriods = 12*5;
deltaTime = 1/12;

```
```

SimZeroCurvePaths = simTermStructs(HW1F, nPeriods,'nTrials',nTrials,'deltaTime',deltaT:
SimDates = datemnth(Settle,1:nPeriods);

```

Preallocate and initialize for the simulation.
```

SimBondPrice = zeros(nPeriods+1,nBonds,nTrials);
SimBondPrice(1,:,:) = repmat(bondbyzero(RateSpec,CouponRate,Settle,Maturity)',[1 1 nTr:
SimBondPrice(end,:,:) = 100;
[BondCF,BondCFDates,~,CFlowFlags] = cfamounts(CouponRate,Settle,Maturity);
BondCF(CFlowFlags == 4) = BondCF(CFlowFlags == 4) - 100;
SimBondCF = zeros(nPeriods+1,nBonds,nTrials);

```

Compute bond values for each simulation date and path. Note that you can vectorize over the trial dimension.
```

for periodidx=1:nPeriods
if periodidx < nPeriods
simRateSpec = intenvset('StartDate',SimDates(periodidx),'EndDates',...
datemnth(SimDates(periodidx),ZeroTimes*12), 'Rates', squeeze(SimZeroCurvePat
SimBondPrice(periodidx+1,:,:) = bondbyzero(simRateSpec,CouponRate,SimDates(per:
end
simidx = SimDates(periodidx) == BondCFDates;
SimCF = zeros(1,nBonds);
SimCF(any(simidx,2)) = BondCF(simidx);
ReinvestRate = 1 + SimZeroCurvePaths(periodidx+1,1,:);
SimBondCF(periodidx+1,:,:) = bsxfun(@times,bsxfun(@plus,SimBondCF(periodidx,:,:) ,S:
end

```

Compute the total return series.
```

TotalCF = SimBondPrice + SimBondCF;

```

Assume the bond portfolio is equally weighted and plot the simulated bond portfolio returns.
```

TotalCF = squeeze(sum(TotalCF,2));
TotRetSeries = bsxfun(@rdivide,TotalCF(2:end,:),TotalCF(1,:)) - 1;
plot(SimDates,TotRetSeries)
datetick
ylabel('Bond Portfolio Returns')
xlabel('Simulation Dates')

```
title('Simulated Bond Portfolio Returns')

Simulated Bond Portfolio Returns

- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation"
- Class Attributes
- Property Attributes

\section*{References}

Hull, J. Options, Futures, and Other Derivatives. Prentice-Hall, 2011.

\section*{See Also}
hwcalbycap | hwcalbyfloor | LiborMarketModel | LinearGaussian2F | simTermStructs

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

Introduced in R2013a

\section*{simTermStructs}

Class: HullWhite1F
Simulate term structures for Hull-White one-factor model

\section*{Syntax}
[ZeroRates,ForwardRates] = simTermStructs(nPeriods) [ZeroRates,ForwardRates] = simTermStructs(nPeriods, Name, Value)

\section*{Description}
[ZeroRates,ForwardRates] = simTermStructs(nPeriods) simulates future zero curve paths using a specified HullWhite1F object.
[ZeroRates,ForwardRates] = simTermStructs(nPeriods, Name, Value) simulates future zero curve paths using a specified HullWhite1F object with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{nPeriods}

Number of simulation periods.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

\section*{'deltaTime'}

Scalar time step between periods. deltaTime is measured in years.

\author{
Default: 1 year \\ 'nTrials'
}

Positive scalar integer number of simulated trials (sample paths) of NPERIODS observations each. If you do not specify a value for this argument, the default is 1 , indicating a single path of correlated state variables.

Default: 1

\section*{'antithetic'}

Boolean scalar flag indicating whether antithetic sampling is used to generate the Gaussian random variates that drive the zero-drift, unit-variance rate Brownian vector \(d W(t)\). For details, see simBySolution.

Default: false

\section*{'Z'}

Direct specification of the dependent random noise process used to generate the zerodrift, unit-variance rate Brownian vector \(d W(t)\) that drives the simulation. For details, see simBySolution for the HWV model.

Default: Uses default for simBySolution. If you do not specify a value for Z,simBySolution generates Gaussian variates.

\section*{'Tenor \({ }^{\prime}\)}

Numeric vector of maturities to compute at each time step.
Default: tenor of the HullWhite1F object's zero curve

\section*{Output Arguments}

\section*{ZeroRates}
nPeriods+1-by-nTenors-by-nTrials matrix of simulated zero-rate term structures.

\section*{ForwardRates}
nPeriods+1-by-nTenors-by-nTrials matrix of simulated forward-rate term structures.

\section*{Atributes}
\begin{tabular}{ll} 
Access & public \\
Static & false \\
Hidden & false
\end{tabular}

To learn about attributes of methods, see Method Attributes in the MATLAB ObjectOriented Programming documentation.

\section*{Examples}

\section*{Simulate Term Structures for the HullWhite IF Model}

Create a HW1F object.
```

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
alpha = .1;
sigma = .01;
HW1F = HullWhite1F(irdc,alpha,sigma)
HW1F =

```
    HullWhite1F with properties:
        ZeroCurve: [1×1 IRDataCurve]
            Alpha: \({ }^{(t, V) i n A l p h a ~}\)
            Sigma: @(t,V)inSigma

Simulate the term structures for the specified HW1F object.
SimPaths = simTermStructs(HW1F, 10,'nTrials',100);
- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation"

\section*{See Also}

HullWhite1F

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

Introduced in R2013a

\section*{hwcalbycap}

Calibrate Hull-White tree using caps

\section*{Syntax}
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity, MarketVolatility)
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity) [Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded \\
rate term structure. For more information, see \\
intenvset.
\end{tabular} \\
\hline MarketStrike & \begin{tabular}{l} 
NSTRIKES-by-1 vector of market cap strikes, as a \\
decimal number.
\end{tabular} \\
\hline MarketMaturity & NMATS-by-1 vector of market cap maturity dates. \\
\hline MarketVolatility & \begin{tabular}{l} 
NSTRIKES-by-NMATS matrix of market flat \\
volatilities, where NSTRIKES is the number of \\
caplet strikes from MarketStrike and NMATS is \\
the caplet maturity dates from MarketMaturity.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
(Optional) Scalar representing the rate at which \\
the cap is exercised, as a decimal number.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
(Optional) Scalar representing the settle date of \\
the cap.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
(Optional) Scalar representing the maturity date \\
of the cap.
\end{tabular} \\
\hline Reset & \begin{tabular}{l} 
(Optional) Scalar representing the frequency of \\
payments per year. Default is 1.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Principal & (Optional) Scalar representing the notional principal amount. Default is 100. \\
\hline Basis & \begin{tabular}{l}
(Optional) NINST-by-1 vector representing the basis used when annualizing the input forward rate. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- \(2=\) actual/ 360 \\
- \(3=\) actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline ValuationDate & (Optional) Scalar representing the observation date of the investment horizons. The default is the Settle date. \\
\hline LB & (Optional) 2-by-1 vector of the lower bounds, defined as [LBSigma; LBAlpha], used in the search algorithm function. Default is \(\mathrm{LB}=[0 ; 0]\). For more information, see lsqnonlin. \\
\hline UB & (Optional) 2-by-1 vector of the upper bounds, defined as [UBSigma; LBAlpha], used in the search algorithm function. Default is UB =[ ](unbound). For more information, see lsqnonlin. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline X0 & \begin{tabular}{l} 
(Optional) 2-by-1 vector of the initial values, \\
defined as [Sigma0; Alpha0], used in \\
the search algorithm function. Default is X0 \\
=[0.5;0.5]. For more information, see \\
lsqnonlin.
\end{tabular} \\
\hline OptimOptions & \begin{tabular}{l} 
(Optional) Structure with optimization \\
parameters. For more information, see \\
optimoptions.
\end{tabular} \\
\hline
\end{tabular}

Note: All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. You can specify parameter name/value pairs in any order. Names are case-insensitive and partial matches are allowed provided no ambiguities exist.

\section*{Description}
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity, MarketVolatility) to calibrate the Alpha (mean reversion) and Sigma (volatility) using cap market data and the Hull-White model using the entire cap surface.
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity) to estimate the Alpha (mean reversion) and Sigma (volatility) using cap market data and the HullWhite model to price a cap at a particular maturity/volatility.
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity, 'Name1', Value1...) to estimate the Alpha (mean reversion) and Sigma (volatility) using cap market data and the Hull-White model to price a floor at a particular maturity/ volatility with optional name-value pair arguments.

The hwcalbycap outputs are:
- Alpha - Scalar representing the mean reversion value obtained from calibrating the cap using market information.
- Sigma - Scalar representing the volatility value obtained from calibrating the cap using market information.
- OptimOut - Structure with optimization results.

\section*{Examples}

For an example of calibrating using the Hull-White model with Strike, Settle, and Maturity input arguments, see "Calibrating Hull-White Model Using Market Data" on page 2-96.

\section*{Calibrate Hull-White Model from Market Data Using the Entire Cap Volatility Surface}

This example shows how to use hwcalbycap input arguments for MarketStike, MarketMaturity, and MarketVolatility to calibrate the HW model using the entire cap volatility surface.

Cap market volatility data covering two strikes over 12 maturity dates.
```

Reset = 4;
MarketStrike = [0.0590; 0.0790];
MarketMaturity = {'21-Mar-2008'; '21-Jun-2008'; '21-Sep-2008'; '21-Dec-2008';
'21-Mar-2009'; '21-Jun-2009'; '21-Sep-2009'; '21-Dec-2009';
21-Mar-2010'; '21-Jun-2010'; '21-Sep-2010'; '21-Dec-2010'};
MarketMaturity = datenum(MarketMaturity);
MarketVolaltility = [llllllll
0.1735 0.1757 0.1755 0.1755;
0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794...
0.1733 0.1751 0.1750 0.1745];
Plot market volatility surface.

```
```

[AllMaturities,AllStrikes] = meshgrid(MarketMaturity,MarketStrike);

```
[AllMaturities,AllStrikes] = meshgrid(MarketMaturity,MarketStrike);
figure;
figure;
surf(AllMaturities,AllStrikes,MarketVolaltility)
surf(AllMaturities,AllStrikes,MarketVolaltility)
datetick
datetick
xlabel('Maturity')
xlabel('Maturity')
ylabel('Strike')
ylabel('Strike')
zlabel('Volatility')
zlabel('Volatility')
title('Market Volatility Data')
```

title('Market Volatility Data')

```


Set interest rate term structure and create a RateSpec.
Settle = '21-Jan-2008';
Compounding \(=4\);
Basis = 0;
Rates \(=[0.0627 ; 0.0657 ; 0.0691 ; 0.0717 ; 0.0739 ; 0.0755 ; 0.0765 ; 0.0772\); \(0.0779 ; 0.0783 ; 0.0786 ; 0.0789]\);
EndDates \(=\left\{{ }^{\prime} 21-\right.\) Mar-2008';'21-Jun-2008';'21-Sep-2008';'21-Dec-2008'; ...
'21-Mar-2009'; '21-Jun-2009'; '21-Sep-2009';'21-Dec-2009'; ....
'21-Mar-2010'; '21-Jun-2010';'21-Sep-2010'; '21-Dec-2010' \};
RateSpec \(=\) intenvset('ValuationDate', Settle, 'StartDates', Settle, ... 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding,... 'Basis', Basis)

RateSpec \(=\)

\section*{FinObj: 'RateSpec'}

Compounding: 4
Disc: [12x1 double]
Rates: [12×1 double]
EndTimes: [12×1 double]
StartTimes: [12x1 double]
EndDates: [12×1 double]
StartDates: 733428
```

ValuationDate: 733428
Basis: 0
EndMonthRule: 1

```

Calibrate Hull-White model from market data.
```

o = optimoptions('lsqnonlin','TolFun',1e-5,'Display','off');
[Alpha, Sigma] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity,...
MarketVolaltility, 'Reset', Reset,'Basis', Basis, 'OptimOptions', o)
Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag = 3.
> In hwcalbycapfloor>optimizeOverCapSurface at 232
In hwcalbycapfloor at }7
In hwcalbycap at 81
Alpha =
0.0943
Sigma =
0.0146

```

\section*{Compare with Black prices.}

BlkPrices = capbyblk(RateSpec,AllStrikes(:), Settle, AllMaturities(:),... MarketVolaltility(:),'Reset', Reset, 'Basis', Basis);

BlkPrices =
0.0604

0
0.2729
0.0006
0.6498
0.0412
1.1121
0.1426
1.6426
0.3131
2.1869
0.4998
2.7056
0.6894
3.2124
0.8815
3.7311
1.0686
4.2246
1.2790
4.7027
1.4810
5.1877
1.6919

Setup Hull-White tree using calibrated parameters, alpha and sigma.
```

VolDates = EndDates;
VolCurve = Sigma*ones(numel(EndDates),1);
AlphaDates = EndDates;
AlphaCurve = Alpha*ones(numel(EndDates),1);
HWVolSpec = hwvolspec(Settle, VolDates, VolCurve, AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(Settle, EndDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec, 'Method', 'HW2000')
HWTree =
FinObj: 'HWFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.6593 1.6612 2.6593 3.6612 4.6593 5.6612 6.6593 7.6612 8.6593 9.6612 10.6593]
dObs: [llllllllllll
CFlowT: {1x12 cell}
Probs: {1x11 cell}
Connect: {1\times11 cell}
FwdTree: {1x12 cell}

```

Compute Hull-White prices based on the calibrated tree.
```

HWPrices = capbyhw(HWTree, AllStrikes(:), Settle, AllMaturities(:), Reset, Basis)
HWPrices =
0.0601
0
0.2788
0
0.6580
0.0518
1.1254
0.1485
1.6591
0.3123
2.2076
0.5022
2.7319
0.6883
3.2459
0.8774

```
\[
\begin{aligned}
& 3.7771 \\
& 1.0900 \\
& 4.2769 \\
& 1.2875 \\
& 4.7645 \\
& 1.4845 \\
& 5.2572 \\
& 1.6921
\end{aligned}
\]

Plot Black prices against the calibrated Hull-White tree prices.
figure;
plot(AllMaturities(:), BlkPrices, 'or', AllMaturities(:), HWPrices, '*b'); datetick('x', 2)
xlabel('Maturity');
ylabel('Price');
title('Black and Calibrated (HW) Prices');
legend('Black Price', 'Calibrated HW Tree Price','Location', 'NorthWest'); grid on


\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2
See Alsocapbyblk | HullWhite1F | hwcalbyfloor | hwtree | lsqnonlin
Introduced in R2009a

\section*{hwcalbyfloor}

Calibrate Hull-White tree using floors

\section*{Syntax}
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec, MarketStrike, MarketMaturity, MarketVolatility)
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity) [Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded \\
rate term structure. For more information, see \\
intenvset.
\end{tabular} \\
\hline MarketStrike & \begin{tabular}{l} 
NSTRIKES-by-1 vector of market floor strikes as a \\
decimal number.
\end{tabular} \\
\hline MarketMaturity & NMATS-by-1 vector of market floor maturity dates. \\
\hline MarketVolatility & \begin{tabular}{l} 
NSTRIKES-by-NMATS matrix of market flat \\
volatilities.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
(Optional) Scalar representing the rate at which \\
the floor is exercised, as a decimal number.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
(Optional) Scalar representing the settle date of the \\
floor.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
(Optional) Scalar representing the maturity date of \\
the floor.
\end{tabular} \\
\hline Reset & \begin{tabular}{l} 
(Optional) Scalar representing the frequency of \\
payments per year. Default is 1.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Principal & (Optional) Scalar representing the notional principal amount. Default is 100. \\
\hline Basis & \begin{tabular}{l}
(Optional) NINST-by-1 vector representing the basis used when annualizing the input forward rate. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- 8 = actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\mathrm{actual} / 365\) (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline ValuationDate & (Optional) Scalar representing the observation date of the investment horizons. The default is the Settle date. \\
\hline LB & (Optional) 2-by-1 vector of the lower bounds, defined as [LBSigma; LBAlpha], used in the search algorithm function. Default is \(L B=[0 ; 0]\). For more information, see lsqnonlin. \\
\hline UB & (Optional) 2-by-1 vector of the upper bounds, defined as [UBSigma; LBAlpha], used in the search algorithm function. Default is UB =[ ](unbound). For more information, see lsqnonlin. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline X0 & \begin{tabular}{l} 
(Optional) 2-by-1 vector of the initial values, \\
defined as [Sigma0; Alpha0], used in the search \\
algorithm function. Default is X0 \(=[0.5 ; 0.5]\). For \\
more information, see lsqnonlin.
\end{tabular} \\
\hline OptimOptions & \begin{tabular}{l} 
(Optional) Structure with optimization parameters. \\
For more information, see optimoptions.
\end{tabular} \\
\hline
\end{tabular}

Note: All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. You can specify parameter name/value pairs in any order. Names are case-insensitive and partial matches are allowed provided no ambiguities exist.

\section*{Description}
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec, MarketStrike, MarketMaturity, MarketVolatility) to calibrate the Alpha (mean reversion) and Sigma (volatility) using cap market data and the Hull-White model using the entire floor surface.
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity) to estimate the Alpha (mean reversion) and Sigma (volatility) using floor market data and the Hull-White model to price a floor at a particular maturity/volatility.
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity, 'Name1', Value1...) to estimate the Alpha (mean reversion) and Sigma (volatility) using floor market data and the Hull-White model to price a floor at a particular maturity/volatility with optional name-value pair arguments.

The hwcalbyfloor outputs are:
- Alpha - Scalar representing the mean reversion value obtained from calibrating the floor using market information.
- Sigma - Scalar representing the volatility value obtained from calibrating the floor using market information.
- OptimOut - Structure with optimization results.

\section*{Examples}

For an example of calibrating using the Hull-White model with Strike, Settle, and Maturity input arguments, see "Calibrating Hull-White Model Using Market Data" on page 2-96.

\section*{Calibrate Hull-White Model from Market Data Using the Entire Floor Volatility Surface}

This example shows how to use hwcalbyfloor input arguments for MarketStike, MarketMaturity, and MarketVolatility to calibrate the HW model using the entire floor volatility surface.

Floor market volatility data covering two strikes over 12 maturity dates.
```

Reset = 4;
MarketStrike = [0.0590; 0.0790];
MarketMaturity = {'21-Mar-2008'; '21-Jun-2008'; '21-Sep-2008'; '21-Dec-2008';
21-Mar-2009'; '21-Jun-2009'; '21-Sep-2009'; '21-Dec-2009';
21-Mar-2010'; '21-Jun-2010'; '21-Sep-2010'; '21-Dec-2010'};
MarketMaturity = datenum(MarketMaturity);

```

```

 0.1735 0.1757 0.1755 0.1755;
 0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794...
 0.1733 0.1751 0.1750 0.1745];
 Plot market volatility surface.

```
```

[AllMaturities,AllStrikes] = meshgrid(MarketMaturity,MarketStrike);

```
[AllMaturities,AllStrikes] = meshgrid(MarketMaturity,MarketStrike);
figure;
figure;
surf(AllMaturities,AllStrikes,MarketVolaltility)
surf(AllMaturities,AllStrikes,MarketVolaltility)
datetick
datetick
xlabel('Maturity')
xlabel('Maturity')
ylabel('Strike')
ylabel('Strike')
zlabel('Volatility')
zlabel('Volatility')
title('Market Volatility Data')
```

title('Market Volatility Data')

```


Set interest rate term structure and create a RateSpec.
Settle = '21-Jan-2008';
Compounding \(=4\);
Basis = 0;
Rates \(=[0.0627 ; 0.0657 ; 0.0691 ; 0.0717 ; 0.0739 ; 0.0755 ; 0.0765 ; 0.0772\); \(0.0779 ; 0.0783 ; 0.0786 ; 0.0789] ;\)
EndDates = \{'21-Mar-2008'; '21-Jun-2008';'21-Sep-2008'; '21-Dec-2008'; ...
'21-Mar-2009';'21-Jun-2009';'21-Sep-2009';'21-Dec-2009'; ....
'21-Mar-2010';'21-Jun-2010';'21-Sep-2010';'21-Dec-2010'\};
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,... 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding,... 'Basis',Basis)

RateSpec =

\section*{FinObj: 'RateSpec'}

Compounding: 4
Disc: [12×1 double]
Rates: [12×1 double]
EndTimes: [12x1 double]
StartTimes: [12x1 double]
EndDates: [12×1 double]
StartDates: 733428
```

ValuationDate: 733428
Basis: 0
EndMonthRule: 1

```

Calibrate Hull-White model from market data.
```

o = optimoptions('lsqnonlin','TolFun',1e-5,'Display','off');
[Alpha, Sigma] = hwcalbyfloor(RateSpec, MarketStrike, MarketMaturity,...
MarketVolaltility, 'Reset', Reset,'Basis', Basis, 'OptimOptions', o)
Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag = 3.
> In hwcalbycapfloor>optimizeOverCapSurface at 232
In hwcalbycapfloor at 79
In hwcalbyfloor at 81
Alpha =
0.0835
Sigma =
0.0145

```

\section*{Compare with Black prices.}

BlkPrices = floorbyblk(RateSpec,AllStrikes(:), Settle, AllMaturities(:),... MarketVolaltility(:), 'Reset', Reset, 'Basis', Basis)

BlkPrices =

0
0.2659
0.0010
0.5426
0.0021
0.6841
0.0042
0.7947
0.0081
0.8970
0.0128
0.9947
0.0217
1.1145
0.0340
1.2448
0.0402
1.3415
0.0610
1.4947
0.0827
1.6458
0.1071
1.7951

Setup Hull-White tree using calibrated parameters, alpha, and sigma.
```

VolDates = EndDates;
VolCurve = Sigma*ones(numel(EndDates),1);
AlphaDates = EndDates;
AlphaCurve = Alpha*ones(numel(EndDates),1);
HWVolSpec = hwvolspec(Settle, VolDates, VolCurve, AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(Settle, EndDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec, 'Method', 'HW2000')
HWTree =
FinObj: 'HWFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.6593 1.6612 2.6593 3.6612 4.6593 5.6612 6.6593 7.6612 8.6593 9.6612 10.6593]
dObs: [l733428 733488 733580 733672 733763 733853 733945 734037 734128 734218 734310 734402]
CFlowT: {1\times12 cell}
Probs: {1x11 cell}
Connect: {1\times11 cell}
FwdTree: {1\times12 cell}

```

Compute Hull-White prices based on the calibrated tree.
```

HWPrices = floorbyhw(HWTree, AllStrikes(:), Settle, AllMaturities(:), Reset, Basis)
HWPrices =
0
0.2644
0.0067
0.5404
0.0101
0.6924
0.0169
0.7974
0.0236
0.8919
0.0320
0.9919
0.0460
1.1074
0.0649

```
1.2340
0.0829
1.3558
0.1096
1.4957
0.1406
1.6418
0.1724
1.7877

Plot Black prices against the calibrated Hull-White tree prices.
figure;
plot(AllMaturities(:), BlkPrices, 'or', AllMaturities(:), HWPrices, '*b'); datetick('x', 2)
xlabel('Maturity');
ylabel('Price');
title('Black and Calibrated (HW) Prices');
legend('Black Price', 'Calibrated HW Tree Price','Location', 'NorthWest'); grid on


\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
floorbyblk | HullWhite1F | hwcalbycap | hwtree | lsqnonlin

Introduced in R2009a

\section*{hwprice}

Instrument prices from Hull-White interest-rate tree

\section*{Syntax}
[Price, PriceTree] = hwprice(HWTree, InstSet, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline HWTree & Interest-rate tree structure created by hwtree. \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of NINST instruments. Instruments \\
are categorized by type; each type can have different data fields. \\
The stored data field is a row vector or character vector for each \\
instrument.
\end{tabular} \\
\hline Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options structure created with \\
derivset.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = hwprice(HWTree, InstSet, Options) computes arbitrage-free prices for instruments using an interest-rate tree created with hwtree. All instruments contained in a financial instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
hwprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat', 'Swap'. See instadd to construct defined types.

Related single-type pricing functions are:
- bondbyhw: Price a bond from a Hull-White tree.
- capbyhw: Price a cap from a Hull-White tree.
- cfbyhw: Price an arbitrary set of cash flows from a Hull-White tree.
- fixedbyhw: Price a fixed-rate note from a Hull-White tree.
- floatbyhw: Price a floating-rate note from a Hull-White tree.
- floorbyhw: Price a floor from a Hull-White tree.
- optbndbyhw: Price a bond option from a Hull-White tree.
- optembndbyhw: Price a bond with embedded option by a Hull-White tree.
- optfloatbybdt: Price a floating-rate note with an option from a Hull-White tree.
- optemfloatbybdt: Price a floating-rate note with an embedded option from a HullWhite tree.
- rangefloatbyhw: Price range floating note using a Hull-White tree.
- swapbyhw: Price a swap from a Hull-White tree.
- swaptionbyhw: Price a swaption from a Hull-White tree.

\section*{Examples}

\section*{Price the Cap and Bond Instruments Contained in an Instrument Set}

Load the HW tree and instruments from the data file deriv.mat.
```

load deriv.mat;
HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'});
instdisp(HWSubSet)
instdisp(HWSubSet)
Index Type CouponRate Settle
2 Bond 0.04 01-Jan-2004 01-Jan-2008 1 N 0 NaN 1 NaN NaN NaN NaN N
Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity
3 Cap 0.06 01-Jan-2004 01-Jan-2008 1 1 0

```

Price the cap and bond instruments.
[Price, PriceTree] = hwprice(HWTree, HWSubSet);
100.9188
99.3296
0.5837

You can use treeviewer to see the prices of these three instruments along the price tree.


First 4\% Bond (Maturity 2007)


Second 4\% Bond (Maturity 2008)


\section*{Price Multi-Stepped Coupon Bonds}

The data for the interest-rate term structure is as follows:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
Create the| RateSpec |.
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RS =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4×1 double]
Rates: [4×1 double]
EndTimes: [4×1 double]
StartTimes: [4×1 double]
EndDates: [4×1 double]
StartDates: 734139
ValuationDate: 734139
Basis: 0
EndMonthRule: 1

```

Create a portfolio of stepped coupon bonds with different maturities.
```

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014'
ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

| Index | Type | CouponRate | Settle | Maturity | Period | Basis | EndMonthRule | IssueDat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2011 | 1 | 0 | 1 | NaN |
| 2 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2012 | 1 | 0 | 1 | NaN |
| 3 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2013 | 1 | 0 | 1 | NaN |
| 4 | Bond | [Cell] | 01-Jan-2010 | 01-Jan-2014 | 1 | 0 | 1 | NaN |

```

Build the tree with the following data:
```

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec)
HWT =
struct with fields:
FinObj: 'HWFwdTree'
VolSpec: [1\times1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1\times1 struct]
tObs: [l0 1 1 2 3]
dObs: [734139 734504 734869 735235]
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6]}
FwdTree: {[1.0350] [1.0677 1.0494 1.0314] [1\times5 double] [1\times7 double]}

```

Compute the price of the stepped coupon bonds.
```

PHW = hwprice(HWT, ISet)

```
PHW =
    100.6763
    100.7368
    100.9266
    101.0115

\section*{Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds}

The data for the interest-rate term structure is as follows:
Rates \(=\) [0.035; 0.042147; 0.047345; 0.052707];
```

ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
Create a RateSpec.
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RS =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4\times1 double]
Rates: [4\times1 double]
EndTimes: [4×1 double]
StartTimes: [4×1 double]
EndDates: [4\times1 double]
StartDates: 734139
ValuationDate: 734139
Basis: 0
EndMonthRule: 1

```

Create an instrument portfolio of three stepped callable bonds and three stepped vanilla bonds.
```

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014'
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; %Callable in one year

```

Bonds with embedded option.
ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,... ExerciseDates, 'Period', 1);

Vanilla bonds.
```

ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

```

Display the instrument portfolio.
```

instdisp(ISet)

```


Build the tree with the following data:
```

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec)
HWT =
struct with fields:
FinObj: 'HWFwdTree'
VolSpec: [1\times1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1×1 struct]
tObs: [0 1 1 2 3]
dObs: [734139 734504 734869 735235]
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6]}
FwdTree: {[1.0350] [1.0677 1.0494 1.0314] [1\times5 double] [1\times7 double]}

```

Compute the price of the stepped callable bonds and the stepped vanilla bonds.
```

PHW = hwprice(HWT, ISet)
PHW =
100.4089
100.2043
100.0197
100.7368
100.9266
101.0115

```

The first three rows correspond to the price of the stepped callable bonds and the last three rows correspond to the price of the stepped vanilla bonds.

\section*{Compute the Price of a Porifolio of Instruments}

The data for the interest-rate term structure is as follows:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

```

Create a RateSpec.
```

RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RS =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4×1 double]
Rates: [4\times1 double]
EndTimes: [4×1 double]
StartTimes: [4\times1 double]
EndDates: [4\times1 double]
StartDates: 734504
ValuationDate: 734504

```

Basis: 0

\section*{EndMonthRule: 1}

Create an instrument portfolio with two range notes and a floating rate note with the following data:
```

Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
% First Range Note
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];
% Second Range Note
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates = [0.048 0.059; 0.055 0.068 ; 0.07 0.09];

```

Create InstSet, add a floting-rate note, and display the portfolio instruments.
```

InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

```
\% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);
\% Display the portfolio instrument
instdisp(InstSet)
\begin{tabular}{lllllll} 
Index & Type & Spread Settle & Maturity & RateSched & FloatReset & Basis Princ: \\
1 & RangeFloat 200 & \(01-\) Jan-2011 & \(01-\) Jan-2014 & [Struct] & 1 & 0 \\
2 & RangeFloat 200 & \(01-\) Jan-2011 & \(01-\) Jan-2014 & [Struct] & 100 \\
\hline
\end{tabular}
\begin{tabular}{llllllll} 
Index & Type Spread Settle & Maturity & FloatReset & Basis Principal EndMonthRu \\
3 & Float 200 & \(01-J a n-2011\) & \(01-J a n-2014\) & 1 & 0 & 100 & 1
\end{tabular}

The data to build the tree is as follows:
```

VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;
HWVS = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...

```
```

AlphaDates, AlphaCurve);
HWTS = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVS, RS, HWTS)
HWT =
struct with fields:
FinObj: 'HWFwdTree'
VolSpec: [1\times1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1\times1 struct]
tObs: [00 1 2 3]
dObs: [734504 734869 735235 735600]
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6]}
FwdTree: {[1.0350] [1.0677 1.0494 1.0314] [1\times5 double] [1\times7 double]}

```

Price the portfolio.
```

Price = hwprice(HWT, InstSet)

```
Price =
    99.3327
    98.1580
    105.5147

\section*{Create a Float-Float Swap and Price with hwprice}

Use instswap to create a float-float swap and price the swap with hwprice.
RateSpec = intenvset('Rates', .05,'StartDate', today, 'EndDate', datemnth(today, 60)); IS = instswap([.02 .03],today, datemnth(today,60), [], [], [], [1 1]); VolSpec \(=\) hwvolspec (today, datemnth(today, 60), .01, datemnth(today, 60), .1); TimeSpec \(=\) hwtimespec(today,cfdates(today, datemnth(today, 60), 1)); HWTree \(=\) hwtree(VolSpec, RateSpec, TimeSpec); hwprice (HWTree, IS)

\section*{ans =}
\(-4.3220\)

\section*{Price Multiple Swaps with hwprice}

Use instswap to create multiple swaps and price the swaps with hwprice.
```

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[.08 300],today,datemnth(today,60),[], [], [], [1 0]);
VolSpec = hwvolspec(today,datemnth(today,60),.01,datemnth(today,60),.1);
TimeSpec = hwtimespec(today,cfdates(today,datemnth(today,60),1));
HWTree = hwtree(VolSpec,RateSpec,TimeSpec);
hwprice(HWTree,IS)

```
ans =
    4.3220
    -4.3220
    -0.2701
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ hwsens | hwtree | instadd | intenvprice | intenvsens \\ Introduced before R2006a
}

\section*{hwsens}

Instrument prices and sensitivities from Hull-White interest-rate tree

\section*{Syntax}
[Delta, Gamma, Vega, Price] = hwsens(HWTree, InstSet, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline HWTree & Interest-rate tree structure created by hwtree. \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of NINST instruments. Instruments \\
are categorized by type; each type can have different data fields. \\
The stored data field is a row vector or character vector for each \\
instrument.
\end{tabular} \\
\hline Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options structure created with \\
derivset.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
[Delta, Gamma, Vega, Price] = hwsens(HWTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with the hwtree function. NINST instruments from a financial instrument variable, InstSet, are priced. hwsens handles instrument types: 'Bond ', 'CashFlow', 'OptBond', 'OptEmBond', 'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat', 'Swap'. See instadd for information on instrument types.
Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to hwtree. See hwtree for information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to hwtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility \(\sigma(t, T)\). Vega is computed by finite differences in calls to hwtree. See hwvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by- 1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a \(1 \%\) shift in the volatility process.

\section*{Examples}

\section*{Compute Instrument Sensitivities Using an HW Interest-Rate Tree}

Load the tree and instruments from the deriv.mat data file. Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.
```

load deriv.mat;
HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'});
instdisp(HWSubSet)

| Index | Type CouponRate Settle | Maturity | Period | Basis | EndMonthRule | IssueDat | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Bond 0.04 | $01-$ Jan-2004 | $01-$ Jan-2007 | 1 | 0 | 1 | NaN |
| 2 | Bond 0.04 | $01-$ Jan-2004 | $01-$ Jan-2008 | 1 | 0 | 1 | NaN |

| Index | Type Strike Settle | Maturity | CapReset | Basis Principal Name | Quanti | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | Cap 0.06 | $01-J a n-2004$ | $01-J a n-2008$ | 1 | 0 | 100 | 6% Cap |

```

Compute the Delta and Gamma for the cap and bond instruments.
[Delta, Gamma] = hwsens(HWTree, HWSubSet)

\section*{Delta =}
-291. 2580
-374.6368 60.9580

Gamma =
\(1.0 e+03\)
0.8584
1.4609
5.5994
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ hwprice | hwtree | hwvolspec | instadd
}

Introduced before R2006a

\section*{hwtimespec}

Specify time structure for Hull-White interest-rate tree

\section*{Syntax}

TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline ValuationDate & Scalar date marking the pricing date and first observation in the tree. Specify as a serial date number or date character vector. \\
\hline Maturity & Number of levels (depth) of the tree. A number of levels (NLEVELS)-by- 1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default \(=-1\) (continuous compounding). This argument determines the formula for the discount factors: \\
Compounding \(=1,2,3,4,6,12=F\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units; for example, \(T=F\) is one year. \\
Compounding \(=365\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis. \\
Compounding \(=-1\) \\
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for a Hull-White tree and determines the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for hwtree. The state observation dates are [Settle; Maturity (1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

\section*{Examples}

\section*{Set the Number of Levels and Node Times for a Hull-White Tree}

This example shows how to specify a four-period tree with annual nodes and use annual compounding to report rates.
```

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
Compounding = 1;
TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
struct with fields:
FinObj: 'HWTimeSpec'
ValuationDate: 731947
Maturity: [4×1 double]
Compounding: 1
Basis: 0
EndMonthRule: 1

```
- "Specifying the Time Structure (TimeSpec)" on page 2-70
- "Creating Trees" on page 2-72
- "Examining Trees" on page 2-73
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
hwtree | hwvolspec
Introduced before R2006a

\section*{hwtree}

Construct Hull-White interest-rate tree

\section*{Syntax}
```

HWTree = hwtree(VolSpec, RateSpec, TimeSpec)
HWTree = hwtree(VolSpec, RateSpec, TimeSpec, Name,Value)

```

\section*{Description}

HWTree \(=\) hwtree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and interest-rate information on a recombining tree.

HWTree = hwtree(VolSpec, RateSpec, TimeSpec, Name, Value) creates a structure containing time and interest-rate information on a recombining tree with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{VolSpec}

Volatility process specification. See hwvolspec for information on the volatility process.

\section*{RateSpec}

Interest-rate specification for the initial rate curve. See intenvset for information on declaring an interest-rate variable.

\section*{TimeSpec}

Tree time layout specification. Defines the observation dates of the HW tree and the compounding rule for date to time mapping and price-yield formulas. See hwtimespec for information on the tree structure.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

\section*{'Method'}

Method specifies the Hull-White method upon which the tree-node connectivity algorithm is based. Possible values are HW1996 and HW2000.

Note: hwtree supports two tree-node connectivity algorithms. HW1996 is based on the original paper published in the Journal of Derivatives, and HW2000 is the general version of the algorithm, as specified in the paper published in August 2000.

Default: HW2000

\section*{Output Arguments}

\section*{HWTree}

Structure containing time and interest rate information of a trinomial recombining tree.

\section*{Examples}

Using the data provided, create a Hull-White volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a Hull-White tree using hwtree.
```

Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004';'12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];

```
```

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...

```
AlphaDates, AlphaCurve);
RateSpec \(=\) intenvset('Compounding', Compounding, \(\ldots\)
    'ValuationDate', ValuationDate,...
    'StartDates', ValuationDate,...
    'EndDates', VolDates,...
    'Rates', Rates);

HWTimeSpec = hwtimespec(ValuationDate, VolDates, Compounding); HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree =
```

 FinObj: 'HWFwdTree'
 VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [llllll}
dObs: [731947 732312 732677 733042]
CFlowT: {[4\times1 double] [3\times1 double] [2x1 double] [3.9973]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6]}
FwdTree: {[1.0278] [1.0536 1.0356 1.0178] [1.0847 1.0661 1.0478 1.0298 1.0121] [1x7 double]}

```

Use treeviewer to observe the tree you have created.
treeviewer(HWTree)


\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Hull, J., and A. White. "Using Hull-White Interest Rate Trees." Journal of Derivatives. 1996.

Hull, J., and A. White. "The General Hull-White Model and Super Calibration." August 2000.

\author{
See Also \\ hwcalbycap | hwcalbyfloor | hwprice | hwtimespec | hwvolspec | intenvset \\ Introduced before R2006a
}

\section*{hwvolspec}

Specify Hull-White interest-rate volatility process

\section*{Syntax}

Volspec = hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve, InterpMethod)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ValuationDate & \begin{tabular}{l} 
Scalar value representing the observation date of the \\
investment horizon.
\end{tabular} \\
\hline VolDates & \begin{tabular}{l} 
Number of points (NPOINTS) -by-1 vector of yield volatility \\
end dates.
\end{tabular} \\
\hline VolCurve & \begin{tabular}{l} 
NPOINTS-by-1 vector or scalar of yield volatility values in \\
decimal form. The term structure of VolCurve is the yield \\
volatility represented by the value of the volatility of the \\
yield from time \(t=0\) to time \(t+i\), where \(i\) is any point \\
within the volatility curve.
\end{tabular} \\
\hline AlphaDates & MPOINTS-by-1 vector of mean reversion end dates. \\
\hline AlphaCurve & \begin{tabular}{l} 
MPOINTS-by-1 vector of positive mean reversion values or \\
scalar in decimal form.
\end{tabular} \\
\hline InterpMethod & \begin{tabular}{l} 
(Optional) Interpolation method. Default is 'linear ' . See \\
interp1 for more information.
\end{tabular} \\
\hline
\end{tabular}

Note: The number of points in VolCurve and AlphaCurve do not have to be the same.

\section*{Description}

Volspec = hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve, InterpMethod) creates a structure specifying the volatility for hwtree.

The volatility process is such that the variance of \(r(t+d t)-r(t)\) is defined as follows: \(\mathrm{V}=\left(\right.\) Volatility. \({ }^{\wedge} 2 .^{*}\left(1-\exp \left(-2^{*}\right.\right.\) Alpha .* dt) ) ) ./ (2 * Alpha). For more information on using Hull-White interest rate trees, see "Hull-White (HW) and Black-Karasinski (BK) Modeling" on page C-4.

\section*{Examples}

\section*{Create a Structure Specifying the Volatility for hwtree}

This example shows how to create a Hull-White volatility specification (VolSpec) using the following data.
```

ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve)
HWVolSpec =
struct with fields:
FinObj: 'HWVolSpec'
ValuationDate: 731947
VolDates: [4\times1 double]
VolCurve: [4\times1 double]
AlphaCurve: 0.1000
AlphaDates: 733408
VolInterpMethod: 'linear'

```
- "Specifying the Volatility Model (VolSpec)" on page 2-67
- "Creating Trees" on page 2-72
- "Examining Trees" on page 2-73
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
hwcalbycap | hwcalbyfloor | interp1
Introduced before R2006a

\section*{impvbybjs}

Determine implied volatility using Bjerksund-Stensland 2002 option pricing model

\section*{Syntax}

Volatility = impvbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, OptPrice, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 cell array of character vectors with values of \\
'call ' or ' put '.
\end{tabular} \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline OptPrice & \begin{tabular}{l} 
NINST-by-1 vector of American option prices from which the \\
implied volatilities of the underlying asset are derived.
\end{tabular} \\
\hline \hline
\end{tabular}

Note: All optional inputs are specified as matching parameter name/parameter value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. You can specify parameter name/parameter value pairs in any order; names are case-insensitive and partial matches are allowed provided no ambiguities exist.
\begin{tabular}{|l|l|}
\hline Limit & \begin{tabular}{l} 
(Optional) 1-by-2 positive vector representing the lower and \\
upper bound of the implied volatility search interval. Default is \\
{\([0.1 \quad 10]\), or \(10 \%\) to \(1000 \%\) per annum. }
\end{tabular} \\
\hline Tolerance & \begin{tabular}{l} 
(Optional) Positive scalar implied volatility termination \\
tolerance. Default is 1e-6.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Volatility = impvbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, OptPrice, 'Name1', Value1...) computes implied volatility using the Bjerksund-Stensland 2002 option pricing model.

Volatility is a NINST-by- 1 vector of expected implied volatility values. If no solution is found, a NaN is returned.

Note: impvbybjs computes implied volatility of American options with continuous dividend yield using the Bjerksund-Stensland option pricing model.

\section*{Examples}

\section*{Compute the Implied Volatility Using the Bjerksund-Stensland 2002 Option Pricing Model}

This example shows how to compute implied volatility using the Bjerksund-Stensland 2002 option pricing model. Consider three American call options with exercise prices of \(\$ 100\) that expire on July 1, 2008. The underlying stock is trading at \(\$ 100\) on January 1,2008 and pays a continuous dividend yield of \(10 \%\). The annualized continuously compounded risk-free rate is \(10 \%\) per annum and the option prices are \(\$ 4.063, \$ 6.77\) and \(\$ 9.46\). Using this data, calculate the implied volatility of the stock using the BjerksundStensland 2002 option pricing model.
```

AssetPrice = 100;
Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Strike = 100;
DivAmount = 0.1;
Rate = 0.1;
% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1);
StockSpec = stockspec(NaN, AssetPrice, {'continuous'}, DivAmount);
OptSpec = {'call'};
OptionPrice = [4.063;6.77;9.46];

```

ImpVol = impvbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec,... Strike, OptionPrice)

\section*{ImpVol =}
0.1500
0.2501
0.3500

The implied volatility is \(15 \%\) for the first call, and \(25 \%\) and \(35 \%\) for the second and third call options.
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Bjerksund-Stensland Model" on page 3-146

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Bjerksund, P. and G. Stensland. "Closed-Form Approximation of American Options." Scandinavian Journal of Management. Vol. 9, 1993, Suppl., pp. S88-S99.

Bjerksund, P. and G. Stensland. "Closed Form Valuation of American Options." Discussion paper 2002 (http://www.scribd.com/doc/215619796/Closed-form-Valuation-of-American-Options-by-Bjerksund-and-Stensland\#scribd)

\author{
See Also \\ optstockbybjs | optstocksensbybjs
}

\section*{Introduced in R2008b}

\section*{impvbyblk}

Determine implied volatility using Black option pricing model

\section*{Syntax}

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 cell array of character vectors with values of \\
'call ' or 'put '.
\end{tabular} \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline OptPrice & \begin{tabular}{l} 
NINST-by-1 vector of European option prices from which the \\
implied volatilities of the underlying asset are derived.
\end{tabular} \\
\hline \begin{tabular}{l} 
Note: All optional inputs are specified as matching parameter name/parameter \\
value pairs. The parameter name is specified as a character vector, followed by the \\
corresponding parameter value. You can specify parameter name/parameter value pairs \\
in any order; names are case-insensitive and partial matches are allowed provided no \\
ambiguities exist.
\end{tabular} \\
\hline Limit & \begin{tabular}{l} 
(Optional) Positive scalar representing the upper bound of the \\
implied volatility search interval. Default is 10, or 1000\% per \\
annum.
\end{tabular} \\
\hline Tolerance & \begin{tabular}{l} 
(Optional) Positive scalar implied volatility termination \\
tolerance. Default is 1e-6.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...) computes implied volatility using the Black option pricing model.

Volatility is a NINST-by- 1 vector of expected implied volatility values. If no solution is found, a NaN is returned.

\section*{Examples}

\section*{Compute the Implied Volatility Using the Black Option Pricing Model}

This example shows how to compute the implied volatility using the Black option pricing model. Consider a European call and put options on a futures contract with exercise prices of \(\$ 30\) for the put and \(\$ 40\) for the call that expire on September 1, 2008. Assume that on May 1, 2008 the contract is trading at \(\$ 35\). The annualized continuously compounded risk-free rate is \(5 \%\) per annum. Find the implied volatilities of the stock, if on that date, the call price is \(\$ 1.14\) and the put price is \(\$ 0.82\).
```

AssetPrice = 35;
Strike = [30; 40];
Rates = 0.05;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';
% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);
StockSpec = stockspec(NaN, AssetPrice);
% define the options
OptSpec = {'put';'call'};
Price = [1.14;0.82];
Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, Price)
Volatility =

```

> 0.4052
> 0.3021

The implied volatility is \(41 \%\) and \(30 \%\).
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Black Model" on page 3-144

\section*{More About}
- "Black Model" on page 3-140
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
optstockbyblk | optstocksensbyblk
Introduced in R2008b

\section*{impvbybls}

Determine implied volatility using Black-Scholes option pricing model

\section*{Syntax}

Volatility = impvbybls(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by- 1 cell array of character vectors with values of \\
'call ' or ' put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
NINST-by-1 vector of strike price values.
\end{tabular} \\
\hline OptPrice & \begin{tabular}{l} 
NINST-by-1 vector of European option prices from which the \\
implied volatilities of the underlying asset are derived.
\end{tabular} \\
\hline \hline
\end{tabular}

Note: All optional inputs are specified as matching parameter name/parameter value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. You can specify parameter name/parameter value pairs in any order; names are case-insensitive and partial matches are allowed provided no ambiguities exist.
\begin{tabular}{|l|l|}
\hline Limit & \begin{tabular}{l} 
(Optional) Positive scalar representing the upper bound of the \\
implied volatility search interval. Default is 10, or 1000\% per \\
annum.
\end{tabular} \\
\hline Tolerance & \begin{tabular}{l} 
(Optional) Positive scalar implied volatility termination \\
tolerance. Default is 1e-6.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Volatility = impvbybls(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...) computes implied volatility using the Black-Scholes option pricing model.

Volatility is a NINST-by-1 vector of expected implied volatility values. If no solution is found, a NaN is returned.

\section*{Examples}

\section*{Compute the Implied Volatility Using the Black-Scholes Option Pricing Model}

This example shows how to compute the implied volatility using the Black-Scholes option pricing model. Consider a European call and put options with an exercise price of \(\$ 40\) that expires on June 1, 2008. The underlying stock is trading at \(\$ 45\) on January 1, 2008 and the risk-free rate is \(5 \%\) per annum. The option price is \(\$ 7.10\) for the call and \(\$ 2.85\) for the put. Using this data, calculate the implied volatility of the European call and put using the Black-Scholes option pricing model.
```

AssetPrice = 45;
Settlement = 'Jan-01-2008';
Maturity = 'June-01-2008';
Strike = 40;
Rates = 0.05;
OptionPrice = [7.10; 2.85];
OptSpec = {'call';'put'};
% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settlement, 'StartDates', Settlement,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);
StockSpec = stockspec(NaN, AssetPrice);
ImpvVol = impvbybls(RateSpec, StockSpec, Settlement, Maturity, OptSpec,...
Strike, OptionPrice)
ImpvVol =
0.3175

```

\subsection*{0.4878}

The implied volatility is \(31.75 \%\) for the call and \(48.78 \%\) for the put.
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Black-Scholes Model" on page 3-142
- "Pricing European Call Options Using Different Equity Models"

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ optstockbybls | optstocksensbybls
}

Introduced in R2008b

\section*{impvbyrgw}

Determine implied volatility using Roll-Geske-Whaley option pricing model for American call option

\section*{Syntax}
```

Volatility = impvbyrgw(RateSpec, StockSpec, Settle,
Maturity, Strike, OptPrice, 'Name1', Value1...)

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline OptPrice & \begin{tabular}{l} 
NINST-by-1 vector of American call option prices from which \\
the implied volatilities of the underlying asset are derived.
\end{tabular} \\
\hline \begin{tabular}{l} 
Note: All optional inputs are specified as matching parameter name/parameter \\
value pairs. The parameter name is specified as a character vector, followed by the \\
corresponding parameter value. You can specify parameter name/parameter value pairs \\
in any order; names are case-insensitive and partial matches are allowed provided no \\
ambiguities exist.
\end{tabular} & \begin{tabular}{l} 
Limit
\end{tabular} \\
\hline \begin{tabular}{l} 
(Optional) Positive scalar representing the upper bound of the \\
implied volatility search interval. Default is 10, or 1000\% per \\
Tolerance
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Volatility = impvbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...) computes implied volatility using the Roll-Geske-Whaley option pricing model.

Volatility is a NINST-by- 1 vector of expected implied volatility values. If no solution is found, a NaN is returned.

Note: impvbyrgw computes implied volatility of American calls with a single cash dividend using the Roll-Geske-Whaley option pricing model.

\section*{Examples}

\section*{Compute the Implied Volatility Using the Roll-Geske-Whaley Option Pricing Model}

This example shows how to compute the implied volatility using the Roll-Geske-Whaley option pricing model. Assume that on July 1, 2008 a stock is trading at \(\$ 13\) and pays a single cash dividend of \(\$ 0.25\) on November 1,2008 . The American call option with a strike price of \(\$ 15\) expires on July 1, 2009 and is trading at \(\$ 1.346\). The annualized continuously compounded risk-free rate is \(5 \%\) per annum. Calculate the implied volatility of the stock using the Roll-Geske-Whaley option pricing model.
```

AssetPrice = 13;
Strike = 15;
Rates = 0.05;
Settle = 'July-01-08';
Maturity = 'July-01-09';
% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);
StockSpec = stockspec(NaN, AssetPrice, {'cash'}, 0.25, {'Nov 1,2008'});
Price = [1.346];
Volatility = impvbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike, Price)
Volatility =

```

\subsection*{0.3539}
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Roll-Geske-Whaley Model" on page 3-145

\section*{More About}
- "Roll-Geske-Whaley Model" on page 3-141
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ optstockbyrgw | optstocksensbyrgw \\ Introduced in R2008b
}

\section*{instadd}

Add types to instrument collection

\section*{Syntax}
```

InstSet = instadd(InstSetOld, TypeString, Data1, Data2, ...)
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle,
Basis)
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle,
Basis)
InstSet = instadd('Barrier', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, BarrierType, Barrier, Rebate)
InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)
InstSet = instadd('CBond', CouponRate, Settle, Maturity, ConvRatio
'CallStrike', CallStrike,'CallExDates', CallExDates,
'AmericanCall', AmericanCall, 'PutStrike', PutStrike,
'PutExDates', PutExDates, 'AmericanPut', AmericanPut,
'Period', Period,'Face', Face, 'Spread', Spread,
'IssueDate', IssueDate, 'FirstCouponDate', FirstCouponDate,
'LastCouponDate', LastCouponDate,'StartDate', StartDate)
InstSet = instadd('OptEmBond', CouponRate, Settle, Maturity,
OptSpec, Strike, ExerciseDates, 'AmericanOpt', AmericanOpt,
'Period',
Period, 'Basis', Basis, 'EndMonthRule', EndMonthRule,'Face',Face,
'IssueDate', IssueDate, 'FirstCouponDate', FirstCouponDate,
'LastCouponDate', LastCouponDate, 'StartDate', StartDate)
InstSet = instadd('OptBond', BondIndex, OptSpec, Strike,
ExerciseDates, AmericanOpt)
InstSet = instadd('Cap', Strike, Settle, Maturity, Reset, Basis,
Principal)
InstSet = instadd('Compound', UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt,COptSpec, CStrike, CSettle,
CExerciseDates, CAmericanOpt)
InstSet = instadd('Fixed', CouponRate, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule)

```
```

InstSet = instadd('Float', Spread, Settle, Maturity, Reset, Basis,
Principal, EndMonthRule, CapRate, FloorRate)
InstSet = instadd('Floor', Strike, Settle, Maturity, Reset, Basis,
Principal)
InstSet = instadd('Lookback', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt)
InstSet = instadd('OptFloat', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt)
InstSet = instadd('OptEmFloat', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, Reset, Basis, EndMonthRule, Principal)
InstSet = instadd('RangeFloat', Spread, Settle, Maturity,
RateSched, Reset, Basis, Principal, EndMonthRule)
InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity,
AmericanOpt)
InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset,
Basis, Principal, LegType, EndMonthRule, StartDate)
InstSet = instadd('Swaption', OptSpec, Strike, ExerciseDates,
Spread, Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal)

```

\section*{Description}

InstSet = instadd(InstSetOld, TypeString, Data1, Data2, ...) adds an instrument to an existing collection.

InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, Basis) adds an arbitrary cash flow instrument. (See also instcf.)

InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, Basis) adds an asian instrument. (See also instasian.)

InstSet \(=\) instadd('Barrier', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierType, Barrier, Rebate) adds a barrier instrument. (See also instbarrier.)

InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) adds a bond instrument. (See also instbond.)

InstSet = instadd('CBond', CouponRate, Settle, Maturity, ConvRatio
```

CallStrike', CallStrike,'CallExDates', CallExDates,
'AmericanCall', AmericanCall, 'PutStrike', PutStrike,
'PutExDates', PutExDates, 'AmericanPut', AmericanPut,
'Period', Period,'Face', Face, 'Spread', Spread,
'IssueDate', IssueDate, 'FirstCouponDate', FirstCouponDate,
'LastCouponDate', LastCouponDate,'StartDate', StartDate) adds a
convertible bond instrument. (See also instcbond.)

```
InstSet = instadd('OptEmBond', CouponRate, Settle, Maturity,
OptSpec, Strike, ExerciseDates, 'AmericanOpt', AmericanOpt,
'Period',
Period, 'Basis', Basis, 'EndMonthRule', EndMonthRule,'Face',Face,
'IssueDate', IssueDate, 'FirstCouponDate', FirstCouponDate,
'LastCouponDate', LastCouponDate, 'StartDate', StartDate) adds a bond
with embedded option instrument. (See also instoptembnd.)
InstSet = instadd('OptBond', BondIndex, OptSpec, Strike,
ExerciseDates, AmericanOpt) adds a bond option instrument. (See also
instoptbnd.)
InstSet = instadd('Cap', Strike, Settle, Maturity, Reset, Basis,
Principal) adds a cap instrument. (See also instcap.)
InstSet = instadd('Compound', UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle,
CExerciseDates, CAmericanOpt) adds a compound instrument. (See also
instcompound.)
InstSet = instadd('Fixed', CouponRate, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule) adds a fixed-rate note instrument. (See also
instfixed.)
InstSet = instadd('Float', Spread, Settle, Maturity, Reset, Basis,
Principal, EndMonthRule, CapRate, FloorRate) adds a floating-rate note
instrument. (See also instfloat.)
InstSet = instadd('Floor', Strike, Settle, Maturity, Reset, Basis,
Principal) adds a floor instrument. (See also instfloor.)
InstSet = instadd('Lookback', OptSpec, Strike, Settle,

ExerciseDates, AmericanOpt) adds a lookback instrument. (See also instlookback.)

InstSet = instadd('OptFloat', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) adds a floating-rate option instrument. (See also instoptfloat.)

InstSet = instadd('OptEmFloat', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, Reset, Basis, EndMonthRule, Principal) adds a floating-rate embedded option instrument. (See also instoptemfloat.)

InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched, Reset, Basis, Principal, EndMonthRule) adds a range floating note instrument. (See also instrangefloat.)

InstSet \(=\) instadd('OptStock', OptSpec, Strike, Settle, Maturity, AmericanOpt) adds a stock option instrument. (See also instoptstock.)

InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule, StartDate) adds a swap instrument. (See also instswap.)

InstSet = instadd('Swaption', OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal) adds a swaption instrument. (See also instswaption.)
instadd stores instruments of types 'Asian', 'Barrier', 'Bond', 'Cap', 'CashFlow', 'Compound', 'Fixed', 'Float', 'Floor', 'Lookback', 'OptBond', 'OptStock', 'Swap', or 'Swaption'. Financial Instruments Toolbox provides pricing and sensitivity routines for these instruments.

\section*{Input Arguments}

\section*{InstSet01d}

Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or character vector for each instrument. For more information on instrument data parameters, see the reference entries for individual instrument types. For example, see instcap for additional information on the cap instrument.

\section*{Output Arguments}

\section*{InstSet}

InstSet is an instrument set variable containing the new input data.

\section*{Examples}

\section*{Create a Portfolio with Two Cap Instruments and a 4\% Bond}

Define the bond:
```

Strike = [0.06; 0.07];
CouponRate = 0.04;
Settle = '06-Feb-2000';
Maturity = '15-Jan-2003';

```

Create a portfolio with two cap instruments and a \(4 \%\) bond and then display the portfolio:
```

InstSet = instadd('Cap', Strike, Settle, Maturity);
InstSet = instadd(InstSet, 'Bond', CouponRate, Settle, Maturity);
instdisp(InstSet)

| Index | Type Strike Settle | Maturity | CapReset Basis Principal | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Cap | 0.06 | $06-$ Feb-2000 | $15-$ Jan-2003 | 1 | 0 | 100 |
| 2 | Cap | 0.07 | $06-$ Feb-2000 | $15-$ Jan-2003 | 1 | 0 | 100 |

```
\begin{tabular}{lllllll} 
Index & Type CouponRate Settle & Maturity & Period Basis EndMonthRule IssueDate \\
3 & Bond 0.04 & \(06-\) Feb-2000 & \(15-\) Jan-2003 & 2 & 0 & 1
\end{tabular}
- "Portfolio Creation" on page 1-7
- "Creating Instruments or Properties" on page 1-19

\section*{More About}
- "Instrument Constructors" on page 1-18
```

See Also
instaddfield | instasian | instbarrier | instbond | instcap | instcbond
| instcf | instcompound | instdisp | instfixed | instfloat | instfloor
| instlookback | instoptbnd | instoptembnd | instoptstock | instswap |
instswaption
Introduced before R2006a

```

\section*{instaddfield}

Add new instruments to instrument collection

\section*{Syntax}
```

InstSet = instaddfield('FieldName', FieldList, 'Data',
DataList, 'Type', TypeString)
InstSet = instaddfield('FieldName', FieldList, 'FieldClass',
ClassList, 'Data', DataList, 'Type', TypeString)
InstSetNew = instaddfield(InstSet, 'FieldName', FieldList,
'Data', DataList,'Type',TypeString)

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline FieldList & \begin{tabular}{l} 
Number of fields, specified as a NFIELDS-by-1 cell array of \\
character vectors listing the name of each data field. FieldList \\
cannot be named with the reserved name Type or Index.
\end{tabular} \\
\hline DataList & \begin{tabular}{l} 
Number of instruments, specified as a NINST-by-M array or \\
NFIELDS-by-1 cell array of data contents for each field. Each \\
row in a data array corresponds to a separate instrument. Single \\
rows are copied to apply to all instruments to be worked on. \\
The number of columns is arbitrary, and data is padded along \\
columns.
\end{tabular} \\
\hline ClassList & \begin{tabular}{l} 
(Optional) Character vector or NFIELDS-by-1 cell array of \\
character vectors listing the data class of each field. The class \\
determines how DataList is parsed. Valid character vectors are \\
'dble ', ' date ', and ' char'. The 'FieldClass ', ClassList \\
pair is always optional. ClassList is inferred from existing field \\
names or from the data if not entered.
\end{tabular} \\
\hline TypeString & \begin{tabular}{l} 
Character vector specifying the type of instrument added. \\
Instruments of different types can have different Fieldname \\
collections.
\end{tabular} \\
\hline InstSet & \begin{tabular}{l} 
Variable containing a collection of instruments. Instruments \\
are classified by type; each type can have different Data fields.
\end{tabular} \\
\hline
\end{tabular}

The stored Data field is a row vector or character vector for each instrument.

\section*{Description}
```

InstSet = instaddfield('FieldName', FieldList, 'Data',

```

DataList, 'Type', TypeString) to create your own types of instruments or to append new instruments to an existing collection. Argument value pairs can be entered in any order.

InstSet = instaddfield('FieldName', FieldList, 'FieldClass', ClassList, 'Data', DataList, 'Type', TypeString) creates an instrument variable.

InstSetNew = instaddfield(InstSet, 'FieldName', FieldList, 'Data', DataList,'Type', TypeString) adds instruments to an existing instrument set, InstSet. The output InstSetNew is a new instrument set containing the input data.

\section*{Examples}

Build a portfolio around July options.
\begin{tabular}{crr} 
Strike & Call & Put \\
95 & 12.2 & 2.9 \\
100 & 9.2 & 4.9 \\
105 & 6.8 & 7.4
\end{tabular}
```

Strike = (95:5:105)'
CallP = [12.2; 9.2; 6.8]

```

Enter three call options with data fields Strike, Price, and Opt.
```

InstSet = instaddfield('Type','Option','FieldName',....
{'Strike','Price','Opt'}, 'Data',{ Strike, CallP, 'Call'});
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

```

Add a futures contract and set the input parsing class.
```

InstSet = instaddfield(InstSet,'Type','Futures',...
'FieldName',{'Delivery','F'},'FieldClass',{'date','dble'},...
'Data' ,{'01-Jul-99',104.4 });
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4

```

Add a put option.
```

FN = instfields(InstSet,'Type','Option')
InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName',FN, 'Data',{105, 7.4, 'Put'});
instdisp(InstSet)

| Index | Type | Strike | Price | Opt |
| :--- | :--- | :--- | ---: | :--- |
| 1 | Option | 95 | 12.2 | Call |
| 2 | Option 100 | 9.2 | Call | |
| 3 | Option 105 | 6.8 | Call | |

Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put

```

Make a placeholder for another put.
```

InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName','Opt','Data','Put')
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4

```
\begin{tabular}{lllcl} 
Index & Type & Strike & Price & Opt \\
5 & Option 105 & 7.4 & Put \\
6 & Option & NaN & NaN & Put
\end{tabular}

Add a cash instrument.
```

InstSet = instaddfield(InstSet, 'Type', 'TBill',...
'FieldName','Price','Data',99)
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put
Index Type Price
7 TBill 99

```

\section*{More About}
- "Instrument Constructors" on page 1-18

\author{
See Also \\ instadd | instdisp | instget | instgetcell|instsetfield \\ Introduced before R2006a
}

\section*{instasian}

Construct Asian option

\section*{Syntax}

InstSet = instasian(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) [FieldList, ClassList, TypeString] = instasian

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline InstSet & \begin{tabular}{l} 
Instrument variable. This argument is specified only when \\
adding asian instruments to an existing instrument set. See \\
instget for more information on the InstSet variable.
\end{tabular} \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 list of character vector values for 'Call' or \\
'Put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
NINST-by-1 vector of strike price values. Each row is the \\
schedule for one option.
\end{tabular} \\
\hline Settle & NINST-by-1 vector of Settle dates. \\
\hline ExerciseDates & \begin{tabular}{l} 
For a European option (AmericanOpt = 0): \\
NINST-by-1 vector of exercise dates. Each row is the schedule \\
for one option. For a European option, there is only one \\
exercise date, the option expiry date.
\end{tabular} \\
\begin{tabular}{l} 
For an American option (AmericanOpt = 1): \\
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any tree date \\
between or including the pair of dates on that row. If only one \\
non-NaN date is listed, or if ExerciseDates is NINST-by-1, the \\
option can be exercised between the valuation date of the stock \\
tree and the single listed exercise date.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline AmericanOpt & \begin{tabular}{l} 
(Optional) If AmericanOpt \(=0\), NaN, or is unspecified, the \\
option is a European option. If AmericanOpt \(=1\), the option \\
is an American option.
\end{tabular} \\
\hline AvgType & \begin{tabular}{l} 
(Optional) Character vector is 'arithmetic ' for arithmetic \\
average (default) or 'geometric' for geometric average.
\end{tabular} \\
\hline AvgPrice & \begin{tabular}{l} 
(Optional) Scalar representing the average price of the \\
underlying asset at Settle. This argument is used when \\
AvgDate < Settle. Default is the current stock price.
\end{tabular} \\
\hline AvgDate & \begin{tabular}{l} 
(Optional) Scalar representing the date on which the averaging \\
period begins. Default = Settle.
\end{tabular} \\
\hline
\end{tabular}

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN . Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [ ].

\section*{Description}

InstSet \(=\) instasian(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) specifies an Asian option.
[FieldList, ClassList, TypeString] = instasian displays the classes.
FieldList is a number of fields (NFIELDS)-by- 1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For an Asian option instrument, TypeString = 'Asian'.

\section*{Examples}

\section*{Create an Asian Option Instrument}

Load the example instrument set, deriv.mat, and set the required values for an asian option instrument.
load deriv.mat
Create a subportfolio with barrier and lookback options.
CRRSubSet = instselect(CRRInstSet,'Type',\{'Barrier', 'Lookback'\});
Define the asian instrument.
```

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';

```

Add a floating strike asian option to the instrument set.
```

InstSet = instasian(CRRSubSet, OptSpec, Strike, Settle, ExerciseDates);
instdisp(InstSet)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Index & Type & OptSpec & Strike S & Settle & ExerciseDates & American0pt & BarrierSpe & Barı \\
\hline 1 & Barrier & call & 105 & 01-Jan-2003 & 01-Jan-2006 & 1 & ui & 102 \\
\hline Index & Type & OptSpec & Strike & Settle & ExerciseDates & AmericanOpt & Name & Qua \\
\hline 2 & Lookback & call & 115 & 01-Jan-2003 & 01-Jan-2006 & 0 & Lookback1 & 7 \\
\hline 3 & Lookback & call & 115 & 01-Jan-2003 & 01-Jan-2007 & 0 & Lookback2 & 9 \\
\hline
\end{tabular}
\begin{tabular}{llllll} 
Index Type OptSpec Strike Settle & ExerciseDates & AmericanOpt AvgType AvgPri \\
4 & Asian put & NaN & \(01-\) Jan-2003 & \(01-\) Jan-2004 & 0
\end{tabular}
- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Creating Instruments or Properties" on page 1-19

\section*{More About}
- "Instrument Constructors" on page 1-18
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ instadd | instdisp | instget | instgetcell|instsetfield \\ Introduced before R2006a
}

\section*{instbarrier}

Construct barrier option

\section*{Syntax}
```

InstSet = instbarrier(InstSet, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate)
[FieldList, ClassList, TypeString] = instbarrier

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline InstSet & \begin{tabular}{l} 
Instrument variable. This argument is specified only when \\
adding barrier instruments to an existing instrument set. See \\
instget for more information on the InstSet variable.
\end{tabular} \\
\hline OptSpec & \begin{tabular}{l} 
NINST-by-1 list of character vector values for 'Call' or \\
'Put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l} 
NINST-by-1 vector of strike price values. Each row is the \\
schedule for one option.
\end{tabular} \\
\hline Settle & NINST-by-1 vector of Settle dates. \\
\hline ExerciseDates & \begin{tabular}{l} 
For a European option (AmericanOpt \(=\) 0): \\
NINST-by-1 vector of exercise dates. Each row is the schedule \\
for one option. For a European option, there is only one \\
exercise date, the option expiry date.
\end{tabular} \\
\begin{tabular}{l} 
For an American option (AmericanOpt \(=1\) 1): \\
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any tree date \\
between or including the pair of dates on that row. If only one \\
non-NaN date is listed, or if ExerciseDates is NINST-by-1, the \\
option can be exercised between the valuation date of the stock \\
tree and the single listed exercise date.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline AmericanOpt & \begin{tabular}{l} 
lf AmericanOpt \(=0\), NaN, or is unspecified, the option is \\
a European option. If AmericanOpt = 1, the option is an \\
American option.
\end{tabular} \\
\hline BarrierSpec & \begin{tabular}{l} 
List of values: \\
'UI ' : Up Knock In \\
'UO ' : Up Knock Out \\
'DI ' : Down Knock In \\
'DO ' : Down Knock Out
\end{tabular} \\
\hline Barrier & Vector of barrier values. \\
\hline Rebate & (Optional) Vector of rebate values. \\
\hline
\end{tabular}

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

\section*{Description}

InstSet = instbarrier(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate) specifies a barrier option.
[FieldList, ClassList, TypeString] = instbarrier displays the classes.
FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a barrier option instrument, TypeString = 'Barrier'.

\section*{Examples}

\section*{Create Two Barrier Option Instruments}

Create an instrument set of two barrier options with the following data:
```

OptSpec = {'put';'call'};
Strike = 112;
Settle = '01-Jan-2012';
ExerciseDates = '01-Jan-2015';
BarrierSpec = {'do';'ui'};
Barrier = [101;102];
AmericanOpt = 0;

```

Create the instrument set (InstSet) for the two barrier options.
InstSet = instbarrier(OptSpec, Strike, Settle, ExerciseDates,AmericanOpt, BarrierSpec,
Display the instrument set.
```

instdisp(InstSet)

```
\begin{tabular}{llllllll} 
Index & Type & OptSpec Strike Settle & ExerciseDates & AmericanOpt BarrierSpec Bar \\
1 & Barrier put & 112 & \(01-\) Jan-2012 & \(01-\) Jan-2015 & 0 & do & 101 \\
2 & Barrier call & 112 & \(01-\) Jan-2012 & \(01-\) Jan-2015 & 0 & ui & 102
\end{tabular}
- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Creating Instruments or Properties" on page 1-19

\section*{More About}
- "Instrument Constructors" on page 1-18
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ instadd | instdisp | instget \\ Introduced before R2006a
}

\section*{instbond}

Construct bond instrument

\section*{Syntax}
```

InstSet = instbond(CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face)
InstSet = instbond(InstSet, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face)
[FieldList, ClassList, TypeString] = instbond

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline InstSet & \begin{tabular}{l} 
Instrument variable. This argument is specified only \\
when adding bond instruments to an existing instrument \\
set. See instget for more information on the InstSet \\
variable.
\end{tabular} \\
\hline CouponRate & \begin{tabular}{l} 
Decimal annual rate indicating the annual percentage \\
rate used to determine the coupons payable on a bond. \\
CouponRate is a NINST-by-1 vector or NINST-by-1 \\
cell array of decimal annual rates, or decimal annual \\
rate schedules. For the latter case of a variable coupon \\
schedule, each element of the cell array is a NumDates- \\
by-2 cell array, where the first column is dates and the \\
second column is its associated rate. The date indicates the \\
last day that the coupon rate is valid.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
Settlement date. A vector of serial date numbers or date \\
character vectors. Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l} 
Maturity date. A vector of serial date numbers or date \\
character vectors.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Period & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default = 2. \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline IssueDate & (Optional) Date when a bond was issued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline FirstCouponDate & \begin{tabular}{l} 
(Optional) Date when a bond makes its first coupon \\
payment; used when bond has an irregular first coupon \\
period. When FirstCouponDate and LastCouponDate \\
are both specified, FirstCouponDate takes precedence in \\
determining the coupon payment structure. If you do not \\
specify a FirstCouponDate, the cash flow payment dates \\
are determined from other inputs.
\end{tabular} \\
\hline LastCouponDate & \begin{tabular}{l} 
(Optional) Last coupon date of a bond before the maturity \\
date; used when bond has an irregular last coupon \\
period. In the absence of a specified FirstCouponDate, \\
a specified LastCouponDate determines the coupon \\
structure of the bond. The coupon structure of a bond is \\
truncated at the LastCouponDate, regardless of where it \\
falls, and is followed only by the bond's maturity cash flow \\
date. If you do not specify a LastCouponDate, the cash \\
flow payment dates are determined from other inputs.
\end{tabular} \\
\hline StartDate & \begin{tabular}{l} 
(Optional) Date when a bond actually starts (that is, the \\
date when a bond's cash flows can be considered). To make \\
an instrument forward starting, specify this date as a \\
future date. If StartDate is not explicitly specified, the \\
effective start date is the Settle date.
\end{tabular} \\
\hline Face & \begin{tabular}{l} 
(Optional) Face or par value. Face is a NINST-by-1 vector \\
or NINST-by-1 cell array of face values, or face value \\
schedules. For the latter case, each element of the cell \\
array is a NumDates-by-2 cell array, where the first \\
column is dates and the second column is its associated \\
face value. The date indicates the last day that the face \\
value is valid. Default = 100.
\end{tabular} \\
\hline
\end{tabular}

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN . Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

\section*{Description}

InstSet = instbond(CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,

LastCouponDate, StartDate, Face) creates a new instrument set containing bond instruments.

InstSet = instbond(InstSet, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) adds bond instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instbond displays the classes.
FieldList is a number of fields (NFIELDS)-by-1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a bond instrument, TypeString = 'Bond'.

\section*{Examples}

\section*{Create a Bond Instrument}

Create a new instrument variable with the following information:
```

CouponRate= [0.035;0.04];
Settle= 'Nov-1-2013';
Maturity = 'Nov-1-2014';
Period =1;
InstSet = instbond(CouponRate, Settle, Maturity, ...
Period)
InstSet =
struct with fields:
FinObj: 'Instruments'
IndexTable: [1\times1 struct]
Type: {'Bond'}

```
```

 FieldName: {{11\times1 cell}}
 FieldClass: {{11\times1 cell}}
FieldData: {{11\times1 cell}}

```

Display the instrument set.
```

instdisp(InstSet)

```
\begin{tabular}{llllllll} 
Index & Type CouponRate Settle & Maturity & Period & Basis & EndMonthRule & IssueDat \\
1 & Bond 0.035 & O1-Nov-2013 & 01-Nov-2014 & 1 & 0 & 1 & NaN \\
2 & Bond 0.04 & \(01-\) Nov-2013 & \(01-\) Nov-2014 & 1 & 0 & 1 & NaN
\end{tabular}
- "Creating Instruments or Properties" on page 1-19

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
hjmprice | instaddfield | instdisp | instget | intenvprice

\section*{Introduced before R2006a}

\section*{instcap}

Construct cap instrument

\section*{Syntax}
```

InstSet = instcap(Strike, Settle, Maturity, Reset,
Basis, Principal)
InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset,
Basis, Principal)
[FieldList, ClassList, TypeString] = instcap

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline InstSet & Instrument variable. This argument is specified only when adding cap instruments to an existing instrument set. See instget for more information on the InstSet variable. \\
\hline Strike & Rate at which the cap is exercised, as a decimal number. \\
\hline Settle & Settlement date. Serial date number representing the settlement date of the cap. \\
\hline Maturity & Serial date number representing the maturity date of the cap. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 . \\
\hline
\end{tabular}

\section*{Description}

InstSet = instcap(Strike, Settle, Maturity, Reset, Basis, Principal) creates a new instrument set containing cap instruments.

InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset, Basis, Principal) adds cap instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instcap displays the classes.
FieldList is a number of fields (NFIELDS)-by- 1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a cap instrument, TypeString = 'Cap'.

Note: Use the optional argument, Principal, to pass a schedule for an amortizing cap.

\section*{Examples}

\section*{Create Two Cap Instruments}

Create a new instrument variable with the following information:
```

Strike = [0.035; 0.045];
Settle= 'Jan-1-2013';
Maturity = 'Jan-1-2014';
Reset = 1;
Basis = 1;
Principal = 1000;

```

Create the new cap instruments.
```

InstSet = instcap(Strike, Settle, Maturity, Reset, Basis, Principal)

```
InstSet =
    struct with fields:
            FinObj: 'Instruments'
    IndexTable: [ \(1 \times 1\) struct]
            Type: \{'Cap'\}
        FieldName: \(\{\{6 \times 1\) cell\}\}
    FieldClass: \(\{\{6 \times 1\) cell\}\}
        FieldData: \(\{\{6 \times 1\) cell\}\}

Display the cap instruments.
```

instdisp(InstSet)

```
\begin{tabular}{llllllll} 
Index & Type Strike Settle & Maturity & CapReset & Basis Principal \\
1 & Cap & 0.035 & \(01-\) Jan-2013 & \(01-\) Jan-2014 & 1 & 1 & 1000 \\
2 & Cap & 0.045 & \(01-\operatorname{Jan}-2013\) & \(01-\operatorname{Jan}-2014\) & 1 & 1 & 1000
\end{tabular}
- "Creating Instruments or Properties" on page 1-19

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2
```

See Also
hjmprice | instaddfield | instbond | instdisp | instfloor | instswap |
intenvprice
Introduced before R2006a

```

\section*{instcbond}

Construct CBond instrument for convertible bond

\section*{Syntax}
```

ISet = instcbond(CouponRate,Settle,Maturity,ConvRatio)
ISet = instcbond(

```
\(\qquad\)
``` , Name, Value)
ISet = instcbond(ISet,CouponRate,Settle,Maturity,ConvRatio)
ISet = instcbond(
```

$\qquad$

``` , Name, Value)
```

```
[FieldList,ClassList,TypeString] = instcbond
```

```
[FieldList,ClassList,TypeString] = instcbond
```


## Description

ISet = instcbond(CouponRate,Settle,Maturity,ConvRatio) creates a CBond instrument variable from data arrays.

ISet = instcbond( $\qquad$ , Name, Value) creates a CBond instrument variable from data arrays using optional name-value pair arguments.

ISet = instcbond(ISet,CouponRate,Settle,Maturity,ConvRatio) adds a CBond to an existing instrument set.

ISet = instcbond $\qquad$ , Name, Value) adds a CBond instrument to an existing instrument set using optional name-value pair arguments.
[FieldList,ClassList,TypeString] = instcbond lists the field metadata for the CBond instrument.

## Examples

## Create a CBond Instrument

Create a CBond instrument.
CouponRate = 0.03;
Settle = 'Jan-1-2014';
Maturity = 'Jan-1-2016';

```
CallStrike = 125;
CallExDates = [datenum('Jan-1-2015') datenum('Jan-1-2016')];
ConvRatio = 1.5;
Spread = 0.045;
InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio,...
'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,...
'AmericanCall', 1);
```

Display the InstSet for the convertible bond.

```
instdisp(InstSet)
```

```
Index Type CouponRate Settle Maturity ConvRatio Period IssueDate FirstC
1 CBond 0.03 01-Jan-2014
01-Jan-2016
1.5 2 NaN NaN
```


## Add a CBond Instrument to an Existing Portfolio Set

Create a bond instrument using instbond.

```
CouponRate= [0.035;0.04];
Settle= 'Nov-1-2013';
Maturity = 'Nov-1-2014';
Period =1;
InstSet = instbond(CouponRate,Settle,Maturity, ...
Period);
```

Add a CBond instrument to the existing portfolio set.

```
ConvRatio = 1.5;
InstSet = instadd(InstSet,'CBond',CouponRate,Settle,Maturity,ConvRatio);
instdisp(InstSet)
[FieldList,ClassList,TypeString] = instcbond
```

Index	Type CouponRate Settle	Maturity	Period Basis EndMonthRule	IssueDat		
1	Bond 0.035	$01-$ Nov-2013	$01-$ Nov-2014	1	0	1
2	Bond 0.04	$01-$ Nov-2013	$01-$ Nov-2014	1	0	1


Index	Type CouponRate Settle	Maturity	ConvRatio Period IssueDate FirstC				
3	CBond	0.035	$01-$ Nov-2013	$01-$ Nov-2014	1.5	2	NaN
4	CBond	0.04	$01-$ Nov-2013	$01-$ Nov-2014	1.5	2	NaN

```
FieldList =
 20\times1 cell array
 CouponRate'
 Settle'
 Maturity'
 ConvRatio'
 Period'
 'IssueDate'
 'FirstCouponDate'
 'LastCouponDate'
 'StartDate'
 ' Face
 'Spread'
 'CallStrike
 CallExDates'
 'AmericanCall'
 'PutStrike'
 'PutExDates'
 'AmericanPut'
 'ConvDates'
 'DefaultProbability'
 'RecoveryRate'
ClassList =
 20\times1 cell array
 cell'
 date'
 date'
 dble'
 dble'
 date'
 'date'
 'date
 'date'
 cell'
 dble'
 dble'
 date
 dble'
```

```
'dble'
'date'
'dble'
date'
dble'
dble'
```

```
TypeString =
```

cBond

## Input Arguments

## CouponRate - Bond coupon rate <br> positive decimal value

Bond coupon rate, specified as an NINST-by-1 positive decimal annual rate or an NINST-by- 1 cell array, where each element is a NumDates-by- 2 cell array. The first column of the NumDates-by- 2 cell array is dates and the second column is associated rates. The date indicates the last day that the coupon rate is valid.

## Data Types: double | cell

## Settle - Settlement date

scalar for serial nonnegative date number | scalar for date character vector
Settlement date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Note: The Settle date for every convertible bond is set to the ValuationDate of the stock tree. The bond argument, Settle, is ignored.

## Data Types: double | char

## Maturity - Maturity date

scalar for serial nonnegative date number | scalar for date character vector
Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

## Data Types: double | char

## ConvRatio - Number of shares convertible to one bond nonnegative scalar

Number of shares convertible to one bond, specified as an NINST-by-1 nonnegative scalar.

## Data Types: double

## ISet - Variable containing a collection of instruments

 structureVariable containing a collection of instruments, specified as a structure. Use thus argument to add a CBond (convertible bond) to an existing instrument set (ISet). Instruments within ISet are broken down by type, and each type can have different data fields. For more information on theISet variable, see instget.

Data Types: struct

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

Example: InstSet = instcbond(CouponRate, Settle, Maturity, ConvRatio, 'Spread ', Spread, 'CallExDates', 0 1)
'Period' - Coupons per year
2 per year (default) | vector
Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

## 'IssueDate' - Bond issue date <br> scalar for serial nonnegative date number | scalar for date character vector

Bond issue date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

## Data Types: double | char

## 'FirstCouponDate' - Irregular first coupon date

scalar for serial nonnegative date number | scalar for date character vector
Irregular first coupon date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char
'LastCouponDate' - Irregular last coupon date
scalar for serial nonnegative date number | scalar for date character vector
Irregular last coupon date, specified as an NINST-by-1 scalar using a serial nonnegative date number or date character vector.

Data Types: double | char

## 'Face' - Face value

100 (default) | scalar of nonnegative value | cell array of nonnegative values
Face value, specified as an NINST-by-1 scalar of nonnegative face values or an NINST-by- 1 cell array, where each element is a NumDates-by- 2 cell array. The first column of the NumDates-by- 2 cell array is dates and the second column is the associated face value. The date indicates the last day that the face value is valid.
Data Types: cell \| double

## 'Spread ' - Number of basis points over the reference rate 0 (default) | vector

Number of basis points over the reference rate, specified as an NINST-by-1 vector.
Data Types: double

## 'CallStrike' - Call strike price for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as:

- For a European call option - NINST-by-1 vector of nonnegative integers
- For a Bermuda call option - NINST-by-NSTRIKES matrix of strike price values, where each row is the schedule for one call option. If a call option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American call option — NINST-by-1 vector of strike price values for each call option.


## Data Types: single | double

# 'CallExDates ' - Call exercise date for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers 

Call exercise date for European, Bermuda, or American option, specified as:

- For a European option - NINST-by-1 vector of nonnegative integers
- For a Bermuda option - NINST-by-NSTRIKES matrix of exercise dates, where each row is the schedule for one call option. For a European option, there is only one CallExDate on the option expiry date.
- For an American option - NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each instrument, the call option can be exercised on any tree date between or including the pair of dates on that row. If CallExDates is NINST-by-1, the call option can be exercised between the ValuationDate of the stock tree and the single listed CallExDate.

Data Types: char | cell

## 'AmericanCall' - Call option type indicator

0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive integers [0, 1]

Call option type, specified as an NINST-by- 1 positive integer scalar flags with values 0 or 1.

- For a European or Bermuda option - AmericanCall is 0 for each European or Bermuda option.
- For an American option - AmericanCall is 1 for each American option. The AmericanCall argument is required to invoke American exercise rules.


## Data Types: single | double

## 'PutStrike' - Put strike values for European, Bermuda, or American option scalar | vector of positive integers [0,1]

Put strike values for a European, Bermuda, or American option, specified as:

- For a European put option - NINST-by-1 vector of nonnegative integers
- For a Bermuda put option - NINST-by-NSTRIKES matrix of strike price values, where each row is the schedule for one put option. If a put option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American put option - NINST-by-1 vector of strike price values for each put option.


## Data Types: single | double

## 'PutExDates ' - Put exercise date for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers

Put exercise date for a European, Bermuda, or American option, specified as:

- For a European option - NINST-by-1 vector of nonnegative integers
- For a Bermuda option - NINST-by-NSTRIKES matrix of exercise dates, where each row is the schedule for one put option. For a European option, there is only one PutExDate on the option expiry date.
- For an American option - NINST-by-1 or NINST-by-2 matrix of exercise date boundaries. For each instrument, the put option can be exercised on any tree date between or including the pair of dates on that row. If PutExDates is NINST-by-1, the put option can be exercised between the ValuationDate of the stock tree and the single listed PutExDate.

Data Types: char | cell

## 'AmericanPut ' - Put option type indicator

0 if AmericanPut is NaN or not entered (default) | scalar | vector of positive integers [0, 1]

Put option type, specified as NINST-by- 1 positive integer scalar flags with values 0 or 1 .

- For a European or Bermuda option - AmericanPut is 0 for each European or Bermuda option.
- For an American option - AmericanPut is 1 for each American option. The AmericanPut argument is required to invoke American exercise rules.

Data Types: single | double
'ConvDates ' - Convertible dates
MaturityDate (default) | scalar for serial nonnegative date number | scalar for date character vector

Convertible dates, specified as an NINST-by-1 or NINST-by-2 matrix of serial nonnegative date numbers or date character vectors. If ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including the pair of dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of the stock tree and the single listed ConvDates.

## Data Types: single | double | char

## Output Arguments

## ISet - Variable containing a collection of instruments

character vector | row vector
Variable containing a collection of instruments, returned as a row vector or character vector for each instrument. Instruments are broken down by type and each type can have different data fields. For more information on theISet variable, see instget.

## FieldList - Name of each data field for instrument type <br> cell array of character vectors

Name of each data field for instrument type, returned as an NFIELDS-by-1 cell array of character vectors.

## ClassList - Data class of each field

cell array of character vectors with valid values of 'dble', 'date', and 'char'
Data class of each field, returned as an NFIELDS-by-1 cell array of character vectors with valid character vector values of 'dble', 'date', and 'char'.

## TypeString - Type of instrument added

character vector
Type of instrument added, returned as character vector. When adding a CBond, the TypeString = 'CBond'.

## More About

- "Convertible Bond" on page 2-3

```
See Also
cbondbycrr | cbondbyeqp | crrprice | crrsens | eqpprice | eqpsens | instadd
| instdisp
```


## Introduced in R2015a

## instcf

Construct cash flow instrument

## Syntax

```
InstSet = instcf(CFlowAmounts, CFlowDates, Settle,
Basis)
InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle,
Basis)
[FieldList, ClassList, TypeString] = instcf
```


## Arguments

InstSet	Instrument variable. This argument is specified only when adding cash flow instruments to an existing instrument set. See instget for more information on the InstSet variable.
CFlowAmounts	Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.
CFlowDates	NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the date of the corresponding cash flow in CFlowAmounts.
Settle	Settlement date on which the cash flows are priced.
Basis	(Optional) Day-count basis of the instrument. A vector of integers.   - $0=$ actual/actual (default)   - $1=30 / 360$ (SIA)   - $2=$ actual $/ 360$   - 3 = actual/365   - $4=30 / 360$ (BMA)



Only one data argument is required to create an instrument. Other arguments can be omitted or passed as empty matrices []. Dates can be input as serial date numbers or date character vectors.

## Description

InstSet = instcf(CFlowAmounts, CFlowDates, Settle, Basis) creates a new cash flow instrument set from data arrays.

InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle, Basis) adds instruments of type CashFlow to an instrument set.
[FieldList, ClassList, TypeString] = instcf lists field metadata for an instrument of type CashFlow.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString specifies the type of instrument added; for example, TypeString = 'CashFlow'.

## More About

- "Supported Interest-Rate Instruments" on page 2-2

See Also<br>instadd | instdisp | instget | intenvprice

## Related Examples

- "Creating Instruments or Properties" on page 1-19

Introduced before R2006a

## instcompound

Construct compound option

## Syntax

```
InstSet = instcompound(UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle,
CExerciseDates, CAmericanOpt)
InstSet = instcompound(InstSet, UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle,
CExerciseDates, CAmericanOpt)
[FieldList, ClassList, TypeString] = instcompound
```


## Arguments

InstSet	Instrument variable. This argument is specified only when   adding compound instruments to an existing instrument set.   See instget for more information on the InstSet variable.
UOptSpec	Character vector with value of 'Call ' or 'Put'.
UStrike	1-by-1 vector of strike price values.
USettle	1-by-1 vector of Settle dates.
UExerciseDates	For a European option (UAmericanOpt = 0):   1-by-1 vector of exercise dates. For a European option, there   is only one exercise date, the option expiry date.   For an American option (UAmericanOpt = 1):   1-by-2 vector of exercise date boundaries. The option can be   exercised on any tree date. If only one non-NaN date is listed,   or if ExerciseDates is 1-by-1, the option can be exercised   between the valuation date of the stock tree and the single   listed exercise date.


UAmericanOpt	If UAmericanOpt = O, NaN, or is unspecified, the option is   a European option. If UAmericanOpt = 1, the option is an   American option.
COptSpec	NINST-by-1 list of character vector values for 'Call' or   'Put ' of the compound option.
CStrike	NINST-by-1 vector of strike price values. Each row is the   schedule for one option.
CSettle	1-by-1 vector containing the settlement or trade date.
CExerciseDates	For a European option (CAmericanOpt = 0):   NINST-by-1 vector of exercise dates. Each row is the   schedule for one option. For a European option, there is only   one exercise date, the option expiry date.
For an American option (CAmericanOpt = 1):	
NINST-by-2 vector of exercise date boundaries. For each   instrument, the option can be exercised on any tree date   between or including the pair of dates on that row. If only   one non-NaN date is listed, or if ExerciseDates is NINST-   by-1, the option can be exercised between the valuation date   of the stock tree and the single listed exercise date.	
CAmericanOpt	If CAmericanOpt = 0, NaN, or is unspecified, the option is   a European option. If CAmericanOpt = 1, the option is an   American option.

## Description

InstSet = instcompound(UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt) creates a new instrument set for a compound option.

InstSet = instcompound(InstSet, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt) adds a compound option to an existing instrument set.
[FieldList, ClassList, TypeString] = instcompound displays the classes.
FieldList is a number of fields (NFIELDS)-by- 1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a compound option instrument, TypeString = 'Compound'.

## Examples

## Create a Compound Option Instrument

Define a compound option instrument with the following data:

```
UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2012';
UExerciseDates = '01-Jan-2015';
UAmericanOpt = 0;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2012';
CExerciseDates = '01-Jan-2014';
CAmericanOpt = 0;
InstSet = instcompound(UOptSpec, UStrike, USettle,UExerciseDates, ...
UAmericanOpt, COptSpec, CStrike, CSettle,CExerciseDates, CAmericanOpt)
InstSet = instcompound(UOptSpec, UStrike, USettle,UExerciseDates, ...
UAmericanOpt, COptSpec, CStrike, CSettle,CExerciseDates)
InstSet =
 struct with fields:
 FinObj: 'Instruments'
 IndexTable: [1×1 struct]
```

Type: \{'Compound'\}
FieldName: \{\{10×1 cell\}\}
FieldClass: $\{\{10 \times 1$ cell\}\}
FieldData: \{\{10×1 cell\}\}

```
InstSet =
 struct with fields:
 FinObj: 'Instruments'
 IndexTable: [1\times1 struct]
 Type: {'Compound'}
 FieldName: {{10\times1 cell}}
 FieldClass: {{10\times1 cell}}
 FieldData: {{10\times1 cell}}
```

Display the instrument set.
instdisp(InstSet)

Index Type	UOptSpec UStrike USettle	UExerciseDates UAmericanOpt COptSpec CS			
1	Compound Call	130	$01-J a n-2012$	$01-J a n-2015$	0

- "Creating Instruments or Properties" on page 1-19
- "Pricing Equity Derivatives Using Trees" on page 3-119


## More About

- "Supported Equity Derivatives" on page 3-24


## See Also <br> instadd | instdisp | instget

## Introduced before R2006a

## instdelete

Complement of instrument set by matching conditions

## Syntax

```
ISubSet = instdelete(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList)
```


## Arguments

InstSet	Variable containing a collection of instruments. Instruments   are classified by type; each type can have different data fields.   The stored data field is a row vector or character vector for each   instrument.
FieldList	Number of fields, specified as a NFIELDS-by-1 cell array of character   vectors listing the name of each data field to match with data values.
DataList	Number of values, specified as a NVALUES-by-M array or NFIELDS-   by-1 cell array of acceptable data values for each field. Each row   lists a data row value to search for in the corresponding FieldList.   The number of columns is arbitrary and matching ignores trailing
IndexSet	NaNs or spaces.
(Optional) Number of instruments, specified as a NINST-by-1 vector	
restricting positions of instruments to check for matches. The	
default is all indices available in the instrument variable.	

Note: Argument value pairs can be entered in any order. The InstSet variable must be the first argument. 'FieldName' and 'Data' arguments must appear together or not at all.

## Description

The output argument ISubSet contains instruments not matching the input criteria. Instruments are deleted from ISubSet if all the Field, Index, and Type conditions are met. An instrument meets an individual Field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName. See instfind for more examples on matching criteria.

## Examples

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat. The variable contains three types of instruments: Option, Futures, and TBill.

```
load InstSetExamples;
instdisp(ExampleInst)
\begin{tabular}{llcccc}
Index & Type & Strike & Price & Opt & Contracts \\
1 & Option 95 & 12.2 & Call & 0 \\
2 & Option 100 & 9.2 & Call & 0 \\
3 & Option 105 & 6.8 & Call & 1000
\end{tabular}
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
```

Create a new variable, ISet, with all options deleted.

```
ISet = instdelete(ExampleInst, 'Type','Option');
```

instdisp(ISet)

```
Index Type Delivery F Contracts
1 Futures 01-Jul-1999 104.4 -1000
```

Index Type Price Maturity Contracts
2 TBill 99 01-Jul-1999 6

## More About

- "Instrument Constructors" on page 1-18

See Also<br>instaddfield | instfind | instget | instselect<br>Introduced before R2006a

## instdisp

Display instruments

## Syntax

CharTable = instdisp(InstSet)

## Arguments

InstSet	Variable containing a collection of instruments. See instaddfield   for examples on constructing the variable.

## Description

CharTable = instdisp(InstSet) creates a character array displaying the contents of an instrument collection, InstSet. If instdisp is called without output arguments, the table is displayed in the Command Window.

Note: When using instdisp, a value of NaN in one of the columns for an instrument indicates that the default value for that parameter will be used in the instrument's pricing function.

CharTable is a character array with a table of instruments in InstSet. For each instrument row, the Index and Type are printed along with the field contents. Field headers are printed at the tops of the columns.

## Examples

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.

```
load InstSetExamples;
```

```
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
```

Create a swap instrument and use instdisp to display the instrument. Notice that value of NaN in two columns for this instrument indicates that the default values for LegReset and LegType parameters will be used in the swap instrument's pricing function.

```
LegRate1 = [0.065, 0];
Settle1 = datenum('jan-1-2007');
Maturity1 = datenum('jan-1-2012');
ISet = instswap(LegRate1, Settle1, Maturity1);
instdisp(ISet)
Index Type LegRate Settle Maturity LegReset Basis Principal LegType EndMonthRule
```


## More About

- "Instrument Constructors" on page 1-18

See Also<br>datestr | instaddfield | instcbond | instget | num2str<br>Introduced before R2006a

## instfields

List field names

## Syntax

```
FieldList = instfields(InstSet, 'Type', TypeList)
```


## Arguments

InstSet	Variable containing a collection of instruments. Instruments   are classified by type; each type can have different data fields.   The stored data field is a row vector or character vector for each   instrument.
TypeList	(Optional) Number of types, specified as a NTYPES-by-1 cell array of   character vectors listing the instrument types to query.

## Description

FieldList $=$ instfields(InstSet, 'Type', TypeList) retrieves the list of fields stored in an instrument variable.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of character vectors listing the name of each data field corresponding to the listed types.

## Examples

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts

```
\begin{tabular}{rrrrr}
1 & Option & 95 & 12.2 & Call \\
2 & Option 100 & 9.2 & Call & 0 \\
3 & Option 105 & 6.8 & Call & 1000
\end{tabular}
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
Get the fields listed for type 'Option '.
[FieldList, ClassList] = instfields(ExampleInst, 'Type',...
'Option')
FieldList =
 'Strike'
 'Price
 'Opt'
 'Contracts'
ClassList =
 'dble'
 'dble'
 'char'
 'dble'
Get the fields listed for types 'Option ' and 'TBill'.
```

```
FieldList = instfields(ExampleInst, 'Type', {'Option', 'TBill'})
```

FieldList = instfields(ExampleInst, 'Type', {'Option', 'TBill'})
FieldList =
'Strike'
'Opt'
'Price'
'Maturity'
'Contracts'

```

Get all the fields listed in any type in the variable.
```

FieldList = instfields(ExampleInst)
FieldList =
Delivery'
'F'
Strike
'Opt'
Price
'Maturity'
Contracts'

```

\section*{More About}
- "Instrument Constructors" on page 1-18

\section*{See Also \\ instdisp | instlength | insttypes}

Introduced before R2006a

\section*{insffind}

Search instruments for matching conditions

\section*{Syntax}
```

IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',

``` DataList,'Index', IndexSet, 'Type', TypeList)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline InstSet & \begin{tabular}{l}
Variable containing a collection of instruments. Instruments \\
are classified by type; each type can have different data fields. \\
The stored data field is a row vector or character vector for each \\
instrument.
\end{tabular} \\
\hline FieldList & \begin{tabular}{l}
Number of fields, specified as a NF IELDS-by-1 cell array of \\
character vectors listing the name of each data field to match \\
with data values.
\end{tabular} \\
\hline DataList & \begin{tabular}{l}
Number of values, specified as a NVALUES-by-M array or NFIELDS- \\
by-1 cell array of acceptable data values for each field. Each \\
row lists a data row value to search for in the corresponding \\
FieldList. The number of columns is arbitrary, and matching \\
ignores trailing NaNs or spaces.
\end{tabular} \\
\hline IndexSet & \begin{tabular}{l}
(Optional) Number of instruments, specified as a NINST-by-1 \\
vector restricting positions of instruments to check for matches. \\
The default is all indices available in the instrument variable.
\end{tabular} \\
\hline TypeList & \begin{tabular}{l}
(Optional) Number of types, specified as a NTYPES-by-1 cell \\
array of character vectors restricting instruments to match one \\
of TypeList types. The default is all types in the instrument \\
variable.
\end{tabular} \\
\hline
\end{tabular}

Argument value pairs can be entered in any order. The InstSet variable must be the first argument. 'FieldName' and 'Data' arguments must appear together or not at all.

\section*{Description}

IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data', DataList,'Index', IndexSet, 'Type', TypeList) returns indices of instruments matching Type, Field, or Index values.

IndexMatch is an NINST-by- 1 vector of positions of instruments matching the input criteria. Instruments are returned in IndexMatch if all the Field, Index, and Type conditions are met. An instrument meets an individual Field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName.

\section*{Examples}

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.
```

load InstSetExamples;
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

```

Make a vector, Opt95, containing the indexes within ExampleInst of the options struck at 95 .
```

Opt95 = instfind(ExampleInst, 'FieldName','Strike','Data','95')
Opt95 =

```

Locate the futures and Treasury bill instruments within ExampleInst.
```

Types = instfind(ExampleInst,'Type',{'Futures';'TBill'})

```

\section*{Types =}

4
7

\section*{More About}
- "Instrument Constructors" on page 1-18

\section*{See Also}
instaddfield | instget | instgetcell | instselect

Introduced before R2006a

\section*{instfixed}

Construct fixed-rate instrument

\section*{Syntax}

InstSet = instfixed(CouponRate, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) InstSet = instfixed(InstSet, CouponRate, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) [FieldList, ClassList, TypeString] = instfixed

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline InstSet & Instrument variable. This argument is specified only when adding fixed-rate note instruments to an existing instrument set. See instget for more information on the InstSet variable. \\
\hline CouponRate & Decimal annual rate. \\
\hline Settle & Settlement date. Date character vector or serial date number representing the settlement date of the fixed-rate note. \\
\hline Maturity & Date character vector or serial date number representing the maturity date of the fixed-rate note. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 . \\
\hline EndMonthRule & (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\). \\
\hline
\end{tabular}

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

\section*{Description}

InstSet = instfixed(CouponRate, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) creates a new instrument set containing fixed-rate instruments.

InstSet = instfixed(InstSet, CouponRate, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) adds fixed-rate instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instfixed displays the classes.
FieldList is a number of fields (NFIELDS)-by- 1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector pecifying the type of instrument added. For a fixedrate instrument, TypeString = 'Fixed'.

\section*{Examples}

\section*{Create a Fixed-Rate Instrument}

Define the characteristics of the fixed-rate instrument.
```

CouponRate = .03;
Settle = datenum('15-Mar-2013');
Maturity = datenum('15-Mar-2018');
Reset = 4;
Basis = 1;
Principal = 1000;
EndMonthRule = 1;
Create the new cap instrument.
FinObj: 'Instruments'
IndexTable: [1\times1 struct]
Type: {'Fixed'}
FieldName: {{7\times1 cell}}
FieldClass: {{7\times1 cell}}
FieldData: {{7\times1 cell}}

```
```

ISet = instfixed(CouponRate, Settle, Maturity, Reset, Basis, Principal,EndMonthRule)
ISet =
ISet =
struct with fields:

```
 struct with fields:
```

Display the fixed-rate instrument.

```
instdisp(ISet)
```

- "Creating Instruments or Properties" on page 1-19


## More About

- "Supported Interest-Rate Instruments" on page 2-2


## See Also

hjmprice | instaddfield | instbond | instcap | instdisp | instswap | intenvprice

Introduced before R2006a

## insffloat

Construct floating-rate instrument

## Syntax

```
InstSet = instfloat(Spread, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule)
InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule)
InstSet = instfloat(Spread, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule, CapRate, FloorRate)
InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule, CapRate, FloorRate)
[FieldList, ClassList, TypeString] = instfloat
```


## Arguments

InstSet	Instrument variable. This argument is specified only when adding floating-rate note instruments to an existing instrument set. See instget for more information on the InstSet variable.
Spread	Number of basis points over the reference rate.
Settle	Settlement date. Date character vector or serial date number representing the settlement date of the floating-rate note.
Maturity	Date character vector or serial date number representing the maturity date of the floating-rate note.
Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.
Basis	(Optional) Day-count basis of the instrument. A vector of integers.   - $0=$ actual/actual (default)   - $1=30 / 360$ (SIA)   - 2 = actual/360   - $3=$ actual/365


	- $4=30 / 360$ (BMA)   - $5=30 / 360$ (ISDA)   - $6=30 / 360$ (European)   - 7 = actual/365 (Japanese)   - $8=$ actual/actual (ICMA)   - $9=$ actual/360 (ICMA)   - 10 = actual/365 (ICMA)   - $11=30 / 360 \mathrm{E}$ (ICMA)   - 12 = actual/365 (ISDA)   - 13 = BUS/252   For more information, see basis.
Principal	(Optional) NINST-by-1 of notional principal amounts or NINST-by- 1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 .
EndMonthRule	(Optional) NINST-by-1 vector representing the End-of-month rule. Default $=1$.
CapRate	(Optional) NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array, and the cell array first column is dates, and the second column is associated cap rates. The date indicates the last day that the cap rate is valid.
FloorRate	(Optional) NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a NumDates-by-2 cell array, and the cell array first column is dates, and the second column is associated floor rates. The date indicates the last day that the floor rate is valid.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

InstSet = instfloat(Spread, Settle, Maturity, Reset,

Basis, Principal, EndMonthRule) creates a new instrument set containing floating-rate instruments.

InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) adds floating-rate instruments to an existing instrument set.

InstSet = instfloat (Spread, Settle, Maturity, Reset, Basis, Principal, EndMonthRule, CapRate, FloorRate) creates a new instrument set containing capped floating-rate instruments.

InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset, Basis, Principal, EndMonthRule, CapRate, FloorRate) adds capped floatingrate instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instfloat displays the classes.
FieldList is a number of fields (NFIELDS)-by-1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a floating-rate instrument, TypeString = 'Float'.

## Examples

## Create a Floating-Rate Instrument

Define the characteristics of the floating-rate instrument.

```
Spread = 2;
Settle = datenum('15-Mar-2013');
Maturity = datenum('15-Mar-2018');
Reset = 4;
Basis = 1;
Principal = 1000;
EndMonthRule = 1;
CapRate = 0.35;
```

```
FloorRate = 0.27;
```

Create the new floating-rate instrument.

```
ISet = instfloat(Spread, Settle, Maturity, Reset, Basis, Principal, ...
```

EndMonthRule, CapRate, FloorRate)

```
ISet =
 struct with fields:
 FinObj: 'Instruments'
 IndexTable: [1\times1 struct]
 Type: {'Float'}
 FieldName: {{9×1 cell}}
 FieldClass: {{9×1 cell}}
 FieldData: {{9×1 cell}}
```

Display the floating-rate instrument.
instdisp(ISet)

Index	Type	Spread	Settle	Maturity	FloatReset	Basis	Principal
1	Float 2	$15-$ EndMonthRu -2013	$15-$ Mar-2018	4	1	1000	1

- "Creating Instruments or Properties" on page 1-19


## More About

- "Supported Interest-Rate Instruments" on page 2-2


## See Also

hjmprice | instaddfield | instbond | instcap | instdisp | instswap | intenvprice

Introduced in R2012b

## insffloor

Construct floor instrument

## Syntax

```
InstSet = instfloor(Strike, Settle, Maturity, Reset,
Basis, Principal)
InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset,
Basis, Principal)
[FieldList, ClassList, TypeString] = instfloor
```


## Arguments

InstSet	Instrument variable. This argument is specified only when adding floor instruments to an existing instrument set. See instget for more information on the InstSet variable.
Strike	Rate at which the floor is exercised, as a decimal number.
Settle	Settlement date. A vector of serial date numbers or date character vectors. Settle must be earlier than Maturity.
Maturity	Maturity date. A vector of serial date numbers or date character vectors.
Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.
Basis	(Optional) Day-count basis of the instrument. A vector of integers.   - $0=$ actual/actual (default)   - $1=30 / 360$ (SIA)   - 2 = actual/360   - $3=$ actual/ 365   - $4=30 / 360$ (BMA)   - $5=30 / 360$ (ISDA)   - $6=30 / 360$ (European)


	- 7 = actual/365 (Japanese)   - $8=$ actual/actual (ICMA)   - 9 = actual/360 (ICMA)   - $10=$ actual/365 (ICMA)   - $11=30 / 360 \mathrm{E}$ (ICMA)   - 12 = actual/365 (ISDA)   - 13 = BUS/252   For more information, see basis.
Principal	(Optional) NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid. Default is 100 .

## Description

InstSet = instfloor(Strike, Settle, Maturity, Reset, Basis, Principal) creates a new instrument set containing floor instruments.

InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset, Basis, Principal) adds floor instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instfloor displays the classes.
FieldList is a number of fields (NFIELDS)-by-1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a floor instrument, TypeString = 'Floor'.

Note: Use the optional argument, Principal, to pass a schedule for an amortizing floor.

## Examples

## Create a Floor Instrument

Define the characteristics of the floor instrument.

```
Strike = 0.22;
Settle = datenum('15-Mar-2013');
Maturity = datenum('15-Mar-2018');
Reset = 4;
Basis = 1;
Principal = 1000;
```

Create the new floor instrument.

```
ISet = instfloor(Strike, Settle, Maturity, Reset, Basis, Principal)
ISet =
 struct with fields:
 FinObj: 'Instruments'
 IndexTable: [1×1 struct]
 Type: {'Floor'}
 FieldName: {{6\times1 cell}}
 FieldClass: {{6\times1 cell}}
 FieldData: {{6\times1 cell}}
```

Display the floor instrument.
instdisp(ISet)

```
Index Type Strike Settle Maturity FloorReset Basis Principal
1 Floor 0.22 15-Mar-2013 15-Mar-2018 4 1000
```

- "Creating Instruments or Properties" on page 1-19


## More About

- "Supported Interest-Rate Instruments" on page 2-2

```
See Also
hjmprice | instaddfield | instbond | instcap | instdisp | instswap |
intenvprice
Introduced before R2006a
```


## instget

Data from instrument variable

## Syntax

[Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList)

## Arguments

InstSet	Variable containing a collection of instruments. Instruments   are classified by type; each type can have different data fields.   The stored data field is a row vector or character vector for each   instrument.
FieldList	(Optional) Number of fields, specified as a NFIELDS-by-1 cell array   of character vectors listing the name of each data field to match   with data values. FieldList entries can also be either ' Type ' or   ' Index '; these return type character vectors and index numbers   respectively. The default is all fields available for the returned set of   instruments.
IndexSet	(Optional) Number of instruments, specified as a NINST-by-1   vector of positions of instruments to work on. If TypeList is also   entered, instruments referenced must be one of TypeList types and   contained in IndexSet. The default is all indices available in the   instrument variable.
TypeList	(Optional) Number of types, specified as a NTYPES-by-1 cell array of   character vectors restricting instruments to match one of TypeList   types. The default is all types in the instrument variable.

Argument value pairs can be entered in any order. The InstSet variable must be the first argument.

## Description

[Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList) retrieves data arrays from an instrument variable.

Data_1 is an NINST-by-M array of data contents for the first field in FieldList. Each row corresponds to a separate instrument in IndexSet. Unavailable data is returned as NaN or as spaces.

Data_n is an NINST-by-M array of data contents for the last field in FieldList.

## Examples

Retrieve the instrument set ExampleInst from the data file. InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)

Index	Type	Strike	Price	Opt	Contracts
1	Option 95	12.2	Call	0	
2	Option 100	9.2	Call	0	
3	Option 105	6.8	Call	1000	

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4-1000

Index	Type	Strike	Price	Opt
Contracts				
5	Option	105	7.4 Put	-1000
6	Option	95	2.9 Put	0

```
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
```

Extract the price from all instruments.
P = instget(ExampleInst,'FieldName','Price')
$P=$
12.2000

```
 9.2000
 6.8000
 NaN
 7.4000
 2.9000
99.0000
```

Get all the prices and the number of contracts held.

```
[P,C] = instget(ExampleInst, 'FieldName', {'Price', 'Contracts'})
P =
 12.2000
 9.2000
 6.8000
 Nan
 7.4000
 2.9000
 99.0000
C =
 0
 0
 1000
 -1000
 -1000
 0
 6
```

Compute a value V. Create a new variable ISet that appends V to ExampleInst.

```
V = P.*C
```

ISet $=$ instsetfield(ExampleInst, 'FieldName', 'Value', 'Data',...
V);
instdisp(ISet)
Index Type Strike Price Opt Contracts Value
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0 0
3 Option $105 \quad$ 6.8 Call 10006800
Index Type Delivery F Contracts Value
4 Futures 01-Jul-1999 104.4-1000 NaN
Index Type Strike Price Opt Contracts Value

5	Option 105	7.4 Put	-1000	-7400	
6	Option 95	2.9 Put	0	0	
					Contracts
Index	Type Price	Maturity			
7	TBill 99	01 -Jul-1999	6	594	

Look at only the instruments that have nonzero Contracts.

```
Ind = find(C ~= 0)
```

Ind =
3
4
5
7
Get the Type and Opt parameters from those instruments. (Only options have a stored 'Opt ' field.)

```
[T,0] = instget(ExampleInst, 'Index', Ind, 'FieldName',...
{'Type', 'Opt'})
T =
```

Option
Futures
Option
TBill
0 =
Call
Put

Create a report of holdings Type, Opt, and Value.
rstring $=[\mathrm{T}, \mathrm{O}$, num2str(V(Ind))]
rstring =
Option Call 6800
Futures $\quad \mathrm{NaN}$
Option Put -7400

## More About

- "Instrument Constructors" on page 1-18


## See Also

instaddfield | instdisp | instgetcell | intenvprice

Introduced before R2006a

## instgetcell

Data and context from instrument variable

## Syntax

[DataList, FieldList, ClassList] = instgetcell(InstSet, 'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList)

## Arguments

InstSet	Variable containing a collection of instruments. Instruments   are classified by type; each type can have different data fields.   The stored data field is a row vector or character vector for each   instrument.
FieldList	(Optional) Number of fields, specified as a NFIELDS-by-1 cell array   of character vectors listing the name of each data field to match with   data values. FieldList should not be either Type or Index; these   field names are reserved. The default is all fields available for the   returned set of instruments.
IndexSet	(Optional) Number of instruments, specified as a NINST-by-1   vector of positions of instruments to work on. If TypeList is also   entered, instruments referenced must be one of TypeList types and   contained in IndexSet. The default is all indices available in the   instrument variable.
TypeList	(Optional) Number of types, specified as a NTYPES-by-1 cell array of   character vectors restricting instruments to match one of TypeList   types. The default is all types in the instrument variable.

Argument value pairs can be entered in any order. The InstSet variable must be the first argument.

## Description

[DataList, FieldList, ClassList] = instgetcell(InstSet, 'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList) retrieves data and context from an instrument variable.

DataList is an NFIELDS-by-1 cell array of data contents for each field. Each cell is an NINST-by-M array, where each row corresponds to a separate instrument in IndexSet. Any data which is not available is returned as NaN or as spaces.

FieldList is an NFIELDS-by-1 cell array of character vectors listing the name of each field in DataList.

ClassList is an NF IELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

IndexSet is an NINST-by- 1 vector of positions of instruments returned in DataList.
TypeSet is an NINST-by-1 cell array of character vectors listing the type of each instrument row returned in DataList.

## Examples

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)

Index	Type	Strike	Price	Opt	Contracts
1	Option 95	12.2	Call	0	
2	Option 100	9.2	Call	0	
3	Option 105	6.8	Call	1000	

Index Type Delivery F Contracts

4 Futures 01-Jul-1999 104.4-1000

Index	Type	Strike	Price Opt	Contracts
5	Option 105	7.4 Put	-1000	


| 6 | Option 95 | 2.9 Put | 0 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |
| Index | Type Price | Maturity | Contracts |
| 7 | TBill 99 | 01-Jul-1999 | 6 |

Get the prices and contracts from all instruments.

```
FieldList = {'Price'; 'Contracts'}
DataList = instgetcell(ExampleInst, 'FieldName', FieldList)
P = DataList{1}
C = DataList{2}
P =
 12.2000
 9.2000
 6.8000
 NaN
 7.4000
 2.9000
 99.0000
C =
 0
 0
 1000
 -1000
 -1000
 0
 6
```

Get all the option data: Strike, Price, Opt, Contracts.
[DataList, FieldList, ClassList] = instgetcell(ExampleInst,... 'Type', 'Option')

DataList =
[5x1 double]
[5x1 double]
[5x4 char ]
[5x1 double]
FieldList =
'Strike'

```
 Price'
 Opt
 Contracts'
ClassList =
 dble
 dble'
 char'
 dble'
```

Look at the data as a comma-separated list. Type help lists for more information on cell array lists.

DataList\{:\}
ans =
95
100
105
105
95
ans $=$
12.2100
9.2000
6.8000
7.3900
2.9000
ans =
Call
Call
Call
Put
Put
ans $=$

0
0
100

## More About

- "Instrument Constructors" on page 1-18


## See Also

instaddfield | instdisp | instget

Introduced before R2006a

## instlength

Count instruments

## Syntax

```
NInst = instlength(InstSet)
```


## Arguments

InstSet	Variable containing a collection of instruments. Instruments   are classified by type; each type can have different data fields.   The stored data field is a row vector or character vector for each   instrument.

## Description

NInst = instlength(InstSet) computes NInst, the number of instruments contained in the variable, InstSet.

## More About

- "Instrument Constructors" on page 1-18


## See Also

instdisp | instfields | insttypes

## Related Examples

- "Portfolio Creation" on page 1-7

Introduced before R2006a

## instlookback

Construct lookback option

## Syntax

InstSet = instlookback(OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) InstSet = instlookback(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) [FieldList, ClassList, TypeString] = instlookback

## Arguments

$\left.\begin{array}{|l|l|}\hline \text { InstSet } & \begin{array}{l}\text { Instrument variable. This argument is specified only when } \\ \text { adding lookback instruments to an existing instrument set. See } \\ \text { instget for more information on the InstSet variable. }\end{array} \\ \hline \text { OptSpec } & \begin{array}{l}\text { NINST-by-1 list of character vector values for 'Call' or } \\ \text { 'Put '. }\end{array} \\ \hline \text { Strike } & \begin{array}{l}\text { NINST-by-1 vector of strike price values. Each row is the } \\ \text { schedule for one option. }\end{array} \\ \hline \text { Settle } & \text { NINST-by-1 vector of Settle dates. } \\ \hline \text { ExerciseDates } & \begin{array}{l}\text { For a European option (AmericanOpt = 0): } \\ \text { NINST-by-1 vector of exercise dates. Each row is the schedule } \\ \text { for one option. For a European option, there is only one } \\ \text { exercise date, the option expiry date. }\end{array} \\ \begin{array}{l}\text { For an American option (AmericanOpt = 1): } \\ \text { NINST-by-2 vector of exercise date boundaries. For each }\end{array} \\ \text { instrument, the option can be exercised on any tree date } \\ \text { between or including the pair of dates on that row. If only one } \\ \text { non-NaN date is listed, or if ExerciseDates is NINST-by-1, the } \\ \text { option can be exercised between the valuation date of the stock } \\ \text { tree and the single listed exercise date. }\end{array}\right\}$

AmericanOpt	Optional) If AmericanOpt $=0$, NaN, or is unspecified, the   option is a European option. If AmericanOpt $=1$, the option   is an American option.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN . Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [ ].

## Description

InstSet = instlookback(OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt) creates an instrument set for lookback options.
InstSet = instlookback(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) adds lookback options to an existing instrument set.
[FieldList, ClassList, TypeString] = instlookback displays the classes.
FieldList is a number of fields (NFIELDS)-by-1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a lookback option instrument, TypeString = 'Lookback'.

## Examples

## Create a Lookback Option Instrument

Define a floating strike lookback instrument with the following data:

```
OptSpec = 'call';
Strike = NaN;
Settle = '01-Jan-2012';
ExerciseDates = '01-Jan-2015';
```

Create the instrument set.
InstSet = instlookback(OptSpec, Strike, Settle, ExerciseDates);
Display the lookback instrument.
instdisp(InstSet)
$\begin{array}{llllll}\text { Index } & \text { Type } & \text { OptSpec } & \text { Strike Settle } & \text { ExerciseDates } & \text { AmericanOpt } \\ 1 & \text { Lookback call } & \text { NaN } & 01-\text { Jan-2012 } & 01 \text {-Jan-2015 } & 0\end{array}$

- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Creating Instruments or Properties" on page 1-19


## More About

- "Supported Equity Derivatives" on page 3-24


## See Also

instadd | instdisp | instget
Introduced before R2006a

## instoptbnd

Construct bond option

## Syntax

```
InstSet = instoptbnd(BondIndex, OptSpec, Strike,
ExerciseDates)
InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
ExerciseDates)
InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
ExerciseDates, AmericanOpt)
[FieldList, ClassList, TypeString] = instoptbnd
```


## Arguments

InstSet	Variable containing a collection of instruments. Instruments   are classified by type; each type can have different data fields.   The stored data field is a row vector or character vector for   each instrument.
BondIndex	Number of instruments (NINST)-by-1 vector of indices   pointing to underlying instruments of Type 'Bond ' which   are also stored in InstSet. See instbond for information on   specifying the bond data.
OptSpec	NINST-by-1 list of character vector values for 'Call ' or   'Put '

Note: The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt $=0, \mathrm{NaN}$, or is unspecified, the option is a European or Bermuda option. If AmericanOpt $=1$, the option is an American option.

Strike	European option: NINST-by-1 vector of strike price values.
Bermuda option: NINST by number of strikes (NSTRIKES)   matrix of strike price values.	


	Each row is the schedule for one option. If an option has fewer   than NSTRIKES exercise opportunities, the end of the row is   padded with NaNs.			
For an American option:				
NINST-by-1 vector of strike price values for each option.		$	$	NINST-by-1 (European option) or NINST-by-NSTRIKES
:---				
(Bermuda option) matrix of exercise dates. Each row is the				
schedule for one option. For a European option, there is only				
one exercise date, the option expiry date.				
For an American option:				
NINST-by-2 vector of exercise date boundaries. For each				
instrument, the option can be exercised on any coupon date				
between or including the pair of dates on that row. If only one				
non-NaN date is listed, or if ExerciseDates is NINST-by-1, the				
option can be exercised between the underlying bond Settle				
and the single listed exercise date.				

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

InstSet = instoptbnd(BondIndex, OptSpec, Strike, ExerciseDates) creates a bond option, specified as a European or Bermuda option.

InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, ExerciseDates) adds a bond option, specified as a European or Bermuda option, to an existing instrument set.

InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt) specifies an American option if AmericanOpt is set to 1. If AmericanOpt is not set to 1, the function specifies a European or Bermuda option.
[FieldList, ClassList, TypeString] = instoptbnd displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a bond option instrument, TypeString = 'OptBond'.

## Examples

## Create a Bond Option Instrument

Create a new instrument variable with the following information:

```
BondIndex = 1;
OptSpec = 'call';
Strike= 85;
ExerciseDates = 'Nov-1-2014';
AmericanOpt = 1;
CouponRate= [0.035;0.04];
Settle= 'Nov-1-2013';
Maturity = 'Nov-1-2014';
Period =1;
```

Create the instrument portfolio with two bonds.

```
InstSet = instbond(CouponRate, Settle, Maturity, ...
Period)
InstSet =
 struct with fields:
 FinObj: 'Instruments'
 IndexTable: [1\times1 struct]
 Type: {'Bond'}
 FieldName: {{11\times1 cell}}
 FieldClass: {{11\times1 cell}}
 FieldData: {{11\times1 cell}}
```

```
Create an option on the first bond
InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)
InstSet =
 struct with fields:
 FinObj: 'Instruments'
 IndexTable: [1\times1 struct]
 Type: {2\times1 cell}
 FieldName: {2\times1 cell}
 FieldClass: {2\times1 cell}
 FieldData: {2\times1 cell}
```

Display the instrument set.

```
instdisp(InstSet)
```

Index	Type CouponRate Settle	Maturity	Period	Basis EndMonthRule	IssueDat		
1	Bond	0.035	01-Nov-2013	01-Nov-2014	1	0	1
2	Bond 0.04	$01-$ Nov-2013	$01-$ Nov-2014	1	0	1	NaN
2	01	NaN					


Index	Type	UnderInd	OptSpec	Strike	ExerciseDates	AmericanOpt
3	OptBond 1	call	85	$01-$ Nov-2014	1	

- "Creating Instruments or Properties" on page 1-19


## More About

- "Supported Interest-Rate Instruments" on page 2-2


## See Also

hjmprice | instadd | instdisp | instget

## Introduced before R2006a

## instoptembnd

Construct bond with embedded option

## Syntax

```
InstSet = instoptembnd (CouponRate, Settle, Maturity,
OptSpec, Strike, ExerciseDates, 'AmericanOpt',
AmericanOpt, 'Period', Period, 'Basis', Basis,
'EndMonthRule', EndMonthRule,'Face', Face, 'IssueDate',
IssueDate, 'FirstCouponDate', FirstCouponDate,
'LastCouponDate', LastCouponDate,'StartDate',StartDate)
InstSet = instoptembnd(InstSetOld, CouponRate,...)
[FieldList, ClassList, TypeString] = instoptembnd
```


## Arguments

CouponRate	Decimal annual rate indicating the annual percentage   rate used to determine the coupons payable on a bond.   CouponRate is a NINST-by-1 vector or NINST-by-1 cell array   of decimal annual rates, or decimal annual rate schedules. For   the latter case of a variable coupon schedule, each element of   the cell array is a NumDates-by-2 cell array, where the first   column is dates and the second column is its associated rate.   The date indicates the last day that the coupon rate is valid.
Settle	NINST-by-1 vector of settlement dates.
Maturity	NINST-by-1 vector of maturity dates.
OptSpec	NINST-by-1 vector of character vector values for 'Call' or   'Put '.
For a European or Bermuda option	
Strike	NINST-by-NSTRIKES matrix of strike price values. Each row   is the schedule for one option. If an option has fewer than   NSTRIKES exercise opportunities, the end of the row is padded   with NaN's.


ExerciseDates	NINST-by-NSTRIKES matrix of exercise dates. Each row is the   schedule for one option. For a European option, there is only   one ExerciseDate on the option expiry date.
AmericanOpt	(Optional) NINST-by-1 vector of flags. AmericanOpt is 0   for each European or Bermuda option. The default is 0 if   AmericanOpt is NaN or not entered.
For an American option	NINST-by-1 vector of strike price values for each option.
Strike	NINST-by-2 vector of exercise date boundaries. For each   instrument, the option can be exercised on any coupon date   between or including the pair of dates on that row. If only   one non-NaN date is listed, or if ExerciseDates is NINST-   by-1, the option can be exercised between the underlying bond   Settle and the single listed ExerciseDate.
ExerciseDates	NINST-by-1 vector of flags. AmericanOpt is 1 for each   American option. The AmericanOpt argument is required to   invoke American exercise rules.
AmericanOpt	(Optional) NINST-by-1 matrix for coupons per year. The   default value is 2.
Period	(Ond


Basis	(Optional) Day-count basis of the instrument. Basis is a vector of integers with the following possible values:   - $0=$ actual/actual (default)   - $1=30 / 360$ (SIA)   - 2 = actual/360   - $3=$ actual $/ 365$   - $4=30 / 360$ (BMA)   - $5=30 / 360$ (ISDA)   - $6=30 / 360$ (European)   - $7=$ actual/365 (Japanese)   - $8=$ actual/actual (ICMA)   - $9=$ actual/360 (ICMA)   - $10=$ actual/365 (ICMA)   - $11=30 / 360 \mathrm{E}$ (ICMA)   - 12 = actual/365 (ISDA)   - 13 = BUS/252   For more information, see basis.
EndMonthRule	(Optional) NINST-by-1 matrix for the end-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. When the value is 0 , the end-of-month rule is ignored, meaning that a bond's coupon payment date is always the same numerical day of the month. When the value is 1 , the end-of-month rule is set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
IssueDate	(Optional) NINST-by-1 matrix for the bond issue date.


FirstCouponDate	(Optional) Date when a bond makes its first coupon payment;   used when bond has an irregular first coupon period.   When FirstCouponDate and LastCouponDate are   both specified, FirstCouponDate takes precedence in   determining the coupon payment structure. If you do not   specify a FirstCouponDate, the cash flow payment dates are   determined from other inputs.
LastCouponDate	(Optional) Last coupon date of a bond before the maturity   date; used when bond has an irregular last coupon period.   In the absence of a specified FirstCouponDate, a specified   LastCouponDate determines the coupon structure of the   bond. The coupon structure of a bond is truncated at the   LastCouponDate, regardless of where it falls, and is followed   only by the bond's maturity cash flow date. If you do not   specify a LastCouponDate, the cash flow payment dates are   determined from other inputs.
StartDate	(Optional) NINST-by-1 matrix for date when a bond actually   starts (that is, the date from which a bond's cash flows can be   considered). To make an instrument forward starting, specify   this date as a future date. If StartDate is not explicitly   specified, the effective start date is the Settle date.
Face	(Optional) Face is a NINST-by-1 vector or NINST-by-1 cell   array of face values, or face value schedules. For the latter   case, each element of the cell array is a NumDates-by-2 cell   array, where the first column is dates and the second column   is its associated face value. The date indicates the last day   that the face value is valid. Default is 100.

Note: Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

```
InstSet = instoptembnd (CouponRate, Settle, Maturity,
OptSpec, Strike, ExerciseDates, 'AmericanOpt',
```

```
AmericanOpt, 'Period', Period, 'Basis', Basis,
'EndMonthRule', EndMonthRule,'Face', Face, 'IssueDate',
IssueDate, 'FirstCouponDate', FirstCouponDate,
'LastCouponDate', LastCouponDate,'StartDate',StartDate) creates
InstSet, a variable containing a collection of instruments.
```

Note: instopembnd uses optional parameter name/value pairs such that, 'Name1', Value1, 'Name2', Value2, and so on, are a variable length list of name/value pairs.

Instruments are broken down by type and each type can have different data fields. Each stored data field has a row vector or character vector for each instrument. See instget for more information on the InstSet variable.

InstSet = instoptembnd(InstSetOld, CouponRate,...) adds 'OptEmBond' instruments to an instrument variable.
[FieldList, ClassList, TypeString] = instoptembnd lists field metadata for the 'OptEmBond' instrument.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a bond option instrument, TypeString = 'OptEmBond'.

## Examples

## Construct a Bond With an Embedded Option

This example shows how to construct a bond with an embedded option using the following data.

```
Settle = 'jan-1-2007';
Maturity = 'jan-1-2010';
CouponRate = 0.07;
```

```
OptSpec = 'call';
Strike= 100;
ExerciseDates= {'jan-1-2008' '01-Jan-2010'};
AmericanOpt=1;
Period = 1;
InstSet = instoptembnd(CouponRate, ...
Settle, Maturity, OptSpec, Strike, ExerciseDates,'AmericanOpt', AmericanOpt, ...
'Period', Period);
% display the instrument
 instdisp(InstSet)
\begin{tabular}{llllll}
Index Type & CouponRate Settle & Maturity & OptSpec Strike ExerciseDates \\
1 & OptEmBond & 0.07 & \(01-\) Jan-2007 & \(01-J a n-2010\) & call \\
& 100 & \(01-J a n-2008\)
\end{tabular}
```

- "Creating Instruments or Properties" on page 1-19


## More About

- "Supported Interest-Rate Instruments" on page 2-2


## See Also

instadd | instdisp | instget
Introduced in R2008a

## instopifloat

Create option instrument on floating-rate note or add instrument to current portfolio

## Syntax

```
InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates)
InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates,
AmericanOpt)
InstSet = instoptfloat(InstSetOld,
```

$\qquad$

```
[FieldList,ClassList,TypeString] = instoptfloat
```


## Description

InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates) to specify a European option for a floating-rate note.

InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates, AmericanOpt) to specify an American or Bermuda option for a floating-rate note.

InstSet = instoptfloat(InstSetOld, $\qquad$ ) to add instruments to an existing portfolio.
[FieldList,ClassList,TypeString] = instoptfloat lists the field metadata for the 'OptFloat' instrument.

## Examples

## Create an Instrument Porifolio with a Call Option for a Floating-Rate Note

Define the floating-rate note:

```
Settle = 'Nov-1-2012';
Maturity = 'Nov-1-2015';
Spread = 50;
Reset = 1;
```

```
Create InstSet:
InstSet = instfloat(Spread, Settle, Maturity, Reset)
InstSet =
 struct with fields:
 FinObj: 'Instruments'
 IndexTable: [1×1 struct]
 Type: {'Float'}
 FieldName: {{9×1 cell}}
 FieldClass: {{9\times1 cell}}
 FieldData: {{9\times1 cell}}
```

Display the instrument:

```
instdisp(InstSet)
```

Index	Type Spread	Settle	Maturity	FloatReset	Basis	Principal
1	Float 50	$01-$ EndMov-2012	$01-$ Nov-2015	1	0	100

Add a European call option to the instrument portfolio:

```
OptSpec = 'call';
```

Strike = 100;
ExerciseDates = 'Nov-1-2015';
Create InstSet:
InstSet = instoptfloat(InstSet, 1, OptSpec, Strike, ExerciseDates)
InstSet =
struct with fields:
FinObj: 'Instruments'
IndexTable: [ $1 \times 1$ struct]
Type: $\{2 \times 1$ cell $\}$
FieldName: $\{2 \times 1$ cell $\}$
FieldClass: $\{2 \times 1$ cell\}
FieldData: $\{2 \times 1$ cell\}

Display the instrument:

```
instdisp(InstSet)
```

Index	Type Spread Settle	Maturity	FloatReset	Basis Principal EndMonthRu:		
1	Float 50	$01-$ Nov-2012	$01-$ Nov-2015	1	0	100


| Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | OptFloat 1 | $01-$ Nov-2015 | 0 |

2 OptFloat $1 \quad$ call 100 01-Nov-2015 0

- "Creating Instruments or Properties" on page 1-19


## Input Arguments

## FloatIndex - Indices pointing to underlying instruments

vector of nonnegative integers
Indices pointing to underlying instruments of Type 'Float' specified by a NINST-by-1 vector. The instruments of Type 'Float' are also stored in the InstSet variable. For more information, see instfloat.

Data Types: double

## OptSpec - Definition of option

character vector | cell array of character vectors
Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for 'call' or 'put'.

Data Types: char | cell

## Strike - Option strike price values for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers

Option strike price values for option (European, Bermuda, or American) specified as nonnegative integers using as NINST-by-NSTRIKES vector of strike price values.

- For a European or Bermuda option - NINST-by-NSTRIKES matrix of strike price values. Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American Option - NINST-by-1 vector of strike price values for each option.


## Data Types: single | double

ExerciseDates - Exercise date for option (European, Bermuda, or American) nonnegative integer | vector of nonnegative integers

Exercise date for option (European, Bermuda, or American) specified as nonnegative integers using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates, depending on the option type.

- For a European or Bermuda option - NINST-by-NSTRIKES matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one ExerciseDate on the option expiry date
- For an American option - NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle date and the single listed ExerciseDate.

Data Types: char | cell

## AmericanOpt - Option type

0 if AmericanOpt is NaN or not entered (default) | scalar | vector of positive integers [0, 1]

Option type specified as NINST-by-1 positive integer scalar flags with values.

- For a European or Bermuda option - AmericanOpt is 0 for each European or Bermuda option.
- For an American option - AmericanOpt is 1 for each American option. The AmericanOpt argument is required to invoke American exercise rules.

Data Types: single | double

## InstSet0ld - Variable containing an existing collection of instruments struct

Variable containing an existing collection of instruments, specified as a struct. For more information on the InstSet variable, see instget.

Data Types: struct

## Output Arguments

## InstSet - Variable containing a collection of instruments <br> scalar | vector

Variable containing a collection of instruments returned as a scalar or vector with the instruments broken down by type and each type can have different data fields. Each stored data field has a row vector or character vector for each instrument. For more information on the InstSet variable, see instget.

## FieldList - Data field for instrument type

character vector | cell array of character vectors
Data field for instrument type returned as a NFIELDS-by- 1 cell array of character vectors listing the name of each data field for this instrument type.

## ClassList - Data class of each field

character vector with value: 'dble', 'date', 'char' | cell array of character vectors with values: 'dble', 'date', 'char'

Data class of each field returned as aNFIELDS-by-1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed.

## TypeString - Type of instrument added <br> character vector with value 'OptFloat '

Type of instrument added returned as a character vector. The character vector for a floating-rate option instrument is TypeString = 'OptFloat'.

## More About

- "Supported Interest-Rate Instruments" on page 2-2

See Also<br>instadd | instoptemfloat<br>Introduced in R2013a

## instoptemfloat

Create embedded option instrument on floating-rate note or add instrument to current portfolio

## Syntax

```
InstSet = instopemtfloat(Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
InstSet = instopemtfloat(
```

$\qquad$

``` ,Name, Value)
InstSet = instopemtfloat(InstSetOld,Spread,Settle,Maturity,OptSpec, Strike,ExerciseDates)
[FieldList,ClassList,TypeString] = instoptemfloat
```


## Description

InstSet = instopemtfloat(Spread,Settle, Maturity,OptSpec, Strike, ExerciseDates) creates an embedded option instrument for a floating-rate note.

InstSet = instopemtfloat( $\qquad$ , Name, Value) creates an embedded option instrument for a floating-rate note using optional name-value pair arguments.

InstSet = instopemtfloat(InstSetOld,Spread,Settle, Maturity,OptSpec, Strike, ExerciseDates) to add 'OptEmFloat' instruments to an instrument variable.
[FieldList,ClassList,TypeString] = instoptemfloat lists field metadata for the 'OptEmFloat' instrument.

## Examples

## Create an Instrument Portfolio with a Embedded Option Floating-Rate Note

Define the embedded call option:

```
Settle = 'Nov-1-2012';
Maturity = 'Nov-1-2015';
Spread = 25;
OptSpec = 'call';
Strike= 100;
ExerciseDates = 'Nov-1-2015';
Reset = 1;
Create InstSet:
InstSet = instoptemfloat(Spread, Settle, Maturity, OptSpec,...
Strike, ExerciseDates,'Reset', Reset)
InstSet =
struct with fields:
 FinObj: 'Instruments'
 IndexTable: [1×1 struct]
 Type: {'OptEmFloat'}
 FieldName: {{13\times1 cell}}
 FieldClass: {{13\times1 cell}}
 FieldData: {{13\times1 cell}}
```

Display the instrument:
instdisp(InstSet)

Index	Type	Spread	Settle	Maturity	OptSpec Strike ExerciseDates	Fld	
1	OptEmFloat 25	$01-$ Nov-2012	01-Nov-2015	call	100	$01-$ Nov-2015	1

- "Creating Instruments or Properties" on page 1-19


## Input Arguments

## Spread - Number of basis points over the reference rate

nonnegative integer | vector of nonnegative integers
Number of basis points over the reference rate specified as a vector of nonnegative integers for the number of instruments (NINST)-by-1).

Data Types: single | double

## Settle - Settlement dates of floating-rate note

ValuationDate of HW Tree (default) | nonnegative integer | character vector | cell array of character vectors

Settlement dates of floating-rate note, specified as a date character vector or as nonnegative integers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

## Maturity - Floating-rate note maturity date

nonnegative integer | character vector | cell array of character vectors
Floating-rate note maturity date, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.

Data Types: double | char | cell

## OptSpec - Definition of option

character vector | cell array of character vectors
Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for 'call' or 'put'.

Data Types: char | cell

## Strike - Embedded option strike price values

nonnegative integer | vector of nonnegative integers
Embedded option strike price values for option specified as nonnegative integers using as NINST-by-NSTRIKES or NINST-by-1 vector of strike price values, depending on the type of option.

- For a European or Bermuda Option - NINST-by-NSTRIKES matrix of strike price values where each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
- For an American Option - NINST-by-1 vector of strike price values for each option.

Data Types: single | double

## ExerciseDates - Exercise date for embedded option

nonnegative integer | vector of nonnegative integers

Exercise date for embedded option specified as nonnegative integers using a NINST-by-NSTRIKES or NINST-by-2 vector of the option exercise dates, depending on the type of option.

- For a European or Bermuda Option - NINST-by-NSTRIKES of exercise dates where each row is the schedule for one option. For a European option, there is only one ExerciseDate on the option expiry date.
- For an American Option - NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle date and the single listed ExerciseDate.


## Data Types: char | cell

## InstSet0ld - Variable containing an existing collection of instruments <br> struct

Variable containing an existing collection of instruments, specified as a struct. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or character vector for each instrument. For more information on instrument data parameters, see the reference entries for individual instrument types. For example, see instfloat for additional information on the float instrument.

## Data Types: struct

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: InstSet = instoptemfloat (Spread, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'Reset' ,Res

## 'American0pt ' - Embedded option type

0 if AmericanOpt is NaN or not entered (default) | scalar | vector of positive integers [0,1]

Embedded option type specified as NINST-by-1 positive integer scalar flags with values.

- For a European or Bermuda option - AmericanOpt is 0 for each European or Bermuda option. The default is 0 if AmericanOpt is NaN or not entered.
- For an American option - AmericanOpt is 1 for each American option. The AmericanOpt argument is required to invoke American exercise rules.


## Data Types: single | double

## 'Reset ' - Frequency of payments per year

1 (default) | positive integer from the set[1,2,3, 4, 6, 12] | vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year specified as positive integers for the values $1,2,4,6,12$ ] in a NINST-by- 1 vector.

## Data Types: single | double

## 'Basis' - Day-count basis of the instrument

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- $3=$ actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- $12=$ actual/365 (ISDA)
- 13 = BUS/252

Data Types: single | double

```
'Principal' - Principal values
100 (default) | nonnegative integer | vector of nonnegative integers | cell array of
nonnegative integers
```

Principal values specified as a nonnegative integer using a NINST-by-1 vector of notional principal amounts.

## Data Types: single | double

## 'Options' - Structure containing derivatives pricing options <br> structure

Structure containing derivatives pricing options specified using derivset.
Data Types: struct

## 'EndMonthRule' - End-of-month rule flag

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag is specified as a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

- $0=$ Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.


## Data Types: single | double

## Output Arguments

## InstSet - Variable containing a collection of instruments <br> scalar | vector

Variable containing a collection of instruments returned as a scalar or vector with the instruments broken down by type and each type can have different data fields. Each
stored data field has a row vector or character vector for each instrument. For more information on the InstSet variable, see instget.

## FieldList - Name of each data field

character vector | cell array of character vectors
NFIELDS-by- 1 cell array of character vectors listing the name of each data field for this instrument type.

## ClassList - Determines how arguments are parsed

character vector with value: 'dble', 'date', or 'char' | cell array of character vectors with values: 'dble', 'date', or 'char'

NFIELDS-by- 1 cell array of character vectors listing the data class of each field.

## TypeString - Type of instrument added

character vector with value 'OptEmFloat'
Character vector specifying the type of instrument added where TypeString = 'OptEmFloat'.

## More About

- basis
- "Supported Interest-Rate Instruments" on page 2-2

See Also<br>instadd | instoptfloat<br>Introduced in R2013a

## instoptstock

Construct stock option

## Syntax

```
InstSet = instoptstock(OptSpec, Strike,
Settle, ExerciseDates)
InstSet = instoptstock(InstSet, OptSpec, Strike,
Settle, ExerciseDates)
InstSet = instoptstock(InstSet, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt)
[FieldList, ClassList, TypeString] = instoptstock
```


## Arguments

InstSet
OptSpec Instrument variable. This argument is specified only when   adding stock option instruments to an existing instrument set.   See instget for more information on the InstSet variable.   Note The interpretation of the Strike and ExerciseDates arguments depends upon   the setting of the AmericanOpt argument. If AmericanOpt $=0$, NaN, or is unspecified,   the option is a European or Bermuda option. If AmericanOpt $=1$, the option is an    American option. European option: NINST-by-1 vector of strike price values.   Strike   Bermuda option: NINST by number of strikes (NSTRIKES)   matrix of strike price values.   Each row is the schedule for one option. If an option has fewer   than NSTRIKES exercise opportunities, the end of the row is    padded with NaNs.    American option: NINST-by-1 vector of strike price values for    each option.


Settle	NINST-by-1 vector of settlement dates.
ExerciseDates	NINST-by-1 (European option) or NINST-by-NSTRIKES   (Bermuda option) matrix of exercise dates. Each row is the   schedule for one option. For a European option, there is only   one exercise date, the option expiry date.   For an American option:
	NINST-by-2 vector of exercise date boundaries. For each   instrument, the option can be exercised on any coupon date   between or including the pair of dates on that row. If only one   non-NaN date is listed, or if ExerciseDates is NINST-by-1, the   option can be exercised between the underlying bond Settle   and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [ ].

## Description

InstSet = instoptstock(OptSpec, Strike,
Settle, ExerciseDates) creates a stock option instrument, specified as a European or Bermuda option.

InstSet = instoptstock(InstSet, OptSpec, Strike,
Settle, ExerciseDates) adds a stock option instrument, specified as a European or Bermuda option, to an existing instrument set.

InstSet = instoptstock(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) specifies an American option if AmericanOpt is set to 1 . If American0pt is not set to 1 , the function specifies a European or Bermuda option.
[FieldList, ClassList, TypeString] = instoptstock displays the classes.
FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a stock option instrument, TypeString = 'OptStock'.

## Examples

## Create a Stock Option Instrument

Create an instrument set of two stock options with the following data:

```
OptSpec = {'put';'call'};
Strike = [95;98];
Settle = '01-May-2012';
ExerciseDates = {'01-May-2014';'01-May-2015'};
AmericanOpt = [0;1];
```

Create the stock option instruments.

```
InstSet = instoptstock(OptSpec, Strike,Settle, ExerciseDates, AmericanOpt)
InstSet =
 struct with fields:
```

            FinObj: 'Instruments'
    IndexTable: [ \(1 \times 1\) struct]
            Type: \{'OptStock'\}
    FieldName: \(\{\{5 \times 1\) cell \(\}\}\)
    FieldClass: \(\{\{5 \times 1\) cell\}\}
    FieldData: \(\{\{5 \times 1\) cell\}\}
    Display the instrument set.

```
instdisp(InstSet)
```

| Index | Type | OptSpec Strike Settle | ExerciseDates | American0pt |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | OptStock put | 95 | $01-$ May-2012 | $01-$ May-2014 | 0 |
| 2 | OptStock call | 98 | $01-$ May-2012 | $01-$ May-2015 | 1 |

- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Creating Instruments or Properties" on page 1-19


## More About

- "Supported Equity Derivatives" on page 3-24

See Also<br>instadd | instdisp | instget<br>Introduced before R2006a

## instrangefloat

Construct range note instrument

## Syntax

```
ISet = instrangefloat(Spread,Settle,Maturity,RateSched,
Reset,Basis,Principal,EndMonthRule)
ISet = instrangefloat(ISet,Spread,Settle,Maturity,RateSched,
Reset,Basis,Principal,EndMonthRule)
```


## Description

ISet = instrangefloat(Spread,Settle,Maturity,RateSched, Reset, Basis, Principal, EndMonthRule) creates a range instrument from data arrays.

ISet = instrangefloat(ISet,Spread,Settle,Maturity,RateSched, Reset, Basis, Principal, EndMonthRule) adds a new range instrument to an existing instrument set.

## Input Arguments

## Spread

Number of basis points over the reference rate.

## Settle

NINST-by- 1 vector of dates representing the settle date of the floating-rate note.

## Maturity

NINST-by- 1 vector of dates representing the maturity date of the floating-rate note.

## RateSched

NINST-by-1 vector of structures representing the range of rates within which cash flows are nonzero. Each element of the structure array contains two fields:

- RateSched. Dates - NDates-by- 1 cell array of dates corresponding to the range schedule.
- RateSched. Rates -NDates-by-2 array with the first column containing the lower bound of the range and the second column containing the upper bound of the range. Cash flow for date RateSched. Dates $(n)$ is nonzero for rates in the range RateSched.Rates $(n, 1)<$ Rate $<$ RateSched. Rate $(n, 2)$.


## Reset

(Optional) NINST-by-1 vector representing the frequency of payments per year.
Default: 1

## Basis

(Optional) Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- $2=$ actual $/ 360$
- $3=$ actual/ 365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

## Principal

(Optional) NINST-by-1 vector of the notional principal amount.

Default: 100

## EndMonthRule

(Optional) NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and 0 (not in effect).

Default: 1 (in effect)

Note: Data arguments are number of instruments NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument. You can omit or pass the others as empty matrices []. However, you cannot price the instrument when using the range note pricing function if you are missing any of the required input arguments.

## Output Arguments

## ISet

Variable containing a collection of instruments. Instruments are divided by type and each type can have different data fields. Each stored data field has a row vector or character vector for each instrument. Values are:

- FieldList - NFIELDS-by-1 cell array of character vectors listing the name of each data field for this instrument type.
- ClassList - NFIELDS-by-1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are'dble', 'date', and 'char'.
- TypeString - Character vector specifying the type of instrument added. TypeString = 'RangeFloat'.

For more information, on ISet see instget.

## Examples

## Create a Range Note Instrument

Create an instrument portfolio with a range note.

```
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched.Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched.Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];
% Create InstSet
InstSet = instrangefloat(Spread, Settle, Maturity, RateSched);
% Display the portfolio instrument
instdisp(InstSet)
\begin{tabular}{lllllll}
Index & Type & Spread Settle & Maturity & RateSched FloatReset Basis Princ: \\
1 & RangeFloat 100 & \(01-\) Jan-2011 & \(01-\) Jan-2014 & [Struct] & 1 & 0
\end{tabular}
```

Add a second range note instrument to the portfolio. Second Range Note:

```
Spread2 = 200;
Settle2 = 'Jan-1-2011';
Maturity2 = 'Jan-1-2013';
RateSched2.Dates = {'Jan-1-2012'; 'Jan-1-2013'};
RateSched2.Rates = [0.048 0.059; 0.055 0.068];
```

InstSet $=$ instrangefloat(InstSet, Spread2, Settle2, Maturity2, RateSched2);
\% Display the portfolio instrument
instdisp(InstSet)

Index	Type	Spread	Settle	Maturity	RateSched	FloatReset
1	RangeFloat 100	$01-$ Jan-2011	$01-$ Jan-2014	[Struct]	1	0
2	RangeFloat 200	$01-$ Jan-2011	$01-$ Jan-2013	[Struct]	1	0
2						

- "Creating Instruments or Properties" on page 1-19


## More About

## Range Note Instrument

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate as long as the reference rate is within a certain range. If the reference
rate is outside of the range, the coupon rate is 0 for that period. This type of instrument entitles the holder to cash flows that depend on the level of some reference interest rate and are floored to be positive. The note holder gets direct exposure to the reference rate. In return for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates than comparable standard products, like vanilla floating notes.

- "Supported Interest-Rate Instruments" on page 2-2


## References

Jarrow, Robert. "Modelling Fixed Income Securities and Interest Rate Options." Stanford Economics and Finance. 2nd Edition. 2002.

See Also<br>instaddfield | instbond | instcap | instdisp | instswap | intenvprice | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw<br>Introduced in R2012a

## instselect

Create instrument subset by matching conditions

## Syntax

InstSubSet = instselect(InstSet, 'FieldName', FieldList, 'Data', DataList, 'Index', IndexSet,'Type', TypeList)

## Arguments

InstSet	Variable containing a collection of instruments. Instruments   are classified by type; each type can have different data fields.   The stored data field is a row vector or character vector for each   instrument.
FieldList	Number of fields, specified as a NFIELDS-by-1 cell array of   character vectors listing the name of each data field to match with   data values.
DataList	Number of values (NVALUES)-by-M array or NFIELDS-by-1 cell array   of acceptable data values for each field. Each row lists a data row   value to search for in the corresponding FieldList. The number of   columns is arbitrary and matching ignores trailing NaNs or spaces.
IndexSet	(Optional) Number of instruments, specified as a NINST-by-1 vector   restricting positions of instruments to check for matches. The   default is all indices available in the instrument variable.
TypeList	(Optional) Number of types, specified as a NTYPES-by-1 cell   array of character vectors restricting instruments to match one   of TypeList types. The default is all types in the instrument   variable.

Argument value pairs can be entered in any order. The InstSet variable must be the first argument. 'FieldName' and 'Data' arguments must appear together or not at all. 'Index' and 'Type' arguments are each optional.

## Description

InstSubSet = instselect(InstSet, 'FieldName', FieldList, 'Data', DataList, 'Index', IndexSet,'Type', TypeList) creates an instrument subset (InstSubSet) from an existing set of instruments (InstSet).

InstSubSet is a variable containing instruments matching the input criteria. Instruments are returned in InstSubSet if all the Field, Index, and Type conditions are met. An instrument meets an individual Field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName. See instfind for examples on matching criteria.

## Examples

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. The variable contains three types of instruments: Option, Futures, and TBill.

```
load InstSetExamples
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
```

Make a new portfolio containing only options struck at 95.

```
Opt95 = instselect(ExampleInst, 'FieldName', 'Strike',...
 'Data', '95')
instdisp(Opt95)
```

```
Opt95 =
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 95 2.9 Put 0
```

Make a new portfolio containing only futures and Treasury bills.

```
FutTBill = instselect(ExampleInst,'Type',{'Futures';'TBill'})
instdisp(FutTBill) =
Index Type Delivery F Contracts
1 Futures 01-Jul-1999 104.4 -1000
Index Type Price Maturity Contracts
2 TBill 99 01-Jul-1999 6
```


## More About

- "Instrument Constructors" on page 1-18

See Also<br>instaddfield | instdelete | instfind | instget | instgetcell<br>Introduced before R2006a

## instseffield

Add or reset data for existing instruments

## Syntax

```
InstSet = instsetfield(InstSet, 'FieldName', FieldList,
'Data', DataList)
InstSet = instsetfield(InstSet, 'FieldName', FieldList,
'Data', DataList, 'Index', IndexSet, 'Type', TypeList)
```


## Arguments

InstSet	Variable containing a collection of instruments. Instruments   are classified by type; each type can have different data fields.   The stored data field is a row vector or character vector for each   instrument. InstSet must be the first argument in the list.
FieldList	Number of fields, specified as a NFIELDS-by-1 cell array of character   vectors listing the name of each data field. FieldList cannot be   named with the reserved names Type or Index.
DataList	Number of instruments, specified as a NINST-by-M array or   NFIELDS-by-1 cell array of data contents for each field. Each row in   a data array corresponds to a separate instrument. Single rows are   copied to apply to all instruments to be worked on. The number of   columns is arbitrary, and data is padded along columns.
IndexSet	NINST-by-1 vector of positions of instruments to work on. If   TypeList is also entered, instruments referenced must be one of   TypeList types and contained in IndexSet.
TypeList	Number of types, specified as a NTYPES-by-1 cell array of character   vectors restricting instruments worked on to match one of TypeList   types.

Argument value pairs can be entered in any order.

## Description

instsetfield sets data for existing instruments in a collection variable.
InstSet $=$ instsetfield(InstSet, 'FieldName', FieldList, 'Data', DataList) resets or adds fields to every instrument.

InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data', DataList, 'Index', IndexSet, 'Type', TypeList) resets or adds fields to a subset of instruments.

The output InstSet is a new instrument set variable containing the input data.

## Examples

Retrieve the instrument set ExampleInstSF from the data file InstSetExamples.mat. ExampleInstSF contains three types of instruments: Option, Futures, and TBill.

```
load InstSetExamples;
ISet = ExampleInstSF;
instdisp(ISet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put
Index Type Price
7Bill 99
```

Enter data for the option in Index 6: Price 2.9 for a Strike of 95.
ISet $=$ instsetfield(ISet, 'Index',6,...
'FieldName',\{'Strike','Price'\}, 'Data',\{ 95 , 2.9 \});
instdisp(ISet)

```
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option 95 2.9 Put
Index Type Price
7 TBill 99
```

Create a field Maturity for the cash instrument.

```
MDate = datenum('7/1/99');
ISet = instsetfield(ISet, 'Type', 'TBill', 'FieldName',...
'Maturity','FieldClass', 'date', 'Data', MDate);
instdisp(ISet)
Index Type Price Maturity
7 TBill 99 01-Jul-1999
```

Create a field Contracts for all instruments.

```
ISet = instsetfield(ISet, 'FieldName', 'Contracts', 'Data', 0);
instdisp(ISet)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 0
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 0
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put 0
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 0
```

Set the Contracts fields for some instruments.

```
ISet = instsetfield(ISet,'Index',[3; 5; 4; 7],...
```

```
'FieldName','Contracts', 'Data', [1000; -1000; -1000; 6]);
instdisp(ISet)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
```


## More About

- "Instrument Constructors" on page 1-18


## See Also

instaddfield | instdisp | instget | instgetcell

Introduced before R2006a

## instswap

Construct swap instrument

## Syntax

```
InstSet = instswap(LegRate, Settle, Maturity)
InstSet = instswap(InstSet, LegRate, Settle, Maturity)
InstSet = instswap(InstSet, LegRate, Settle, Maturity,
InstSet, LegReset, Basis, Principal, LegType,
EndMonthRule)
InstSet = instswap(InstSet, LegRate, Settle, Maturity, LegReset,
Basis,
Principal, LegType, EndMonthRule, StartDate)
[FieldList, ClassList, TypeString] = instswap
```


## Arguments

InstSet	Instrument variable. This argument is specified only when adding   a swap to an existing instrument set. See instget for more   information on the InstSet variable.
LegRate	Number of instruments (NINST)-by-2 matrix, with each row defined   as:   [CouponRate Spread] (fixed-float), [Spread CouponRate]   (float-fixed), [CouponRate CouponRate] (fixed-fixed) or [Spread   Spread] (float-float).
	CouponRate is the decimal annual rate. Spread is the number of   basis points over the reference rate. The first column represents the   receiving leg, while the second column represents the paying leg.
Settle	Settlement date. NINST-by-1 vector of serial date numbers or date   character vectors. Settle must be earlier than Maturity.
Maturity	Maturity date. NINST-by-1 vector of dates representing the maturity   date for each swap.


LegReset	(Optional) NINST-by-2 matrix representing the reset frequency per year for each swap. Default = [ 11 1].
Basis	(Optional) Day-count basis representing the basis for each leg. NINST-by- 1 array (or NINST-by-2 if Basis is different for each leg).   - $0=$ actual/actual (default)   - $1=30 / 360$ (SIA)   - 2 = actual/360   - 3 = actual $/ 365$   - $4=30 / 360$ (BMA)   - $5=30 / 360$ (ISDA)   - $6=30 / 360$ (European)   - $7=$ actual/365 (Japanese)   - $8=$ actual/actual (ICMA)   - 9 = actual/360 (ICMA)   - $10=$ actual/365 (ICMA)   - $11=30 / 360 \mathrm{E}$ (ICMA)   - 12 = actual/365 (ISDA)   - 13 = BUS/252   For more information, see basis.
Principal	(Optional) Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if Principal is different for each leg) of the notional principal amounts or principal value schedules. For schedules, each element of the cell array is a NumDates-by-2 matrix where the first column is dates and the second column is its associated notional principal value. The date indicates the last day that the principal value is valid. Default $=100$.
LegType	(Optional) NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate. Default is [1,0] for each instrument.
EndMonthRule	(Optional) NINST-by-1 (or NINST-by-2 if EndMonthRule is different for each leg). Default = 1 .


StartDate	(Optional) NINST-by-1 vector of dates when the swaps actually start.   Default is Settle.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN . Only one data argument is required to create the instrument; the others may be omitted or passed as empty matrices [ ].

## Description

InstSet = instswap(LegRate, Settle, Maturity) creates a new instrument set containing swap instruments.

InstSet = instswap(InstSet, LegRate, Settle, Maturity) adds swap instruments to an existing instrument set.

InstSet = instswap(InstSet, LegRate, Settle, Maturity, InstSet, LegReset, Basis, Principal, LegType, EndMonthRule) uses optional input arguments to create a new instrument set containing swap instruments or adds swap instruments to an existing instrument set.

InstSet = instswap(InstSet, LegRate, Settle, Maturity, LegReset, Basis,
Principal, LegType, EndMonthRule, StartDate) to create a new forward swap instrument or to add a forward swap instrument to an existing portfolio.
[FieldList, ClassList, TypeString] = instswap displays the classes.
FieldList is a number of fields (NFIELDS)-by- 1 cell array of character vectors listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of character vectors listing the data class of each field. The class determines how arguments are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a swap instrument, TypeString = 'Swap'.

## Examples

## Create a Vanilla Swap Instrument

Create a vanilla swap using market data.
Use the following market data to create a swap instrument.

```
LegRate = [0.065, 0]
Settle = 'jan-1-2007';
Maturity = 'jan-1-2012';
LegReset = [1, 1];
Basis = 0
Principal = 100
LegType = [1, 0]
InstSet = instswap(LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)
LegRate =
 0.0650
 0
Basis =
 0
Principal =
 1 0 0
LegType =
 10
InstSet =
 struct with fields:
 FinObj: 'Instruments'
```

```
IndexTable: [1×1 struct]
 Type: {'Swap'}
 FieldName: {{9\times1 cell}}
FieldClass: {{9\times1 cell}}
 FieldData: {{9×1 cell}}
```

View the swap instrument using instdisp.

```
instdisp(InstSet)
```

Index	Type LegRate	Settle	Maturity	LegReset Basis Principal LegType Ep			
1	Swap [0.065	0]	$01-J a n-2007$	$01-J a n-2012$	$[1$	$1]$	0

## Create a Float-Float Swap and Price with intenvprice

Use instswap to create a float-float swap and price the swap with intenvprice.

```
RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([40 20],today,datemnth(today,60),[], [], [], [0 0]);
intenvprice(RateSpec,IS)
```

ans =
0.8644

## Create Float-Float, Fixed-Fixed, and Float-Fixed Swaps and Price with intenvprice

Use instswap to create swaps and price the swaps with intenvprice.

```
RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[300 .07],today,datemnth(today,60),[], [], [], [0 1]);
intenvprice(RateSpec,IS)
ans =
 4 . 3 2 2 0
 4.3220
 4.5921
```

- "Creating Instruments or Properties" on page 1-19


## More About

## Amortizing Swap

In an amortizing swap, the notional principal decreases periodically because it is tied to an underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

## Forward Swap

Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

- "Supported Interest-Rate Instruments" on page 2-2


## See Also

hjmprice | instaddfield | instbond | instcap | instdisp | instfloor | intenvprice

## Introduced before R2006a

## instswaption

Construct swaption instrument

## Syntax

```
InstSet = instswaption(OptSpec, Strike, ExerciseDates,
Spread, Settle, Maturity)
InstSet = instswaption(OptSpec, Strike, ExerciseDates,
Spread, Settle, Maturity, AmericanOpt,
SwapReset, Basis, Principal)
InstSet = instswaption(InstSetOld, OptSpec, Strike,
ExerciseDates, Spread, ...)
[FieldList, ClassList, TypeString] = instswaption;
```


## Arguments

Fill in unspecified entries vectors with the value NaN . Only one data argument is required to create the instruments; the others may be omitted or passed as empty matrices []. Type [FieldList, ClassList] = instswaption to see the classes. Dates can be input as serial date numbers or date character vectors.

OptSpec	NINST-by-1 cell array of character vectors ' call ' or 'put '.   A 'call' swaption entitles the buyer to pay the fixed rate. A   'put ' swaption entitles the buyer to receive the fixed rate.
Strike	NINST-by-1 vector of strike swap rate values.
For a European option:	NINST-by-1 vector of exercise dates. Each row is the schedule   for one option. For a European option, there is only one   ExerciseDate on the option expiry date.
ExerciseDates	NINST-by-1 vector of flags. AmericanOpt is 0 for each   European option. The default is 0 if AmericanOpt is NaN or not   entered.
AmericanOpt	
For an American option:	


ExerciseDates	NINST-by-2 vector of exercise date boundaries. For each   instrument, the option can be exercised on any coupon date   between or including the pair of dates on that row. If only one   non-NaN date is listed, or if ExerciseDates is NINST-by-1, the   option can be exercised between the underlying swap Settle   and the single listed ExerciseDate.
AmericanOpt	NINST-by-1 vector of flags. American0pt is 1 for each   American option. The AmericanOpt argument is required to   invoke American exercise rules.
For an American or a European option:	
Spread	NINST-by-1 vector representing the number of basis points over   the reference rate.
Settle	NINST-by-1 vector of dates representing the settle date for each   swap.
Maturity	NINST-by-1 vector of dates representing the maturity date for   each swap.
SwapReset	(Optional) NINST-by-1 vector representing the reset frequency   per year for the underlying swap. Default is 1.


Basis	(Optional) Day-count basis of the instrument. A vector of   integers.
	- $\quad 0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
	- $\quad 3=$ actual/365
	- $4=30 / 360$ (BMA)
	- $\quad 5=30 / 360$ (ISDA)
	- $\quad 6=30 / 360$ (European)
	- $7=$ actual/365 (Japanese)
	- $\quad 8=$ actual/actual (ICMA)
	- $10=$ actual/360 (ICMA)
	- $11=30 / 360 \mathrm{E}$ (ICMA)
	- $12=$ actual/365 (ISDA)
	- $13=$ BUS/252
	For more information, see basis.
	(Optional) NINST-by-1 vector of the notional principal amounts.
	Default is 100.
Principal	

## Description

InstSet = instswaption(OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity) to specify a European option.

InstSet = instswaption(OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal) to specify an American option.

InstSet = instswaption(InstSetOld, OptSpec, Strike,
ExerciseDates, Spread, ...) to add swaption instruments to an instrument variable.
[FieldList, ClassList, TypeString] = instswaption; to list field metadata for the swaption instrument.

Outputs:

InstSet	Variable containing a collection of instruments. Instruments are   broken down by type and each type can have different data fields.   Each stored data field has a row vector or character vector for   each instrument. For more information on the ISet variable, see   instget.
FieldList	NFIELDS-by-1 cell array of character vectors listing the name of   each data field for this instrument type.
ClassList	NFIELDS-by-1 cell array of character vectors listing the data class   of each field. The class determines how arguments are parsed. Valid   character vectors are 'dble ', 'date ', and 'char '.
TypeString	Character vector specifying the type of instrument added.   TypeString = 'Swaption '.

## Examples

## Construct Two Swaption Instruments

This example shows how to create two European swaption instruments using the the following data.

```
OptSpec = {'Call'; 'Put'};
Strike = .05;
ExerciseDates = 'jan-1-2011';
Spread=0;
Settle = 'jan-1-2007';
Maturity = 'jan-1-2012';
AmericanOpt = 0;
InstSet = instswaption(OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, ...
 AmericanOpt);
% view the European swaption instruments using instdisp
instdisp(InstSet)
```

Index	Type	OptSpec	Strike ExerciseDates	Spread	Settle	Maturity	Amer
1	Swaption Call	0.05	$01-$ Jan-2011	0	$01-$ Jan-2007	$01-J a n-2012$	0
2	Swaption Put	0.05	$01-$ Jan-2011	0	$01-J a n-2007$	$01-J a n-2012$	0

- "Creating Instruments or Properties" on page 1-19


## More About

- "Supported Interest-Rate Instruments" on page 2-2

See Also<br>instadd | instdisp | instget<br>Introduced before R2006a

## insttypes

List types

## Syntax

TypeList = insttypes(InstSet)

## Arguments

InstSet	Variable containing a collection of instruments. Instruments   are classified by type; each type can have different data fields.   The stored data field is a row vector or character vector for each   instrument.

## Description

TypeList $=$ insttypes(InstSet) retrieves a list of types stored in an instrument variable.

TypeList is a number of types (NTYPES)-by-1 cell array of character vectors listing the Type of instruments contained in the variable.

## Examples

Retrieve the instrument set variable ExampleInst from the data file
InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.

```
load InstSetExamples;
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
```

```
3 Option 105 6.8 Call 1000
\begin{tabular}{lllll}
Index & Type & Delivery & F & Contracts \\
4 & Futures & 01 -Jul-1999 & 104.4 & -1000
\end{tabular}
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
```

List all of the types included in ExampleInst.
TypeList = insttypes(ExampleInst)
TypeList =
'Futures
'Option'
'TBill'

## More About

- "Instrument Constructors" on page 1-18

See Also
instdisp | instfields | instlength
Introduced before R2006a

## intenvget

Properties of interest-rate structure

## Syntax

ParameterValue = intenvget(RateSpec,'ParameterName')

## Arguments

RateSpec	A structure containing the properties of an interest-rate   structure. See intenvset for information on creating   RateSpec.
'ParameterName '	Character vector indicating the parameter name to be   accessed. The value of the named parameter is extracted   from the structure RateSpec. It is sufficient to type only   the leading characters that uniquely identify the parameter.   Case is ignored for parameter names.

## Description

ParameterValue = intenvget(RateSpec,'ParameterName') obtains the value of the named parameter 'ParameterName' extracted from RateSpec.

## Examples

Use intenvset to set the interest-rate structure.

```
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'20-Jan-2000', 'EndDates', '20-Jan-2001')
```

Now use intenvget to extract the values from RateSpec.

```
[R, RateSpec] = intenvget(RateSpec, 'Rates')
```

```
R =
 0.0500
RateSpec =
 FinObj: 'RateSpec'
 Compounding: 2
 Disc: 0.9518
 Rates: 0.0500
 EndTimes: 2
 StartTimes: 0
 EndDates: 730871
 StartDates: 730505
 ValuationDate: 730505
 Basis: 0
 EndMonthRule: 1
```


## More About

- "Understanding the Interest-Rate Term Structure" on page 2-40


## See Also <br> intenvset

## Introduced before R2006a

## intenvprice

Price instruments from set of zero curves

## Syntax

Price = intenvprice(RateSpec, InstSet)

## Arguments

RateSpec	A structure containing the properties of an interest-rate structure.   See intenvset for information on creating RateSpec.
InstSet	Variable containing a collection of instruments. Instruments   are categorized by type; each type can have different data fields.   The stored data field is a row vector or character vector for each   instrument.

## Description

Price = intenvprice(RateSpec, InstSet) computes arbitrage-free prices for instruments against a set of zero coupon bond rate curves.

Price is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of prices of each instrument. If an instrument cannot be priced, a NaN is returned in that entry.
intenvprice handles the following instrument types: 'Bond', 'CashFlow', 'Fixed', 'Float', 'Swap'. See instadd for information about constructing defined types.

See single-type pricing functions to retrieve pricing information.

bondbyzero	Price bonds from a set of zero curves.
cfbyzero	Price arbitrary cash flow instrument from a set of zero curves.
fixedbyzero	Fixed-rate note prices from a set of zero curves.


floatbyzero	Floating-rate note prices from a set of zero curves.
swapbyzero	Swap prices from a set of zero curves.

## Examples

## Load Zero Curves and Instruments from Data File

Load the zero curves and instruments.

```
load deriv.mat
instdisp(ZeroInstSet)
```



Price the instruments.

```
Price = intenvprice(ZeroRateSpec, ZeroInstSet)
```

Price =
98.7159
97.5334
98.7159
100.5529
3.6923

## Create a Float-Float Swap and Price with intenvprice

Use instswap to create a float-float swap and price the swap with intenvprice.

```
RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([400 200],today,datemnth(today,60),[], [], [], [0 0]);
intenvprice(RateSpec,IS)
ans =
 8.6440
```


## Create Float-Float, Fixed-Fixed, and Float-Fixed Swaps and Price with intenvprice

Use instswap to create swaps and price the swaps with intenvprice.

```
RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[300 .07],today,datemnth(today,60),[], [], [], [0 1]);
intenvprice(RateSpec,IS)
```

ans $=$
4.3220
-4.3220
4.5921

- "Pricing Using Interest-Rate Term Structure" on page 2-57


## More About

- "Understanding the Interest-Rate Term Structure" on page 2-40


## See Also

hjmprice | hjmsens | instadd | instswap | intenvsens | intenvset

Introduced before R2006a

## intenvsens

Instrument price and sensitivities from set of zero curves

## Syntax

[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

## Arguments

RateSpec	A structure containing the properties of an interest-rate structure.   See intenvset for information on creating RateSpec.
InstSet	Variable containing a collection of instruments. Instruments   are categorized by type; each type can have different data fields.   The stored data field is a row vector or character vector for each   instrument.

## Description

[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet) computes dollar prices and price sensitivities for instruments that use a zero coupon bond rate structure.

Delta is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of deltas, representing the rate of change of instrument prices with respect to shifts in the observed zero curve. Delta is computed by finite differences.

Gamma is an NINST-by-NUMCURVES matrix of gammas, representing the rate of change of instrument deltas with respect to shifts in the observed zero curve. Gamma is computed by finite differences.

Note Both sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-NUMCURVES matrix of prices of each instrument. If an instrument cannot be priced, a NaN is returned.
intenvsens handles the following instrument types: 'Bond ', 'CashFlow', 'Fixed', 'Float', 'Swap '. See instadd for information about constructing defined types.

## Examples

Load the tree and instruments from a data file.

```
load deriv.mat
instdisp(ZeroInstSet)
```



```
[Delta, Gamma] = intenvsens(ZeroRateSpec, ZeroInstSet)
```

Delta =
-272.6403
-347. 4386
-272.6403
-1.0445
-282.0405
Gamma =
$1.0 e+003$
1.0298
1.6227
1.0298
0.0033
1.0596

## More About

- "Understanding the Interest-Rate Term Structure" on page 2-40


## See Also

hjmprice | hjmsens | instadd | intenvprice | intenvset

Introduced before R2006a

## intenvset

Set properties of interest-rate structure

## Syntax

[RateSpec, RateSpecOld] = intenvset(RateSpec, 'Argument1', Value1, 'Argument2', Value2, ...)
[RateSpec, RateSpecOld] = intenvset intenvset

## Arguments

RateSpec	An existing interest-rate specification structure to be changed,   probably created from a previous call to intenvset.

Optional arguments may be chosen from the following table and specified in any order.

Compounding	Scalar value representing the rate at which the input zero   rates were compounded when annualized. The default   value for Compounding is 2. This argument determines the   formula for the discount factors (Disc):   - Compounding $=0$ for simple interest
-Disc $=1 /(1+Z * T)$, where $T$ is time in years   and simple interest assumes annual times $F=1$.   Compounding $=1,2,3,4,6,12$	
-Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the   time in periodic units, for example, $T=F$ is one year.   Compounding $=365$	
-Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the number   of days in the basis year and $T$ is a number of days   elapsed computed by basis.	


	Compounding $=-1$   $-\quad$ Disc $=\exp (-T * Z)$, where T is time in years.
Disc	Number of points (NPOINTS) by number of curves (NCURVES)   matrix of unit bond prices over investment intervals from   StartDates, when the cash flow is valued, to EndDates,   when the cash flow is received.
Rates	Number of points (NPOINTS) by number of curves (NCURVES)   matrix of rates in decimal form. For example, 5\% is 0.05 in   Rates. Rates are the yields over investment intervals from   StartDates, when the cash flow is valued, to EndDates,   when the cash flow is received.
EndDates	NPOINTS-by-1 vector or scalar of serial maturity dates ending   the interval to discount over.
StartDates	NPOINTS-by-1 vector or scalar of serial dates starting   the interval to discount over. Default = ValuationDate.   StartDates must be earlier than EndDates.
ValuationDate	Scalar value in serial date number form representing the   observation date of the investment horizons entered in   StartDates and EndDates. Default = min(StartDates).


Basis	Day-count basis of the instrument. A scalar of integers.   - $0=$ actual/actual (default)   - $1=30 / 360$ (SIA)   - 2 = actual/360   - 3 = actual/365   - $4=30 / 360$ (BMA)   - $5=30 / 360$ (ISDA)   - $6=30 / 360$ (European)   - $7=$ actual/365 (Japanese)   - $8=$ actual/actual (ICMA)   - $9=$ actual/360 (ICMA)   - $10=$ actual/365 (ICMA)   - $11=30 / 360 \mathrm{E}$ (ICMA)   - 12 = actual/365 (ISDA)   - 13 = BUS/252   For more information, see basis.
EndMonthRule	End-of-month rule. A scalar. This rule applies only when EndDates is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

It is sufficient to type only the leading characters that uniquely identify the parameter. Case is ignored for argument names.

When creating a new RateSpec, the set of arguments passed to intenvset must include StartDates, EndDates, and either Rates or Disc.

Call intenvset with no input or output arguments to display a list of argument names and possible values.

## Description

[RateSpec, RateSpecOld] = intenvset(RateSpec, 'Argument1', Value1, 'Argument2', Value2, ...) creates an interest term structure (RateSpec) in which the input argument list is specified as name-value pairs. The argument name portion of the pair must be recognized as a valid field of the output structure RateSpec; the argument value portion of the pair is then assigned to its paired field.

If the optional argument RateSpec is specified, intenvset modifies an existing interest term structure RateSpec by changing the named argument to the specified values and recalculating the arguments dependent on the new values.
[RateSpec, RateSpecOld] = intenvset creates an interest term structure RateSpec with all fields set to [].
intenvset with no input or output arguments displays a list of argument names and possible values.

RateSpecOld is a structure containing the properties of an interest-rate structure before the changes introduced by the call to intenvset.

## Examples

## Create a RateSpec for a Zero Curve

Use intenvset to create a RateSpec for a zero curve.

```
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'20-Jan-2000', 'EndDates', '20-Jan-2001')
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 2
 Disc: 0.9518
```

```
 Rates: 0.0500
 EndTimes: 2
 StartTimes: 0
 EndDates: 730871
 StartDates: 730505
ValuationDate: 730505
 Basis: 0
EndMonthRule: 1
```

Now change the Compounding argument to 1 (annual).

```
RateSpec = intenvset(RateSpec, 'Compounding', 1)
```

```
RateSpec =
 struct with fields:
```

            FinObj: 'RateSpec'
        Compounding: 1
            Disc: 0.9518
            Rates: 0.0506
            EndTimes: 1
        StartTimes: 0
            EndDates: 730871
        StartDates: 730505
    ValuationDate: 730505
        Basis: 0
    EndMonthRule: 1
    Calling intenvset with no input or output arguments displays a list of argument names and possible values.

## intenvset

```
 Compounding: [0 | 1 | {2} | 3 | 4 | 6 | 12 | 365 | -1]
 Disc: [scalar | vector (NPOINTS x 1)]
 Rates: [scalar | vector (NPOINTS x 1)]
 EndDates: [scalar | vector (NPOINTS x 1)]
 StartDates: [scalar | vector (NPOINTS x 1)]
ValuationDate: [scalar]
 Basis: [{0} | 1 | 2 | 3 | 4 | 5 | 6 | 7 7 8 | 9 | 10 | 11 | 12 | 13
EndMonthRule: [0 | {1}]
```


## Create a RateSpec for a Forward Curve

Use intenvset to create a RateSpec for a forward curve.

```
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'20-Jan-2001', 'EndDates', '20-Jan-2002', 'ValuationDate','20-Jan-2000')
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 2
 Disc: 0.9518
 Rates: 0.0500
 EndTimes: 4
 StartTimes: 2
 EndDates: 731236
 StartDates: 730871
 ValuationDate: 730505
 Basis: 0
 EndMonthRule: 1
```

Now change the Compounding argument to 1 (annual).

```
RateSpec = intenvset(RateSpec, 'Compounding', 1)
```

RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: 0.9518
Rates: 0.0506
EndTimes: 2
StartTimes: 1
EndDates: 731236
StartDates: 730871
ValuationDate: 730505

Basis: 0
EndMonthRule: 1

## Create a RateSpec Using Two Curves

Define data for the interest-rate term structure and use intenvset to create a RateSpec.

```
StartDates = '01-Oct-2011';
EndDates = ['01-0ct-2012'; '01-0ct-2013';'01-0ct-2014';'01-0ct-2015'];
Rates = [[0.0356;0.041185;0.04489;0.047741],[0.0325;0.0423;0.0437;0.0465]];
RateSpec = intenvset('Rates', Rates, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [4×2 double]
 Rates: [4\times2 double]
 EndTimes: [4×1 double]
 StartTimes: [4×1 double]
 EndDates: [4\times1 double]
 StartDates: 734777
 ValuationDate: 734777
 Basis: 0
 EndMonthRule: 1
```

To look at the Rates for the two interest-rate curves:
RateSpec.Rates
ans $=$

0.0356	0.0325
0.0412	0.0423
0.0449	0.0437
0.0477	0.0465

## Create a RateSpec to Price Multi-Stepped Coupon Bonds

Price the following multi-stepped coupon bonds using the following data:

```
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
% Create RateSpec using intenvset
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
% Create a portfolio of stepped coupon bonds with different maturities
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014'
% Display the instrument portfolio
ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)
\begin{tabular}{llllllll}
Index & Type CouponRate & Settle & Maturity & Period & Basis & EndMonthRule & IssueDat \\
1 & Bond & [Cell] & 01-Jan-2010 & \(01-\) Jan-2011 & 1 & 0 & 1 \\
2 & Bond [Cell] & \(01-\) Jan-2010 & \(01-\) Jan-2012 & 1 & 0 & 1 & NaN \\
3 & Bond [Cell] & \(01-\) Jan-2010 & \(01-\) Jan-2013 & 1 & 0 & 1 & NaN \\
4 & Bond [Cell] & \(01-\) Jan-2010 & \(01-\) Jan-2014 & 1 & 0 & 1 & NaN \\
\end{tabular}
```

Build a BDTTree to price the stepped coupon bonds. Assume the volatility to be $10 \%$

```
Sigma = 0.1;
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);
% Compute the price of the stepped coupon bonds
PBDT = bdtprice(BDTT, ISet)
PBDT =
```

100.6763
100.7368
100.9266
101.0115

- "Pricing Using Interest-Rate Term Structure" on page 2-57


## More About

- "Understanding the Interest-Rate Term Structure" on page 2-40


## See Also

intenvget | intenvprice

Introduced before R2006a

## isafin

True if input argument is financial structure type or financial object class

## Syntax

```
IsFinObj = isafin(Obj, ClassName)
```


## Arguments

Obj	Name of a financial structure.
ClassName	Character vector containing the name of a financial structure class.

## Description

IsFinObj = isafin(Obj, ClassName) returns True (1) if input argument is a financial structure type or financial object class, otherwise False (0) is returned.

## Examples

load deriv.mat
IsFinObj = isafin(HJMTree, 'HJMFwdTree')
IsFinObj =
1

## More About

- "Instrument Constructors" on page 1-18

See Also<br>classfin

11 Functions - Alphabetical List

Introduced before R2006a

## ittprice

Price instruments using implied trinomial tree (ITT)

## Syntax

```
Price = ittprice(ITTTree, InstSet)
Price = ittprice(ITTTree, InstSet, Options)
[Price, PriceTree] = ittprice(ITTTree, InstSet, Options)
```


## Arguments

ITTTree	Implied trinomial stock tree. See itttree for information on   creating the variable ITTTree.
InstSet	Variable containing a collection of NINST instruments. Instruments   are broken down by type and each type can have different data   fields.
Options	(Optional) Structure created using derivset containing derivative   pricing options.

## Description

Price = ittprice(ITTTree, InstSet) to price instruments using an implied trinomial tree (ITT).

Price = ittprice(ITTTree, InstSet, Options) to price instruments with derivative pricing options using an implied trinomial tree (ITT).
[Price, PriceTree] = ittprice(ITTTree, InstSet, Options) to price a collection of instruments with derivative pricing options using an implied trinomial tree (ITT).

The outputs for ittprice are:

- Price is a NINST-by- 1 vector of prices of each instrument at time 0 . The prices are computed by backward dynamic programming on the stock tree. If an instrument cannot be priced, a NaN is returned in that entry.
- PriceTree is a structure containing trees of vectors of instrument prices and a vector of observation times for each node.
- PriceTree. PTree contains the prices.
- PriceTree.tObs contains the observation times.
- PriceTree.dObs contains the observation dates.
ittprice computes prices for instruments using an implied trinomial tree created with itttree.

Note: ittprice handles the following instrument types: optstock, barrier, Asian, lookback, and compound. Use instadd to construct the defined types.

When using an implied trinomial tree, pricing of path-dependent options is done using Hull-White. So, for these options there are no unique prices on the tree nodes except for the root node. The corresponding nodes of the tree are populated with NaNs for these particular options. For information on single-type pricing functions to retrieve state-bystate pricing tree information, see the following:

- barrierbyitt for pricing barrier options using an ITT tree
- optstockbyitt for pricing American, European, or Bermuda options using an ITT tree
- asianbyitt for pricing Asian options using an ITT tree
- lookbackbyitt for pricing lookback options using an ITT tree
- compoundbyitt for price compound options using an ITT tree
- cbondbyitt for pricing convertible bonds using an ITT tree


## Examples

## Price Instruments Using Implied Trinomial Tree (ITT)

Load the ITT tree and instruments from the data file deriv.mat.
load deriv.mat
Display the barrier and Asian options contained in the instrument set.

```
ITTSubSet = instselect(ITTInstSet,'Type', {'Barrier', 'Asian'});
instdisp(ITTSubSet)
\begin{tabular}{llllllll}
Index & Type OptSpec Strike Settle & ExerciseDates & AmericanOpt BarrierSpec Barı \\
1 & Barrier call & 85 & \(01-J a n-2006\) & \(31-\) Dec-2008 & 1 & ui & 115
\end{tabular}
\begin{tabular}{lllllll}
Index & Type OptSpec Strike Settle & ExerciseDates & AmericanOpt AvgType AvgPrid \\
2 & Asian call & 55 & \(01-J a n-2006\) & \(01-J a n-2008\) & 0 & arithmetic NaN \\
3 & Asian call & 55 & \(01-J a n-2006\) & \(01-J a n-2010\) & 0 & arithmetic NaN
\end{tabular}
```

Price the barrier and Asian options contained in the instrument set.
[Price, PriceTree] = ittprice(ITTTree, ITTSubSet)

Price =
2.4074
3.2052
6.6074

PriceTree =
struct with fields:

```
 FinObj: 'TrinPriceTree'
 PTree: {1×5 cell}
 tObs: [0 0 1 2 3 4]
 dObs: [732678 733043 733408 733773 734139]
```

- "Computing Prices Using ITT" on page 3-124
- "Examining Output from the Pricing Functions" on page 3-128
- "Computing Equity Instrument Sensitivities" on page 3-133
- "Graphical Representation of Equity Derivative Trees" on page 3-131


## More About

- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

See Also<br>ittsens | itttree<br>Introduced in R2007a

## ittsens

Instrument sensitivities and prices using implied trinomial tree (ITT)

## Syntax

```
[Delta, Gamma, Vega] = ittsens(ITTTree, InstSet)
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet)
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet,
Options)
```


## Arguments

ITTTree	Implied trinomial stock tree. See itttree for information on   creating the variable ITTTree.
InstSet	Variable containing a collection of NINST instruments. Instruments   are broken down by type and each type can have different data   fields.
Options	(Optional) Structure created using derivset containing derivative   pricing options.

## Description

[Delta, Gamma, Vega] = ittsens(ITTTree, InstSet) to calculate instrument sensitivities and prices using an implied trinomial tree (ITT).
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet) to calculate a collection of instrument sensitivities and prices using an implied trinomial tree (ITT).
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet, Options) to calculate the sensitivities and prices for a collection of instruments that contain derivative pricing options using an implied trinomial tree (ITT).

The outputs for ittsens are:

- Delta is a NINST-by- 1 vector of deltas, representing the rate of change of instruments prices with respect to changes in the stock price.
- Gamma is a NINST-by- 1 vector of gammas, representing the rate of change of instruments deltas with respect to changes in the stock price.
- Vega is a NINST-by- 1 vector of vegas, representing the rate of change of instruments prices with respect to changes in the volatility of the stock. Vega is computed by finite differences in calls to itttree.
- Price is a NINST-by-1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the stock tree. If an instrument cannot be priced, a NaN is returned.
ittsens computes dollar sensitivities and prices for instruments using an ITT tree created with itttree.

Note: ittsens handles the following instrument types: optstock, barrier, Asian, lookback, and compound. Use instadd to construct the defined types.

For path-dependent options (lookbacks and Asians), Delta and Gamma are computed by finite differences in calls to ittprice. For the rest of the options (optstock, barrier, and compound), Delta and Gamma are computed from the ITT tree and the corresponding option price tree.

All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, they must be divided by their respective instrument price.

## Examples

## Compute Instrument Sensitivities Using an Implied Trinomial Tree (ITT)

Load the ITT tree and instruments from the data file deriv.mat and display the vanilla options and barrier option instruments.

```
load deriv.mat
ITTSubSet = instselect(ITTInstSet,'Type', {'OptStock', 'Barrier'});
instdisp(ITTSubSet)
```

```
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity
1 OptStock call 95 01-Jan-2006 31-Dec-2008 1 1 Call1 10
2 OptStock put 80 01-Jan-2006 01-Jan-2010 0
\begin{tabular}{llllllll}
Index & Type & OptSpec Strike Settle & ExerciseDates & AmericanOpt BarrierSpec Barı \\
3 & Barrier call & 85 & \(01-J a n-2006\) & \(31-\) Dec-2008 & 1 & ui & 115
\end{tabular}
```

Compute the Delta and Gamma sensitivities of vanilla options and barrier option contained in the instrument set.

```
[Delta, Gamma] = ittsens(ITTTree, ITTSubSet)
```

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This made extrapolation necessary. Below is a list of the options that were outside of the
range of those specified in StockOptSpec.

```
Option Type: 'call' Maturity: 01-Jan-2007 Strike=67.2897
Option Type: 'put' Maturity: 01-Jan-2007 Strike=37.1528
Option Type: 'put' Maturity: 01-Jan-2008 Strike=27.6066
Option Type: 'put' Maturity: 31-Dec-2008 Strike=20.5132
Option Type: 'call' Maturity: 01-Jan-2010 Strike=164.0157
Option Type: 'put' Maturity: 01-Jan-2010 Strike=15.2424
```

Delta =
0.2387
-0.4283
0.3482

Gamma =
0.0260
0.0188
0.0380

- "Computing Prices Using ITT" on page 3-124
- "Examining Output from the Pricing Functions" on page 3-128
- "Computing Equity Instrument Sensitivities" on page 3-133
- "Graphical Representation of Equity Derivative Trees" on page 3-131


## More About

- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24


## References

Chriss, Neil. and I. Kawaller. Black-Scholes and Beyond: Options Pricing Models. McGraw-Hill, 1996, pp.308-312.

See Also<br>ittprice | itttree<br>Introduced in R2007a

## ittrimespec

Specify time structure using implied trinomial tree (ITT)

## Syntax

TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods)

## Arguments

ValuationDate	Scalar date marking the pricing date and first observation in the   tree. Specify ValuationDate as a serial date number or date   character vector.
Maturity	Scalar date marking the depth of the tree.
NumPeriods	Scalar that determines how many time steps are in the tree.

## Description

TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods) creates the structure specifying the time layout for an ITT tree.

## Examples

## Creates the Structure Specifying the Time Layout for an ITT Tree

This example shows how to specify a four-period tree with time steps of 1 year.

```
ValuationDate = '1-July-2006';
Maturity = '1-July-2010';
TimeSpec = itttimespec(ValuationDate, Maturity, 4)
```

struct with fields:
FinObj: 'ITTTimeSpec'
ValuationDate: 732859
Maturity: 734320
NumPeriods: 4
Basis: 0
EndMonthRule: 1
tObs: [lllllll}
dObs: [l732859 733224 733589 733954 734320]

```
- "Building Implied Trinomial Trees" on page 3-8
- "Examining Equity Trees" on page 3-18
- "Graphical Representation of Equity Derivative Trees" on page 3-131

\section*{More About}
- "Understanding Equity Trees" on page 3-2
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ ittprice | itttree | stockspec \\ Introduced in R2007a
}

\section*{ittrree}

Build implied trinomial stock tree

\section*{Syntax}
itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline StockSpec & Stock specification. For more information, see stockspec. \\
\hline RateSpec & \begin{tabular}{l}
Interest rate specification of the initial risk-free rate curve. For more \\
information on declaring an interest rate variable, see intenvset.
\end{tabular} \\
\hline TimeSpec & \begin{tabular}{l}
Tree time layout specification. Defines the observation dates of the \\
implied trinomial tree. For more information on the tree structure, \\
see itttimespec.
\end{tabular} \\
\hline StockOptSpec & \begin{tabular}{l}
Option stock specification. For more information, see \\
stockoptspec.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec) creates the itttree structure specifying stock and time information for an implied trinomial tree.

\section*{Examples}

For this example, assume that the interest rate is fixed at \(8 \%\) annually between the valuation date of the tree (January 1, 2006) until its maturity.
```

Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';

```
```

RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);

```

To build an ITTTree, create StockSpec, TimeSpec, and StockOptSpec structures.
To create theStockSpec structure:
```

Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
StockSpec =
FinObj: 'StockSpec'
Sigma: 0.2000
AssetPrice: 50
DividendType: 'cash'
DividendAmounts: [4x1 double]
ExDividendDates: [4x1 double]

```
ExDividendDates = \{'03-Jan-2007'; '01-Apr-2007'; '05-July-2007';'01-0ct-2007'\}

The syntax for building a TimeSpec structure is TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods).

Consider building an ITT tree, with a valuation date of January 1, 2006; a maturity date of January 1, 2008; and four time steps.
```

ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods)
TimeSpec =
FinObj: 'ITTTimeSpec'
ValuationDate: 732678
Maturity: 733408
NumPeriods: 4
Basis: 0
EndMonthRule: 1
tObs: [0 0.5000 1 1.5000 2]
dObs: [732678 732860 733043 733225 733408]

```

The syntax for building a StockOptSpec structure is [StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec).
```

Settle = '01/01/06';
Maturity = ['07/01/06';
07/01/06';
'07/01/06';
'07/01/06';
'01/01/07';
'01/01/07';
'01/01/07';
'01/01/07';
'07/01/07';
'07/01/07';
'07/01/07';
'07/01/07';
'01/01/08';
'01/01/08';
'01/01/08';
'01/01/08'];
Strike = [113;
101;
100;
88;
128;
112;
100;
78;
144;
112;
100;
69;
162;
112;
100;
61];
OptPrice =[ 0;
4.807905472659144;
1.306321897011867;
0.048039195057173;
0;
2.310953054191461;
1.421950392866235;
0.020414826276740;
0;
5.091986935627730;
1.346534812295291;
0.005101325584140;
0;
8.047628153217246;
1.219653432150932;
0.001041436654748];

```
```

OptSpec = { 'call';
'call';
'put';
'put';
'call';
'call';
'put';
'put';
'call';
'call';
'put';
'put';
'call';
'call';
'put';
'put'};
StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)
StockOptSpec =
FinObj: 'StockOptSpec'
OptPrice: [16x1 double]
Strike: [16x1 double]
Settle: 732678
Maturity: [16x1 double]
OptSpec: {16x1 cell}
InterpMethod: 'price'

```

Note: In this example, the extrapolation warnings are turned on to display warnings on the Command Window. These warnings are a consequence of having to extrapolate to find the option price of the tree nodes. In this example, the set of inputs options was too narrow for the shift in the tree nodes introduced by the disturbance used to calculate the sensitivities. As a consequence extrapolation for some of the nodes was needed.

Use the following command to turn on extrapolation warnings:
```

warning('on', 'fininst:itttree:Extrapolation');

```

Use the StockSpec, RateSpec, TimeSpec, and StockOptSpec structure to create an ITTTree.

ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)
Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
```

This made extrapolation necessary. Below is a list of the options that were outside of
the range of those specified in StockOptSpec.
Option Type: 'call' Maturity: 02-Jul-2006 Strike=60.7466
Option Type: 'put' Maturity: 02-Jul-2006 Strike=50.0731
Option Type: 'put' Maturity: 02-Jul-2006 Strike=41.3344
Option Type: 'call' Maturity: 01-Jan-2007 Strike=73.8592
Option Type: 'call' Maturity: 01-Jan-2007 Strike=60.8227
Option Type: 'put' Maturity: 01-Jan-2007 Strike=50.1492
Option Type: 'put' Maturity: 01-Jan-2007 Strike=41.4105
Option Type: 'put' Maturity: 01-Jan-2007 Strike=34.2559
Option Type: 'call' Maturity: 02-Jul-2007 Strike=88.8310
Option Type: 'call' Maturity: 02-Jul-2007 Strike=72.9081
Option Type: 'call' Maturity: 02-Jul-2007 Strike=59.8715
Option Type: 'put' Maturity: 02-Jul-2007 Strike=49.1980
Option Type: 'put' Maturity: 02-Jul-2007 Strike=40.4594
Option Type: 'put' Maturity: 02-Jul-2007 Strike=33.3047
Option Type: 'put' Maturity: 02-Jul-2007 Strike=27.4470
Option Type: 'call' Maturity: 01-Jan-2008 Strike=107.2895
Option Type: 'call' Maturity: 01-Jan-2008 Strike=87.8412
Option Type: 'call' Maturity: 01-Jan-2008 Strike=71.9183
Option Type: 'call' Maturity: 01-Jan-2008 Strike=58.8817
Option Type: 'put' Maturity: 01-Jan-2008 Strike=48.2083
Option Type: 'put' Maturity: 01-Jan-2008 Strike=39.4696
Option Type: 'put' Maturity: 01-Jan-2008 Strike=32.3150
Option Type: 'put' Maturity: 01-Jan-2008 Strike=26.4573
Option Type: 'put' Maturity: 01-Jan-2008 Strike=21.6614
> In itttree>InterpOptPrices at 675
In itttree at 277
ITTTree =
FinObj: 'ITStockTree'
StockSpec: [1x1 struct]
StockOptSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.500000000000000 1 1.500000000000000 2]
dObs: [732678 732860 733043 733225 733408]
STree: {1x5 cell}
Probs: {[3\times1 double] [3x3 double] [3\times5 double] [3\times7 double]}

```

\section*{More About}
- "Understanding Equity Trees" on page 3-2
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ intenvset | ittprice | itttimespec | itttree | stockoptspec | stockspec \\ Introduced in R2007a
}

\section*{LiborMarketModel class}

\author{
Create LIBOR Market Model
}

\section*{Description}

The LIBOR Market Model (LMM) differs from short rate models in that it evolves a set of discrete forward rates. Specifically, the lognormal LMM specifies the following diffusion equation for each forward rate
\[
\frac{d F_{i}(t)}{F_{i}}=-\mu_{i} d t+\sigma_{i}(t) d W_{i}
\]
where:
\(W\) is an N -dimensional geometric Brownian motion with
\[
d W_{i}(t) d W_{j}(t)=\rho_{i j}
\]

The LMM relates the drifts of the forward rates based on no-arbitrage arguments. Specifically, under the Spot LIBOR measure, the drifts are expressed as
\[
\mu_{i}(t)=-\sigma_{i}(t) \sum_{j=q(t)}^{i} \frac{\tau_{j} \rho_{i, j} \sigma_{j}(t) F_{j}(t)}{1+\tau_{j} F_{j}(t)}
\]
where:
\[
\tau_{i} \text { is the time fraction associated with the } i \text { th forward rate }
\]
\(q(t)\) is an index defined by the relation
\[
T_{q(t)-1}<t<T_{q(t)}
\]
and the Spot LIBOR numeraire is defined as
\[
B(t)=P\left(t, T_{q(t)}\right) \prod_{n=0}^{q(t)-1}\left(1+\tau_{n} F_{n}\left(T_{n}\right)\right)
\]

\section*{Construction}

OBJ = LiborMarketModel(ZeroCurve, VolFunc, Correlation) constructs a LIBOR Market Model object.

For example:
```

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 . 024 .029 .033 . 034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [. 3 -. 02 .7 .14];
numRates = 20;
VolFunc(1:numRates-1) = {@(t) LMMVolFunc(LMMVolParams,t)};
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
LMM = LiborMarketModel(irdc,VolFunc,Correlation,'Period',1);

```

\section*{Properties}

The following properties are from the LiborMarketModel class.

\section*{ZeroCurve}

ZeroCurve is specified using the output from IRDataCurve or RateSpec. This is the zero curve used to evolve the path of future interest rates.

\section*{Attributes:}

SetAccess
GetAccess
public
public

\section*{VolFunc}

NumRates-by- 1 cell array of function handles. Each function handle must take time as an input and, return a scalar volatility.

\section*{Attributes:}
```

SetAccess
public

```

GetAccess
public

\section*{Correlation}

NumRates-by-NumRates correlation matrix.

\section*{Attributes:}

SetAccess
public
GetAccess
public

\section*{NumFactors}

Number of Brownian factors. The default is NaN, where the number of factors is equal to the number of rates.

\section*{Attributes:}
```

SetAccess
public
GetAccess
public

```

\section*{Period}

Period of the forward rates. The default is 2 , meaning forward rates are spaced at \(0, .5\), \(1,1.5\), and so on. Possible values for Period are: \(1,2,4\), and 12.

Note: Correlation and VolFunc are sized with NumRates-by-1 since the first rate is locked in and essentially dead.

\section*{Attributes:}

SetAccess
GetAccess

\section*{Methods}
simTermStructs
public
public

Simulate term structures for LIBOR Market Model

\section*{Definitions}

\section*{LIBOR Market Model}

The LIBOR Market Model, also called the BGM Model (Brace, Gatarek, Musiela Model) is a financial model of interest rates. The quantities that are modeled are a set of forward rates (also called forward LIBORs) which have the advantage of being directly observable in the market, and whose volatilities are naturally linked to traded contracts.

\section*{Examples}

\section*{Construct a LIBOR Market Model}

Construct a LMM object.
```

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [.3 -.02 .7 .14];
numRates = 20;
VolFunc(1:numRates-1) = {@(t) LMMVolFunc(LMMVolParams,t)};

```
```

Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
LMM = LiborMarketModel(irdc,VolFunc,Correlation,'Period',1);
Simulate the term structures for the specified LMM object.

```
```

[ZeroRates, ForwardRates] = simTermStructs(LMM, 10,'nTrials',100);

```
[ZeroRates, ForwardRates] = simTermStructs(LMM, 10,'nTrials',100);
- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation"
- Class Attributes
- Property Attributes
```


## References

Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

See Also<br>HullWhite1F | LinearGaussian2F | simTermStructs

## More About

- "Supported Interest-Rate Instruments" on page 2-2


## Introduced in R2013a

# simTermStructs 

Class: LiborMarketModel
Simulate term structures for LIBOR Market Model

## Syntax

[ZeroRates,ForwardRates] = simTermStructs(nPeriods)
[ZeroRates,ForwardRates] = simTermStructs(nPeriods, Name, Value)

## Description

[ZeroRates,ForwardRates] = simTermStructs(nPeriods) simulates future zero curve paths using a specified LiborMarketModel object.
[ZeroRates,ForwardRates] = simTermStructs(nPeriods, Name, Value) simulates future zero curve paths using a specified LiborMarketModel object with additional options specified by one or more Name, Value pair arguments.

## Input Arguments

## nPeriods

Number of simulation periods.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

```
'nTrials'
```

Positive scalar integer number of simulated trials (sample paths) of NPERIODS observations each. If you do not specify a value for this argument, the default is 1 , indicating a single path of correlated state variables.

## Default: 1

## 'antithetic'

Boolean scalar flag indicating whether antithetic sampling is used to generate the Gaussian random variates that drive the zero-drift, unit-variance rate Brownian vector $d W(t)$. For details, see simBySolution.

Default: false

## 'Z'

Direct specification of the dependent random noise process used to generate the zerodrift, unit-variance rate Brownian vector $d W(t)$ that drives the simulation. For details, see simBySolution for the GBM model.

Default: Uses default for simBySolution. If you do not specify a value for Z, simBySolution generates Gaussian variates.

## 'Tenor ${ }^{\prime}$

Numeric vector of maturities to compute at each time step.
Default: tenor the number of rates in the LiborMarketModel object as specified by the correlation and volatility functions

## Output Arguments

## ZeroRates

nPeriods+1-by-nTenors-by-nTrials matrix of simulated zero-rate term structures.

## ForwardRates

nPeriods+1-by-nTenors-by-nTrials matrix of simulated forward-rate term structures.

## Atributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB ObjectOriented Programming documentation.

## Examples

## Simulate Term Structures for a LIBOR Market Model

Create a LMM object.

```
Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [. 3 -. 02 .7 .14];
numRates = 20;
VolFunc(1:numRates-1) = {@(t) LMMVolFunc(LMMVolParams,t)};
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
LMM = LiborMarketModel(irdc,VolFunc,Correlation,'Period',1)
LMM =
```

LiborMarketModel with properties:
ZeroCurve: [1×1 IRDataCurve] VolFunctions: $\{1 \times 19$ cell\}

```
Correlation: [19\times19 double]
 NumFactors: NaN
 Period: 1
```

Simulate the term structures for the specified LMM object.
[ZeroRates, ForwardRates] = simTermStructs(LMM, 20,'nTrials', 100);

- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation"


## See Also

blackvolbyrebonato | LiborMarketModel

## More About

- "Supported Interest-Rate Instruments" on page 2-2

Introduced in R2013a

## LinearGaussian2F class

Create two-factor additive Gaussian interest-rate model

## Description

The two-factor additive Gaussian interest rate-model is specified using the zero curve, a, b, sigma, eta, and rho parameters for these equations:

$$
\begin{aligned}
& r(t)=x(t)+y(t)+\phi(t) \\
& d x(t)=-a(t) x(t) d t+\sigma(t) d W_{1}(t), x(0)=0 \\
& d y(t)=-b(t) y(t) d t+\eta(t) d W_{2}(t), y(0)=0
\end{aligned}
$$

where $d W_{1}(t) d W_{2}(t)=\rho d t$ is a two-dimensional Brownian motion with correlation $\rho$, and $\phi$ is a function chosen to match the initial zero curve.

## Construction

OBJ = LinearGaussian2F(ZeroCurve, a, b, sigma, eta, rho) constructs an object for a two-factor additive Gaussian interest-rate model.

For example:

```
Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
a = .07;
b = .5;
sigma = .01;
```

```
eta = .006;
rho = -.7;
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho);
```


## Properties

The following properties are from the LinearGaussian2F class.

## ZeroCurve

ZeroCurve is specified using IRDataCurve or RateSpec. This is the zero curve used to evolve the path of future interest rates.

## Attributes:

SetAccess	public
GetAccess	public

## a

Mean reversion for the first factor, specified either as a scalar or function handle which takes time as input and returns a scalar mean reversion value.

## Attributes:

SetAccess
public
GetAccess
public

## b

Mean reversion for the second factor, specified either as a scalar or as a function handle which takes time as input and returns a scalar mean reversion value.

## Attributes:

SetAccess
public

GetAccess
public

## sigma

Volatility for the first factor, specified either as a scalar or function handle which takes time as input and returns a scalar mean volatility.

## Attributes:

SetAccess
GetAccess
public
public

## eta

Volatility for the second factor specified, either as a scalar or function handle which takes time as input and returns a scalar mean volatility.

## Attributes:

## SetAccess

GetAccess
rho
Scalar correlation of the factors.

## Attributes:

SetAccess
GetAccess

## Methods

simTermStructs
public
public
public
public

Simulate term structures for two-factor additive Gaussian interest-rate model

## Definitions

## Two-Factor Additive Gaussian Interest-Rate Model

Short-rate model based on two factors where the short rate is the sum of the two factors and a deterministic function, in this case $\phi(t)$, which is chosen to match the initial term structure.

## Examples

## Construct a Two-Factor Additive Gaussian Interest-Rate Model

Construct a two-factor additive Gaussian interest-rate model.

```
Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho)
G2PP =
```

    LinearGaussian2F with properties:
        ZeroCurve: [1×1 IRDataCurve]
            a: @(t,V)ina
            b: \(a^{(t, V) \text { inb }}\)
            sigma: @(t, v)insigma
            eta: @(t,V)ineta
            rho: - 0.7000
    Use the simTermStructs method to simulate term structures based on the LinearGaussian2F model.

SimPaths = simTermStructs(G2PP, 10,'nTrials',100);

- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation"
- Class Attributes
- Property Attributes


## References

Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

## See Also <br> capbylg2f | floorbylg2f | HullWhite1F | LiborMarketModel | simTermStructs | swaptionbylg2f

## More About

- "Supported Interest-Rate Instruments" on page 2-2


## Introduced in R2013a

## simTermStructs

Class: LinearGaussian2F
Simulate term structures for two-factor additive Gaussian interest-rate model

## Syntax

[ZeroRates,ForwardRates] = simTermStructs(nPeriods) [ZeroRates,ForwardRates] = simTermStructs(nPeriods, Name, Value)

## Description

[ZeroRates, ForwardRates] = simTermStructs(nPeriods) simulates future zero curve paths using a specified LinearGaussian2F object.
[ZeroRates,ForwardRates] = simTermStructs(nPeriods, Name, Value) simulates future zero curve paths using a specified LinearGaussian2F object with additional options specified by one or more Name, Value pair arguments.

## Input Arguments

## nPeriods

Number of simulation periods.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'deltaTime'

Time step between periods, specified as a scalar or vector.

## Default: 1

'nTrials'
Positive scalar integer number of simulated trials (sample paths) of NPERIODS observations each. If you do not specify a value for this argument, the default is 1 , indicating a single path of correlated state variables.

## Default: 1

## 'antithetic'

Boolean scalar flag indicating whether antithetic sampling is used to generate the Gaussian random variates that drive the zero-drift, unit-variance rate Brownian vector $d W(t)$. For details, see simBySolution for the HWV model.

Default: false

## 'Z'

Direct specification of the dependent random noise process used to generate the zerodrift, unit-variance rate Brownian vector $d W(t)$ that drives the simulation. For details, see simBySolution for the HWV model.

Default: Uses default for simBySolution. If you do not specify a value for Z, simBySolution generates Gaussian variates.

## 'Tenor'

Numeric vector of maturities to compute at each time step.
Default: tenor of the LinearGaussian2F object's zero curve

## Output Arguments

## ZeroRates

nPeriods+1-by-nTenors-by-nTrials matrix of simulated zero-rate term structures.

## ForwardRates

nPeriods+1-by-nTenors-by-nTrials matrix of simulated forward-rate term structures.

## Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB ObjectOriented Programming documentation.

## Examples

## Simulate Term Structures for the LinearGaussian2F Model

Create a two-factor additive Gaussian interest-rate model.

```
Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 . 029 . 033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho)
G2PP =
```

    LinearGaussian2F with properties:
        ZeroCurve: [1×1 IRDataCurve]
        a: \(a_{(t, V) i n a ~}^{\text {a }}\)
            b: \(a(t, V) i n b\)
            sigma: @(t,V)insigma
            eta: \(a_{(t, V) i n e t a ~}^{\text {a }}\)
    rho: - 0.7000

Use the simTermStructs method to simulate term structures based on the LinearGaussian2F model.

```
SimPaths = simTermStructs(G2PP, 10,'nTrials',100);
```


## Simulate Term Structures for the LinearGaussian2F Model Using a Vector for deltaTime

Create a two-factor additive Gaussian interest-rate model.

```
Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho)
G2PP =
```

    LinearGaussian2F with properties:
    ZeroCurve: [1×1 IRDataCurve]
        a: @(t,V)ina
        b: \(a_{(t, V) i n b}\)
        sigma: @(t, V)insigma
            eta: \(a^{(t, V) i n e t a}\)
        rho: -0.7000
    Use the simTermStructs method to simulate term structures based on the LinearGaussian2F where uneven simulation tenors are specified using the optional name-value argument deltaTime as a vector of length NPeriods.

NPeriods = 10;
dt = rand(NPeriods,1);
SimPaths = G2PP.simTermStructs(NPeriods,'nTrials',100,'DeltaTime',dt);

- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Pricing Bermudan Swaptions with Monte Carlo Simulation"


## See Also

LinearGaussian2F

## More About

- "Supported Interest-Rate Instruments" on page 2-2

Introduced in R2013a

## lookbackbycrr

Price lookback option from Cox-Ross-Rubinstein tree

## Syntax

Price = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

## Arguments

CRRTree	Stock tree structure created by crrtree.
OptSpec	Number of instruments (NINST)-by-1 cell array of character   vectors 'call' or 'put '.
Strike	NINST-by-1 vector of strike price values. Each row is the   schedule for one option. To calculate the value of a floating-   strike lookback option, specify Strike as NaN.
Settle	NINST-by-1 vector of Settle dates. The settle date for every   lookback is set to the valuation date of the stock tree. The   lookback argument Settle is ignored.
ExerciseDates	For a European option (AmericanOpt = 0):   NINST-by-1 vector of exercise dates. Each row is the   schedule for one option. For a European option, there is only   one exercise date, the option expiry date.
For an American option (AmericanOpt = 1):   NINST-by-2 vector of exercise date boundaries. For each   instrument, the option can be exercised on any tree date   between or including the pair of dates on that row. If only   one non-NaN date is listed, or if ExerciseDates is NINST-   by-1, the option can be exercised between the valuation date   of the stock tree and the single listed exercise date.	


AmericanOpt	(Optional) If AmericanOpt $=0$, NaN, or is unspecified,   the option is a European option. If AmericanOpt $=1$,   option is an American option.

## Description

Price = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) calculates the value of fixed- and floatingstrike lookback options. Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Price is a NINST-by-1 vector of expected option prices at time 0. Pricing of lookback options is done using Hull-White (1993). Consequently, for these options there are no unique prices on the tree nodes with the exception of the root node.

Note: lookbackbycrr calculates values of fixed and floating strike lookback options. To compute the value of a floating strike lookback option, strike should be specified as NaN. Pricing of lookback options is done using Hull-White (1993). So, for these options there are not unique prices on the tree nodes except for the root node.

## Examples

## Price a Lookback Option Using a CRR Binomial Tree

This example shows how to price a lookback option using a CRR binomial tree by loading the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.

```
load deriv.mat;
OptSpec = 'Call';
Strike = 115;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
Price = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates)
```

Price =
7.6015

- "Computing Prices Using CRR" on page 3-120
- "Examining Output from the Pricing Functions" on page 3-128
- "Computing Equity Instrument Sensitivities" on page 3-133
- "Graphical Representation of Equity Derivative Trees" on page 3-131
- "Pricing Options Structure" on page B-2
- "Pricing European Call Options Using Different Equity Models"


## More About

- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24


## References

Hull, J., and A. White. "Efficient Procedures for Valuing European and American PathDependent Options." Journal of Derivatives . Fall 1993, pp. 21-31.

## See Also

crrtree | instlookback

Introduced before R2006a

## lookbackbycvgsg

Calculate prices of European lookback options using Conze-Viswanathan and Goldman-Sosin-Gatto models

## Syntax

Price = lookbackbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates)
Price = lookbackbycvgsg (__ , Name, Value)

## Description

Price = lookbackbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates) returns prices of European lookback options using Conze-
Viswanathan and Goldman-Sosin-Gatto models. lookbackbycvgsg calculates prices of European fixed- and floating-strike lookback options. To compute the value of a floatingstrike lookback option, Strike must be specified as NaN. The Goldman-Sosin-Gatto model is used for floating-strike lookback options. The Conze-Viswanathan model is used for fixed-strike lookback options.

Price = lookbackbycvgsg( $\qquad$ , Name, Value) returns prices of European lookback options using Conze-Viswanathan and Goldman-Sosin-Gatto models with optional name-value pair arguments. lookbackbycvgsg calculates prices of European fixedand floating-strike lookback options. To compute the value of a floating-strike lookback option, Strike must be specified as NaN. The Goldman-Sosin-Gatto model is used for floating-strike lookback options. The Conze-Viswanathan model is used for fixed-strike lookback options.

## Examples

Compute the Price of a Floating Lookback Option Using the Goldman-Sosin-Gatto Model
Define the RateSpec.

```
StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
```

```
Rates = 0.042;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: -1
 Disc: 0.9589
 Rates: 0.0420
 EndTimes: 1
 StartTimes: 0
 EndDates: 735600
 StartDates: 735235
 ValuationDate: 735235
 Basis: 0
 EndMonthRule: 1
Define the StockSpec.
```

```
AssetPrice = 50;
```

AssetPrice = 50;
Sigma = 0.36;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3600
AssetPrice: 50
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the floating lookback options.
```

Settle = 'Jan-1-2013';

```
```

Maturity = 'April-1-2013';
OptSpec = {'put';'call'};
Strike = NaN;

```

Compute the price of the European floating lookback options.
Price = lookbackbycvgsg(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price =
7.2581
6.9777

\section*{Compute the Price of a Fixed Lookback Option Using the Conze-Viswanathan Model}

Define the RateSpec.
```

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9560
Rates: 0.0450
EndTimes: 1
StartTimes: 0
EndDates: 735600
StartDates: 735235
ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Define the StockSpec.
```

AssetPrice = 102;
Sigma = 0.45;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.4500
AssetPrice: 102
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the fixed lookback options.
```

Settle = 'Jan-1-2013';
Maturity = 'July-1-2013';
OptSpec = {'put';'call'};
Strike = [98;101];

```

Price the European fixed lookback options.
Price = lookbackbycvgsg(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price =
18.3130
30.4021

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

\section*{Data Types: struct}

\section*{StockSpec - Stock specification for underlying asset \\ structure}

Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put' | cell array of character vectors
Definition of option as 'call' or 'put', specified as a NINST-by- 1 cell array of character vectors.

Data Types: char | cell

\section*{Strike - Option strike price values}
integer | vector of integers
Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.

\section*{Data Types: single | double}

\section*{Settle - Settlement or trade date}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement or trade date for the lookback option, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.
Data Types: double | char | cell

\section*{ExerciseDates - European option expiry date}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

European option expiry date, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.
Data Types: double | char | cell

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: Price = lookbackbycvgsg(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, 'AssetM

\section*{'AssetMinMax ' - Maximum or minimum underlying asset price}
if unspecified, the lookback option is newly issued, and AssetMinMax = StockSpec.AssetPrice (default) | nonnegative integer

Maximum or minimum underlying asset price, specified as a NINST-by-1 vector.
Data Types: single | double

\section*{Output Arguments}

\section*{Price - Expected prices of lookback option}
vector
Expected prices of the lookback option, returned as a NINST-by-1 vector.

\section*{More About}
- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ: Prentice Hall, 2002.
See Alsointenvset | lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls |stockspec
Introduced in R2014a

\section*{lookbacksensbycvgsg}

Calculate prices or sensitivities of European lookback options using Conze-Viswanathan and Goldman-Sosin-Gatto models

\section*{Syntax}

PriceSens = lookbacksensbycvgsg(RateSpec,StockSpec,OptSpec,Strike, Settle, ExerciseDates)
PriceSens = lookbacksensbycvgsg(__ , Name, Value)

\section*{Description}

PriceSens = lookbacksensbycvgsg(RateSpec, StockSpec,OptSpec, Strike, Settle,
ExerciseDates) returns prices or sensitivities of European lookback options using Conze-Viswanathan and Goldman-Sosin-Gatto models. lookbacksensbycvgsg calculates prices of European fixed- and floating-strike lookback options. To compute the value of a floating-strike lookback option, Strike must be specified as NaN. The Goldman-Sosin-Gatto model is used for floating-strike lookback options. The ConzeViswanathan model is used for fixed-strike lookback options.

PriceSens = lookbacksensbycvgsg(\(\qquad\) , Name, Value) returns prices or sensitivities of European lookback options using Conze-Viswanathan and Goldman-Sosin-Gatto models with optional name-value pair arguments. lookbacksensbycvgsg calculates prices of European fixed- and floating-strike lookback options. To compute the value of a floating-strike lookback option, Strike must be specified as NaN. The Goldman-Sosin-Gatto model is used for floating-strike lookback options. The ConzeViswanathan model is used for fixed-strike lookback options.

\section*{Examples}

\section*{Compute the Price and Delta of a Floating Lookback Option Using the Goldman-Sosin-Gatto Model}

Define the RateSpec.
```

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.41;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.6637
Rates: 0.4100
EndTimes: 1
StartTimes: 0
EndDates: 735600
StartDates: 735235
ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Define the StockSpec with continuous dividend yield.
```

AssetPrice = 120;
Sigma = 0.3;
Yield = 0.045;
StockSpec = stockspec(Sigma, AssetPrice, 'Continuous', Yield)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3000
AssetPrice: 120
DividendType: {'continuous'}
DividendAmounts: 0.0450
ExDividendDates: []

```

Define the floating lookback option.
```

Settle = 'Jan-1-2013';
Maturity = 'July-1-2013';
OptSpec = 'call';
Strike = NaN;
SMinMax = 100;

```

Compute the price and delta of the European floating lookback option.
```

OutSpec = {'price', 'delta'};

```
[Price, Delta] = lookbacksensbycvgsg(RateSpec, StockSpec, OptSpec, Strike,...
Settle, Maturity,'AssetMinMax', SMinMax, 'OutSpec', OutSpec)
Price =
 36.9926
Delta =
 0.8659

\section*{Compute the Price and Delta of a Fixed Lookback Option Using the Conze-Viswanathan Model}

Define the RateSpec.
```

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)
RateSpec =
struct with fields:
Fin0bj: 'RateSpec'
Compounding: -1
Disc: 0.8187
Rates: 0.1000

```
```

            EndTimes: 2
    StartTimes: 0
        EndDates: 735965
    StartDates: 735235
    ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Define the StockSpec.
```

AssetPrice = 103;
Sigma = 0.30;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3000
AssetPrice: 103
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the fixed lookback option.
```

Settle = 'Jan-1-2013';
Maturity = 'July-1-2013';
OptSpec = 'call';
Strike = 99;

```

Price and delta for the European fixed lookback option.
```

OutSpec = {'price', 'delta'};

```
[Price, Delta] = lookbacksensbyls(RateSpec, StockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec)
Price =
 22.6783

Delta =

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

\section*{Data Types: struct}

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put ' | cell array of character vectors
Definition of option as 'call' or 'put ', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

\section*{Strike - Option strike price values \\ integer | vector of integers}

Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.

Data Types: single | double

\section*{Settle - Settlement or trade date}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement or trade date for the lookback option, specified as a date character vector or as nonnegative integers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

\section*{ExerciseDates - European option expiry date}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

European option expiry date, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of dates.
Data Types: double | char | cell

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: PriceSens = lookbacksensbycvgsg (RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, 'As \{'All'\})

\section*{'AssetMinMax ' - Maximum or minimum underlying asset price}
if unspecified, the lookback option is newly issued, and AssetMinMax = StockSpec.AssetPrice (default) | nonnegative integer

Maximum or minimum underlying asset price, specified as a NINST-by-1 vector.
Data Types: single | double
```

'OutSpec' - Define outputs
{'Price'} (default)| character vector with values 'Price','Delta', 'Gamma',
'Vega','Lambda','Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price','Delta','Gamma', 'Vega','Lambda','Rho','Theta', and 'All'

```

Define outputs, specifying a NOUT- by-1 or a 1 -by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec \(=\) \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity.

Example: OutSpec =
\{'delta','gamma','vega','lambda','rho','theta','price'\}
Data Types: char | cell

\section*{Output Arguments}

PriceSens - Expected prices or sensitivities of lookback option
vector
Expected prices or sensitivities (defined by OutSpec) of the lookback option, returned as a NINST-by-1 vector.

\section*{More About}
- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ, Prentice Hall, 2002.

\author{
See Also \\ intenvset | lookbackbycvgsg | lookbackbyls | lookbacksensbyls | stockspec \\ Introduced in R2014a
}

\section*{lookbackbyeqp}

Price lookback option from Equal Probabilities binomial tree

\section*{Syntax}

Price = lookbackbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline EQPTree & Stock tree structure created by eqptree. \\
\hline OptSpec & \begin{tabular}{l}
Number of instruments (NINST)-by-1 cell array of character \\
vectors 'call' or 'put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values. Each row is the \\
schedule for one option. To calculate the value of a floating- \\
strike lookback option, specify Strike as NaN.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
NINST-by-1 vector of Settle dates. The settle date for every \\
lookback is set to the valuation date of the stock tree. The \\
lookback argument Settle is ignored.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l}
For a European option (AmericanOpt = 0): \\
NINST-by-1 vector of exercise dates. Each row is the \\
schedule for one option. For a European option, there is only \\
one exercise date, the option expiry date.
\end{tabular} \\
\begin{tabular}{l}
For an American option (AmericanOpt = 1): \\
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any tree date \\
between or including the pair of dates on that row. If only \\
one non-NaN date is listed, or if ExerciseDates is NINST- \\
by-1, the option can be exercised between the valuation date \\
of the stock tree and the single listed exercise date.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline AmericanOpt & \begin{tabular}{l}
(Optional) If AmericanOpt \(=0\), NaN, or is unspecified, \\
the option is a European option. If AmericanOpt \(=1\), the \\
option is an American option.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = lookbackbyeqp(EQPTree, OptSpec, Strike, ExerciseDates, AmericanOpt) calculates the value of fixed- and floating-strike lookback options. Data arguments are NINST-by- 1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN . Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Price is a NINST-by-1 vector of expected option prices at time 0. Pricing of lookback options is done using Hull-White (1993). Consequently, for these options there are no unique prices on the tree nodes with the exception of the root node.

Note: lookbackbyeqp calculates values of fixed and floating strike lookback options. To compute the value of a floating strike lookback option, strike should be specified as NaN. Pricing of lookback options is done using Hull-White (1993). So, for these options there are not unique prices on the tree nodes except for the root node.

\section*{Examples}

\section*{Price a Lookback Option Using an EQP Equity Tree}

This example shows how to price a lookback option using an EQP equity tree by loading the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat
OptSpec = 'Call';
Strike = 115;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
Price = lookbackbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates)

```

Price \(=\)
8.7941
- "Computing Prices Using EQP" on page 3-122
- "Examining Output from the Pricing Functions" on page 3-128
- "Computing Equity Instrument Sensitivities" on page 3-133
- "Graphical Representation of Equity Derivative Trees" on page 3-131

\section*{More About}
- "Lookback Option" on page 3-44
- "Computing Instrument Prices" on page 3-119
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J., and A. White. "Efficient Procedures for Valuing European and American PathDependent Options." Journal of Derivatives. Fall 1993, pp. 21-31.

\author{
See Also \\ eqptree | instlookback
}

Introduced before R2006a

\section*{lookbackbyitt}

Price lookback option using implied trinomial tree (ITT)

\section*{Syntax}

Price = lookbackbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ITTTree & Stock tree structure created by itttree. \\
\hline OptSpec & \begin{tabular}{l}
Number of instruments (NINST)-by-1 cell array of character \\
vectors 'call' or 'put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values. Each row is the \\
schedule for one option. To calculate the value of a floating- \\
strike lookback option, specify Strike as NaN.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
NINST-by-1 vector of Settle dates. The settle date for every \\
lookback option is set to the ValuationDate of the stock \\
tree. The lookback argument Settle is ignored.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l}
For a European option (AmericanOpt = 0): \\
NINST-by-1 vector of exercise dates. Each row is the \\
schedule for one option. For a European option, there is only \\
one exercise date, the option expiry date.
\end{tabular} \\
\begin{tabular}{l}
For an American option (AmericanOpt = 1): \\
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any tree date \\
between or including the pair of dates on that row. If only \\
one non-NaN date is listed, or if ExerciseDates is NINST- \\
by-1, the option can be exercised between the valuation date \\
of the stock tree and the single listed exercise date.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline AmericanOpt & \begin{tabular}{l}
(Optional) If AmericanOpt \(=0\), NaN, or is unspecified, \\
the option is a European option. If AmericanOpt \(=1\), \\
option is an American option.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = lookbackbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) calculates the value of fixed- and floating-strike lookback options. Data arguments for lookbackbyitt are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument; the others may be omitted or passed as empty matrices [].

Price is a NINST-by-1 vector of expected option prices at time 0. Pricing of lookback options is done using Hull-White (1993). Consequently, for these options there are no unique prices on the tree nodes with the exception of the root node.

Note: lookbackbyitt calculates values of fixed and floating strike lookback options. To compute the value of a floating strike lookback option, strike should be specified as NaN . Pricing of lookback options is done using Hull-White (1993). So, for these options there are not unique prices on the tree nodes except for the root node.

\section*{Examples}

\section*{Price a Lookback Option Using an ITT Equity Tree}

This example shows how to price a lookback option using an ITT equity tree by loading the file deriv.mat, which provides the ITTTree. The ITTTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat
OptSpec = 'Call';
Strike = 85;
Settle = '01-Jan-2006';
ExerciseDates = '01-Jan-2008';
Price = lookbackbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)

```

Price =
0.5426
- "Computing Prices Using ITT" on page 3-124
- "Examining Output from the Pricing Functions" on page 3-128
- "Computing Equity Instrument Sensitivities" on page 3-133
- "Graphical Representation of Equity Derivative Trees" on page 3-131

\section*{More About}
- "Lookback Option" on page 3-44
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J., and A. White. "Efficient Procedures for Valuing European and American PathDependent Options." Journal of Derivatives. Fall 1993, pp. 21-31.

\author{
See Also \\ instlookback|itttree
}

Introduced in R2007a

\section*{lookbackbyls}

Calculate prices of lookback options using Longstaff-Schwartz model

\section*{Syntax}
```

[Price,Paths,Times,Z] = lookbackbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,
ExerciseDates)
[Price,Paths,Times,Z] = lookbackbyls(___ ,Name,Value)

```

\section*{Description}
[Price,Paths,Times,Z] = lookbackbyls(RateSpec,StockSpec,OptSpec, Strike,Settle,
ExerciseDates) returns prices of lookback options using the Longstaff-Schwartz model for Monte Carlo simulations. lookbackbyls computes prices of European and American lookback options. For American options, the Longstaff-Schwartz least squares method calculates the early exercise premium. lookbackbyls calculates values of fixedand floating-strike lookback options. To compute the value of a floating-strike lookback option, Strike must be specified as NaN.
[Price, Paths, Times, Z] = lookbackbyls(___ , Name, Value) returns prices of lookback options using the Longstaff-Schwartz model for Monte Carlo simulations with optional name-value pair arguments. lookbackbyls computes prices of European and American lookback options. For American options, the Longstaff-Schwartz least squares method calculates the early exercise premium. lookbackbyls calculates values of fixedand floating-strike lookback options. To compute the value of a floating-strike lookback option, Strike must be specified as NaN.

\section*{Examples}

Compute the Price for a Floating Lookback Option Using Monte Carlo Simulation
Define the RateSpec.
```

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.042;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9589
Rates: 0.0420
EndTimes: 1
StartTimes: 0
EndDates: 735600
StartDates: 735235
ValuationDate: 735235
Basis: 0
EndMonthRule: 1
Define the StockSpec.
AssetPrice = 50;
Sigma = 0.36;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec
Sigma: 0.3600
AssetPrice: 50
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the floating lookback option.
```

Settle = 'Jan-1-2013';
Maturity = 'April-1-2013';
OptSpec = 'put';
Strike = NaN;

```

Compute the price of the European floating lookback option.
Price = lookbackbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price =
6.5409

\section*{Compute the Price of a Fixed Lookback Option Using Monte Carlo Simulation}

Define the RateSpec.
```

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9560
Rates: 0.0450
EndTimes: 1
StartTimes: 0
EndDates: 735600
StartDates: 735235
ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Define the StockSpec.
```

AssetPrice = 102;
Sigma = 0.45;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.4500
AssetPrice: 102
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the fixed lookback option.
```

Settle = 'Jan-1-2013';
Maturity = 'July-1-2013';
OptSpec = 'call';
Strike = 98;

```

Compute the price of the European fixed lookback option.
Price = lookbackbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price =
30.0917

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

\section*{Data Types: struct}

\section*{StockSpec - Stock specification for underlying asset structure}

Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put ' | cell array of character vectors
Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

\section*{Strike - Option strike price values}
integer | vector of integers
Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.
```

Data Types: single | double

```

\section*{Settle - Settlement or trade date}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement or trade date for the lookback option, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.

Data Types: double | char | cell
ExerciseDates - Matrix of exercise callable or puttable dates for European or American
options
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Matrix of exercise callable or puttable dates for European or American options, specified as a date character vector or as nonnegative integers as follows:
- European option - NINST-by-1 vector of exercise dates. For a European option, there is only one exercise date which is the option expiry date.
- American option - NINST-by-2 vector of exercise date boundaries. For each instrument, the option is exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by- 1 vector of serial date numbers or cell array of character vectors, the option is exercised between Settle and the single listed exercise date.

Data Types: double | char | cell

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: Price =
lookbackbyls(RateSpec, StockSpec1,StockSpec2, Settle, Maturity, OptSpec, Strike, Cor
'AmericanOpt ' - Option type
0 European (default) | scalar with value [0,1]
Option type, specified as an integer scalar flag with these values:
- 0 - European
- 1 -American

For American options, the Longstaff-Schwartz least squares method calculates the early exercise premium.
Data Types: single | double

\section*{'NumTrials' - Scalar number of independent sample paths \\ 1000 (default) | nonnegative scalar integer}

Scalar number of independent sample paths (simulation trials), specified as a nonnegative integer.

\section*{Data Types: single | double}

\section*{' NumPeriods ' - Scalar number of simulation periods per trial 100 (default) | nonnegative scalar integer}

Scalar number of simulation periods per trial, specified as a nonnegative integer. NumPeriods is considered only when pricing European lookback options. For American lookback options, NumPeriods is equal to the number of exercise days during the life of the option.

Data Types: single | double
'Z' - Time series array of dependent random variates

\section*{vector}

Time series array of dependent random variates, specified as a NumPeriods-by-1-by-NumTrials 3-D array. The \(Z\) value generates the Brownian motion vector (that is, Wiener processes) that drives the simulation.
Data Types: single | double
'Antithetic' - Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false
Indicator for antithetic sampling, specified with a value of true or false.
Data Types: logical

\section*{Output Arguments}

Price - Expected price of lookback option
scalar
Expected price of the lookback option, returned as a 1-by-1 scalar.

\section*{Paths - Simulated paths of correlated state variables}
vector
Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector \(X(t)\) at time \(t\) for a given trial.

\section*{Times - Observation times associated with simulated paths vector}

Observation times associated with simulated paths, returned as a NumPeriods +1 -by- 1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.

\section*{Z - Time series array of dependent random variates}
vector
Time series array of dependent random variates, returned as a NumPeriods-by-1-by-NumTrials 3-D array when \(Z\) is specified as an input argument. If the \(Z\) input argument is not specified, then the \(Z\) output argument contains the random variates generated internally.

\section*{More About}
- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ: Prentice Hall, 2002.

\section*{See Also}
intenvset | lookbackbycvgsg | lookbacksensbycvgsg | lookbacksensbyls | stockspec

\author{
Introduced in R2014a
}

\section*{lookbacksensbyls}

Calculate prices or sensitivities of lookback options using Longstaff-Schwartz model

\section*{Syntax}
[PriceSens,Paths,Times, Z] = lookbacksensbyls(RateSpec, StockSpec, OptSpec,Strike,Settle, ExerciseDates)
[PriceSens,Paths,Times,Z] = lookbacksensbyls(\(\qquad\) , Name, Value)

\section*{Description}
[PriceSens,Paths,Times,Z] = lookbacksensbyls(RateSpec,StockSpec, OptSpec,Strike,Settle, ExerciseDates) returns prices or sensitivities of lookback options using the LongstaffSchwartz model for Monte Carlo simulations. lookbacksensbyls computes prices of European and American lookback options. For American options, the Longstaff-Schwartz least squares method calculates the early exercise premium. lookbacksensbyls calculates values of fixed- and floating-strike lookback options. To compute the value of a floating-strike lookback option, Strike must be specified as NaN .
[PriceSens, Paths, Times, Z] = lookbacksensbyls(__ , Name, Value) returns prices or sensitivities of lookback options using the Longstaff-Schwartz model for Monte Carlo simulations with optional name-value pair arguments. lookbacksensbyls computes prices of European and American lookback options. For American options, the Longstaff-Schwartz least squares method calculates the early exercise premium. lookbacksensbyls calculates values of fixed- and floating-strike lookback options. To compute the value of a floating-strike lookback option, Strike must be specified as NaN .

\section*{Examples}

Compute the Price and Delta of a European Floating Lookback Option Using Monte Carlo Simulation

Define the RateSpec.
```

StartDates = 'Jan-1-2013';

```
```

EndDates = 'Jan-1-2014';
Rates = 0.41;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.6637
Rates: 0.4100
EndTimes: 1
StartTimes: 0
EndDates: 735600
StartDates: 735235
ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Define the StockSpec with continuous dividend yield.
```

AssetPrice = 120;
Sigma = 0.3;
Yield = 0.045;
StockSpec = stockspec(Sigma, AssetPrice, 'Continuous', Yield)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3000
AssetPrice: 120
DividendType: {'continuous'}
DividendAmounts: 0.0450
ExDividendDates: []

```

Define the floating lookback option.
```

Settle = 'Jan-1-2013';
Maturity = 'July-1-2013';
OptSpec = 'call';
Strike = NaN;

```

Compute the price and delta of the European floating lookback option.
```

OutSpec = {'price', 'delta'};

```
[Price, Delta] = lookbacksensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturi
'OutSpec', OutSpec)
```

Price =

```
 27.4701
Delta =
 0.2289

\section*{Compute the Price and Delta of a European Fixed Lookback Option Using Monte Carlo Simulation}

Define the RateSpec.
```

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.8187
Rates: 0.1000
EndTimes: 2
StartTimes: 0

```
```

        EndDates: 735965
    StartDates: 735235
    ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Define the StockSpec.
```

AssetPrice = 103;
Sigma = 0.30;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3000
AssetPrice: 103
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the fixed lookback option.
```

Settle = 'Jan-1-2013';
Maturity = 'July-1-2013';
OptSpec = 'call';
Strike = 99;

```

Compute the price and delta of the European fixed lookback option.
OutSpec = \{'price', 'delta'\};
[Price, Delta] = lookbacksensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturi 'OutSpec', OutSpec)

\section*{Price =}
22.6783

\section*{Input Arguments}

RateSpec - Interest-rate term structure
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec can handle several types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct
OptSpec - Definition of option
character vector with values 'call' or 'put ' | cell array of character vectors
Definition of option as 'call' or 'put ', specified as a NINST-by-1 cell array of character vectors.

Data Types: char | cell

\section*{Strike - Option strike price values}
integer | vector of integers
Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.

Data Types: single | double

\section*{Settle - Settlement or trade date}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement or trade date for the lookback option, specified as a date character vector or as nonnegative integers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

\section*{ExerciseDates - Matrix of exercise callable or puttable dates for European or American options}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Matrix of exercise callable or puttable dates for European or American options, specified as a date character vector or as nonnegative integers as follows:
- European option - NINST-by-1 vector of exercise dates. For a European option, there is only one exercise date which is the option expiry date.
- American option — NINST-by-2 vector of exercise date boundaries. For each instrument, the option is exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by- 1 vector of serial date numbers or cell array of character vectors, the option is exercised between Settle and the single listed exercise date.
```

Data Types: double | char | cell

```

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: PriceSens =
lookbacksensbyls(RateSpec,StockSpec1,StockSpec2, Settle, Maturity, OptSpec, Strike \{'All'\})

\section*{'AmericanOpt ' - Option type}

0 European (default) | scalar with value [0,1]

Option type, specified as an integer scalar flag with these values:
- 0 - European
- 1 -American

For American options, the Longstaff-Schwartz least squares method calculates the early exercise premium.
Data Types: single | double

\section*{'NumTrials' - Scalar number of independent sample paths \\ 1000 (default) | nonnegative scalar integer}

Scalar number of independent sample paths (simulation trials), specified as a nonnegative integer.

\section*{Data Types: single | double}

\section*{' NumPeriods ' - Scalar number of simulation periods per trial 100 (default) | nonnegative scalar integer}

Scalar number of simulation periods per trial, specified as a nonnegative integer. NumPeriods is considered only when pricing European lookback options. For American lookback options, NumPeriod is equal to the number of exercise days during the life of the option.

Data Types: single | double

\section*{' Z' - Time series array of dependent random variates \\ vector}

Time series array of dependent random variates, specified as a NumPeriods-by-1-by-NumTrials 3-D array. The \(Z\) value generates the Brownian motion vector (that is, Wiener processes) that drives the simulation.
Data Types: single | double
'Antithetic ' - Indicator for antithetic sampling
false (default) | scalar logical flag with value true or false
Indicator for antithetic sampling, specified with a value of true or false.
Data Types: logical
```

'OutSpec' - Define outputs
{'Price'} (default)| character vector with values 'Price', 'Delta', 'Gamma',
'Vega','Lambda','Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price','Delta','Gamma', 'Vega','Lambda','Rho','Theta', and 'All'

```

Define outputs, specifying a NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity.

\section*{Example: OutSpec =}
\{'delta','gamma','vega','lambda','rho','theta','price'\}
Data Types: char | cell

\section*{Output Arguments}

\section*{PriceSens - Expected price or sensitivities of lookback option \\ scalar}

Expected price or sensitivities (defined by OutSpec) of the lookback option, returned as a 1-by-1 array.

\section*{Paths - Simulated paths of correlated state variables}
vector
Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector \(X(t)\) at time \(t\) for a given trial.

\section*{Times - Observation times associated with simulated paths \\ vector}

Observation times associated with simulated paths, returned as a NumPeriods +1 -by- 1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.

\section*{Z - Time series array of dependent random variates \\ vector}

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-NumTrials 3-D array when \(Z\) is specified as an input argument. If the \(Z\) input argument is not specified, then the \(Z\) output argument contains the random variates generated internally.

\section*{More About}
- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ: Prentice Hall, 2002.

\section*{See Also}
intenvset | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg | stockspec

Introduced in R2014a

\section*{lookbackbystt}

Price lookback options using standard trinomial tree

\section*{Syntax}

Price = lookbackbystt(STTTree,OptSpec,Strike,Settle, ExerciseDates)
Price = lookbackbystt(\(\qquad\) , AmericanOpt)

\section*{Description}

Price = lookbackbystt(STTTree,OptSpec,Strike,Settle, ExerciseDates) prices lookback options using a standard trinomial (STT) tree.

Price = lookbackbystt(\(\qquad\) , AmericanOpt) prices lookback options using a standard trinomial (STT) tree with an optional argument for AmericanOpt.

\section*{Examples}

\section*{Price a Lookback Option Using the Standard Trinomial Tree Model}

Create a RateSpec.
```

StartDates = 'Jan-1-2009';
EndDates = 'Jan-1-2013';
Rates = 0.035;
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)
RateSpec =
struct with fields:

```
 FinObj: 'RateSpec'
```

        Compounding: -1
            Disc: 0.8694
            Rates: 0.0350
            EndTimes: 4
    StartTimes: 0
        EndDates: 735235
    StartDates: 733774
    ValuationDate: 733774
Basis: 1
EndMonthRule: 1
Create a StockSpec.
AssetPrice = 85;
Sigma = 0.15;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.1500
AssetPrice: 85
DividendType: []
DividendAmounts: 0
ExDividendDates: []
Create an STTTree.

```
```

NumPeriods = 4;

```
NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)
STTTree =
 struct with fields:
 FinObj: 'STStockTree'
 StockSpec: [1\times1 struct]
 TimeSpec: [1\times1 struct]
```

```
RateSpec: [1\times1 struct]
 tObs: [[0 1 1 2 3 4]
 dObs: [733774 734139 734504 734869 735235]
 STree: {1\times5 cell}
 Probs: {[3\times1 double] [}3\times3\mathrm{ double] [}3\times5\mathrm{ double] [}3\times7\mathrm{ double]}
```

Define the lookback option and compute the price.

```
Settle = '1/1/09';
ExerciseDates = [datenum('1/1/12'); datenum('1/1/13')];
OptSpec = 'call';
Strike = [90;95];
Price= lookbackbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates)
```

Price =
11.7296
12.9120

## Input Arguments

## STTTree - Stock tree structure for standard trinomial tree

structure
Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

## OptSpec - Definition of option

character vector with value 'call' or 'put ' | cell array of character vectors with values 'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector or a NINST-by- 1 cell array of character vectors for 'call' or 'put'.
Data Types: char | cell

## Strike - Option strike price value

matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix of strike price values. Each row is the schedule for one option. To compute the value of a floating-strike lookback option, Strike should be specified as NaN. Floatingstrike lookback options are also known as average strike options.

Data Types: double

## Settle - Settlement date or trade date

nonnegative integer | date character vector
Settlement date or trade date for the lookback option, specified as a NINST-by-1 matrix of settlement or trade dates using nonnegative integers or date character vectors.

Note: The Settle date for every lookback option is set to the ValuationDate of the stock tree. The lookback argument, Settle, is ignored.

## Data Types: double | char

## ExerciseDates - Option exercise dates

nonnegative integer | date character vector
Option exercise dates, specified as a nonnegative scalar integer or date character vector:

- For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one ExerciseDates on the option expiry date.
- For an American option, use a NINST-by-2 vector of exercise date boundaries. The option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of serial date numbers or cell array of character vectors, the option can be exercised between ValuationDate of the stock tree and the single listed ExerciseDates.


## Data Types: double | char

## AmericanOpt - Option type

0 European (default) | scalar with values [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:

- 0 - European
- 1 -American

Data Types: single | double

## Output Arguments

## Price - Expected prices for lookback options at time 0 matrix

Expected prices for lookback options at time 0, returned as a NINST-by-1 matrix. Pricing of lookback options is done using Hull-White (1993). Consequently, for these options there are no unique prices on the tree nodes with the exception of the root node.

## More About

- "Lookback Option" on page 3-44
- "Supported Equity Derivatives" on page 3-24


## References

Hull J. and A. White. "Efficient Procedures for Valuing European and American PathDependent Options." Journal of Derivatives. Fall 1993, pp. 21-31.

See Also<br>sttprice | sttsens | stttimespec | stttree

Introduced in R2015b

## Irtimespec

Specify time structure for Leisen-Reimer binomial tree

## Syntax

TimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods)

## Description

TimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods) specifies a time structure for a Leisen-Reimer stock tree.

## Input Arguments

## ValuationDate

Scalar date marking the pricing date and first observation in the Leisen-Reimer stock tree. Specify ValuationDate as a serial date number or date character vector.

## Maturity

Scalar date marking the depth of the Leisen-Reimer stock tree.

## NumPeriods

Scalar value determining how many time steps are in the Leisen-Reimer stock tree.

Note: Leisen-Reimer requires the number of steps to be an odd number.

## Output Arguments

## TimeSpec

Structure specifying the time layout for a Leisen-Reimer stock tree.

## Examples

## Specify the Time Structure for Leisen-Reimer Binomial Tree

This example shows how to specify a 5 -period tree with time steps of 1 year.

```
ValuationDate = '1-July-2010';
Maturity = '1-July-2015';
TimeSpec = lrtimespec(ValuationDate, Maturity, 5)
TimeSpec =
 struct with fields:
 FinObj: 'BinTimeSpec'
 ValuationDate: 734320
 Maturity: 736146
 NumPeriods: 5
 Basis: 0
 EndMonthRule: 1
 tObs: [0 1 2 3 4 5]
 dObs: [734320 734685 735050 735415 735780 736146]
```

- "Building Equity Binary Trees" on page 3-3


## More About

- "Understanding Equity Trees" on page 3-2
- "Supported Equity Derivatives" on page 3-24


## References

Leisen D.P., M. Reimer. "Binomial Models for Option Valuation - Examining and Improving Convergence." Applied Mathematical Finance. Number 3, 1996, pp. 319-346.

See Also<br>lrtree | stockspec

11 Functions - Alphabetical List

Introduced in R2010b

## Irtree

Build Leisen-Reimer stock tree

## Syntax

```
LRTree = lrtree(StockSpec, RateSpec, TimeSpec, Strike)
LRTree = lrtree(StockSpec, RateSpec, TimeSpec,
Strike, Name,Value)
```


## Description

LRTree $=$ lrtree(StockSpec, RateSpec, TimeSpec, Strike) constructs a Leisen-Reimer stock tree.

LRTree = lrtree(StockSpec, RateSpec, TimeSpec, Strike, Name, Value) constructs a Leisen-Reimer stock tree with additional options specified by one or more Name, Value pair arguments.

## Input Arguments

## StockSpec

Stock specification. For more information, see stockspec.

## RateSpec

Interest rate specification of the initial risk-free rate curve. For more information, see intenvset.

## TimeSpec

Tree time layout specification. For more information, see lrtimespec.

## Strike

Scalar defining the option strike.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'Method'

For Method, use the character vector value PP1 for Peizer-Pratt method 1 inversion and PP2 for Peizer-Pratt method 2 inversion. For more information on PP1 and PP2 methods, see "Leisen-Reimer Tree (LR) Modeling" on page C-7.

## Default: PP1

## Output Arguments

## LRTree

Structure specifying stock and time information for a Leisen-Reimer tree.

## Examples

## Build a Leisen-Reimer Stock Tree

This example shows how to build Leisen-Reimer stock tree. Consider a European put option with an exercise price of $\$ 30$ that expires on June 1, 2010. The underlying stock is trading at $\$ 30$ on January 1, 2010 and has a volatility of $30 \%$ per annum. The annualized continuously compounded risk-free rate is $5 \%$ per annum. Using this data, create a Leisen-Reimer tree with 101 steps using the PP1 method.

```
AssetPrice = 30;
Strike = 30;
ValuationDate = 'Jan-1-2010';
Maturity = 'June-1-2010';
% define StockSpec
Sigma = 0.3;
StockSpec = stockspec(Sigma, AssetPrice);
```

```
% define RateSpec
Rates = 0.05;
Settle = ValuationDate;
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);
% build the Leisen-Reimer (LR) tree with 101 steps
LRTimeSpec = lrtimespec(ValuationDate, Maturity, 101);
% use the PP1 method
LRMethod = 'PP1';
LRTree = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike, ...
'method', LRMethod)
LRTree =
 struct with fields:
 FinObj: 'BinStockTree'
 Method: 'LR'
 Submethod: 'PP1'
 Strike: 30
 StockSpec: [1\times1 struct]
 TimeSpec: [1\times1 struct]
 RateSpec: [1\times1 struct]
 tObs: [1\times102 double]
 dObs: [1\times102 double]
 STree: {1\times102 cell}
 UpProbs: [101\times1 double]
```

- "Building Equity Binary Trees" on page 3-3


## More About

- "Understanding Equity Trees" on page 3-2
- "Supported Equity Derivatives" on page 3-24


## References

Leisen D.P., M. Reimer. "Binomial Models for Option Valuation - Examining and Improving Convergence." Applied Mathematical Finance. Number 3, 1996, pp. 319-346.

See Also<br>intenvset | lrtimespec | optstockbylr | optstocksensbylr | stockspec<br>Introduced in R2010b

## maxassetbystulz

Determine European rainbow option price on maximum of two risky assets using Stulz option pricing model

## Syntax

Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr)

## Arguments

RateSpec	The annualized, continuously compounded rate term structure.   For information on the interest rate specification, see   intenvset.
StockSpec1	Stock specification for asset 1. See stockspec.
StockSpec2	Stock specification for asset 2. See stockspec.
Settle	NINST-by-1 vector of settlement or trade dates.
Maturity	NINST-by-1 vector of maturity dates.
OptSpec	NINST-by-1 cell array of character vectors 'call' or 'put '.
Strike	NINST-by-1 vector of strike price values.
Corr	NINST-by-1 vector of correlation between the underlying asset   prices.

## Description

Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr) computes rainbow option prices using the Stulz option pricing model.

Price is a NINST-by-1 vector of expected option prices.

## Examples

## Compute Rainbow Option Prices Using the Stulz Option Pricing Model

Consider a European rainbow option that gives the holder the right to buy either $\$ 100,000$ worth of an equity index at a strike price of 1000 (asset 1) or $\$ 100,000$ of a government bond (asset 2) with a strike price of $100 \%$ of face value, whichever is worth more at the end of 12 months. On January 15, 2008, the equity index is trading at 950, pays a dividend of $2 \%$ annually and has a return volatility of $22 \%$. Also on January 15, 2008, the government bond is trading at 98, pays a coupon yield of $6 \%$, and has a return volatility of $15 \%$. The risk-free rate is $5 \%$. Using this data, if the correlation between the rates of return is $-0.5,0$, and 0.5 , calculate the price of the European rainbow option.

Since the asset prices in this example are in different units, it is necessary to work in either index points (asset 1) or in dollars (asset 2). The European rainbow option allows the holder to buy the following: 100 units of the equity index at $\$ 1000$ each (for a total of $\$ 100,000$ ) or 1000 units of the government bonds at $\$ 100$ each (for a total of $\$ 100,000$ ).
To convert the bond price (asset 2) to index units (asset 1), you must make the following adjustments:

- Multiply the strike price and current price of the government bond by 10 (1000/100).
- Multiply the option price by 100 , considering that there are 100 equity index units in the option.

Once these adjustments are introduced, the strike price is the same for both assets (\$1000). First, create the RateSpec:

```
Settle = 'Jan-15-2008';
Maturity = 'Jan-15-2009';
Rates = 0.05;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: -1
```

```
 Disc: 0.9512
 Rates: 0.0500
 EndTimes: 1
 StartTimes: 0
 EndDates: 733788
 StartDates: 733422
ValuationDate: 733422
 Basis: 1
 EndMonthRule: 1
```

Create the two StockSpec definitions.

```
AssetPrice1 = 950; % Asset 1 => Equity index
AssetPrice2 = 980; % Asset 2 => Government bond
Sigma1 = 0.22;
Sigma2 = 0.15;
Div1 = 0.02;
Div2 = 0.06;
StockSpec1 = stockspec(Sigma1, AssetPrice1, 'continuous', Div1)
StockSpec2 = stockspec(Sigma2, AssetPrice2, 'continuous', Div2)
StockSpec1 =
 struct with fields:
 FinObj: 'StockSpec'
 Sigma: 0.2200
 AssetPrice: 950
 DividendType: {'continuous'}
 DividendAmounts: 0.0200
 ExDividendDates: []
StockSpec2 =
struct with fields:
 FinObj: 'StockSpec
 Sigma: 0.1500
 AssetPrice: 980
 DividendType: {'continuous'}
 DividendAmounts: 0.0600
```

Calculate the price of the options for different correlation levels.

```
Strike = 1000 ;
Corr = [-0.5; 0; 0.5];
OptSpec = 'call';
Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2,...
Settle, Maturity, OptSpec, Strike, Corr)
Price =
 111.6683
 103.7715
 92.4412
```

These are the prices of one unit. This means that the premium is $11166.83,10377.15$, and 9244.12 (for 100 units).

- "Equity Derivatives Using Closed-Form Solutions" on page 3-139


## More About

- "Rainbow Option" on page 3-33
- "Supported Equity Derivatives" on page 3-24

```
See Also
intenvset | maxassetsensbystulz | minassetbystulz | stockspec
Introduced in R2009a
```


## maxassetsensbystulz

Determine European rainbow option prices or sensitivities on maximum of two risky assets using Stulz pricing model

## Syntax

PriceSens = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr)
PriceSens = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr, OutSpec)

## Arguments

RateSpec	The annualized, continuously compounded rate term structure.   For information on the interest rate specification, see   intenvset.
StockSpec1	Stock specification for asset 1. See stockspec.
StockSpec2	Stock specification for asset 2. See stockspec.
Settle	NINST-by-1 vector of settlement or trade dates.
Maturity	NINST-by-1 vector of maturity dates.
OptSpec	NINST-by-1 cell array of character vectors 'call' or 'put '.
Strike	NINST-by-1 vector of strike price values.
Corr	NINST-by-1 vector of correlation between the underlying asset   prices.
OutSpec	Optional) All optional inputs are specified as matching   parameter name/value pairs. The parameter name is specified   as a character vector, followed by the corresponding parameter   value. You can specify parameter name/value pairs in any
order. Names are case-insensitive and partial matches are	
allowed provided no ambiguities exist. Valid parameter names	
are:	


	NOUT-by-1 or 1-by-NOUT cell array of character vectors indicating the nature and order of the outputs for the function. Possible values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.   For example, OutSpec = \{'Price'; 'Lambda';   'Rho'\} specifies that the output should be Price, Lambda, and Rho, in that order.   To invoke from a function: [Price, Lambda, Rho] = maxassetsensbystulz(..., 'OutSpec', \{'Price', 'Lambda', 'Rho'\})   OutSpec $=$ \{'All' $\}$ specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.   - Default is OutSpec $=\{$ 'Price' $\}$.

## Description

PriceSens = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr) computes rainbow option prices using the Stulz option pricing model.

PriceSens = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr, OutSpec) computes rainbow option prices or sensitivities using the Stulz option pricing model.

PriceSens is a NINST-by-1 or NINST-by-2 vector of expected prices or sensitivities values.

## Examples

## Compute Rainbow Option Prices and Sensitivities Using the Stulz Option Pricing Model

Consider a European rainbow option that gives the holder the right to buy either $\$ 100,000$ of an equity index at a strike price of 1000 (asset 1) or $\$ 100,000$ of a
government bond (asset 2) with a strike price of $100 \%$ of face value, whichever is worth more at the end of 12 months. On January 15, 2008, the equity index is trading at 950, pays a dividend of $2 \%$ annually, and has a return volatility of $22 \%$. Also on January 15,2008 , the government bond is trading at 98 , pays a coupon yield of $6 \%$, and has a return volatility of $15 \%$. The risk-free rate is $5 \%$. Using this data, calculate the price and sensitivity of the European rainbow option if the correlation between the rates of return is $-0.5,0$, and 0.5 .

Since the asset prices in this example are in different units, it is necessary to work in either index points (for asset 1) or in dollars (for asset 2). The European rainbow option allows the holder to buy the following: 100 units of the equity index at $\$ 1000$ each (for a total of $\$ 100,000$ ) or 1000 units of the government bonds at $\$ 100$ each (for a total of $\$ 100,000$ ). To convert the bond price (asset 2) to index units (asset 1), you must make the following adjustments:

- Multiply the strike price and current price of the government bond by 10 (1000/100).
- Multiply the option price by 100, considering that there are 100 equity index units in the option.

Once these adjustments are introduced, the strike price is the same for both assets (\$1000). First, create the RateSpec:

```
Settle = 'Jan-15-2008';
Maturity = 'Jan-15-2009';
Rates = 0.05;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: -1
 Disc: 0.9512
 Rates: 0.0500
 EndTimes: 1
 StartTimes: 0
 EndDates: 733788
 StartDates: 733422
```

```
ValuationDate: 733422
 Basis: 1
 EndMonthRule: 1
```

Create the two StockSpec definitions.

```
AssetPrice1 = 950; % Asset 1 => Equity index
AssetPrice2 = 980; % Asset 2 => Government bond
Sigma1 = 0.22;
Sigma2 = 0.15;
Div1 = 0.02;
Div2 = 0.06;
```

StockSpec1 = stockspec(Sigma1, AssetPrice1, 'continuous', Div1)
StockSpec2 = stockspec(Sigma2, AssetPrice2, 'continuous', Div2)
StockSpec1 =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2200
AssetPrice: 950
DividendType: \{'continuous'\}
DividendAmounts: 0.0200
ExDividendDates: []
StockSpec2 =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.1500
AssetPrice: 980
DividendType: \{'continuous'\}
DividendAmounts: 0.0600
ExDividendDates: []

Calculate the price and delta for different correlation levels.

```
Strike = 1000 ;
```

```
Corr = [-0.5; 0; 0.5];
OutSpec = {'price'; 'delta'};
OptSpec = 'call';
[Price, Delta] = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2,...
Settle, Maturity, OptSpec, Strike, Corr,'OutSpec', OutSpec)
Price =
 111.6683
 103.7715
 92.4412
Delta =
\begin{tabular}{ll}
0.4594 & 0.3698 \\
0.4292 & 0.3166 \\
0.4053 & 0.2512
\end{tabular}
```

The output Delta has two columns: the first column represents the Delta with respect to the equity index (asset 1), and the second column represents the Delta with respect to the government bond (asset 2). The value 0.4595 represents Delta with respect to one unit of the equity index. Since there are 100 units of the equity index, the overall Delta would be 45.94 ( 100 * 0.4594 ) for a correlation level of -0.5 . To calculate the Delta with respect to the government bond, remember that an adjusted price of 980 was used instead of 98 . Therefore, for example, the Delta with respect to government bond, for a correlation of 0.5 would be $251.2(0.2512$ * 100 * 10 ).

- "Equity Derivatives Using Closed-Form Solutions" on page 3-139


## More About

- "Rainbow Option" on page 3-33
- "Supported Equity Derivatives" on page 3-24

See Also<br>intenvset | maxassetsensbystulz | stockspec<br>Introduced in R2009a

## minassetbystulz

Determine European rainbow option prices on minimum of two risky assets using Stulz option pricing model

## Syntax

Price = minassetbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr)

## Arguments

RateSpec	The annualized, continuously compounded rate term structure.   For information on the interest rate specification, see   intenvset.
StockSpec1	Stock specification for asset 1. See stockspec.
StockSpec2	Stock specification for asset 2. See stockspec.
Settle	NINST-by-1 vector of settlement or trade dates.
Maturity	NINST-by-1 vector of maturity dates.
OptSpec	NINST-by-1 cell array of character vectors 'call' or 'put '.
Strike	NINST-by-1 vector of strike price values.
Corr	NINST-by-1 vector of correlation between the underlying asset   prices.

## Description

Price = minassetbystulz(RateSpec, StockSpec1, StockSpec2,
Settle, Maturity, OptSpec, Strike, Corr) computes option prices using the
Stulz option pricing model.
Price is a NINST-by- 1 vector of expected option prices.

## Examples

## Compute Rainbow Option Prices Using the Stulz Option Pricing Model

Consider a European rainbow put option that gives the holder the right to sell either stock A or stock B at a strike of 50.25 , whichever has the lower value on the expiration date May 15, 2009. On November 15, 2008, stock A is trading at 49.75 with a continuous annual dividend yield of $4.5 \%$ and has a return volatility of $11 \%$. Stock B is trading at 51 with a continuous dividend yield of $5 \%$ and has a return volatility of $16 \%$. The riskfree rate is $4.5 \%$. Using this data, if the correlation between the rates of return is $-0.5,0$, and 0.5 , calculate the price of the minimum of two assets that are European rainbow put options. First, create the RateSpec:

```
Settle = 'Nov-15-2008';
Maturity = 'May-15-2009';
Rates = 0.045;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: -1
 Disc: 0.9778
 Rates: 0.0450
 EndTimes: 0.5000
 StartTimes: 0
 EndDates: 733908
 StartDates: 733727
 ValuationDate: 733727
 Basis: 1
 EndMonthRule: 1
```

Create the two StockSpec definitions.

```
AssetPriceA = 49.75;
```

AssetPriceB = 51;

```
SigmaA = 0.11;
SigmaB = 0.16;
DivA = 0.045;
DivB = 0.05;
StockSpecA = stockspec(SigmaA, AssetPriceA, 'continuous', DivA)
StockSpecB = stockspec(SigmaB, AssetPriceB, 'continuous', DivB)
StockSpecA =
 struct with fields:
 FinObj: 'StockSpec'
 Sigma: 0.1100
 AssetPrice: 49.7500
 DividendType: {'continuous'}
 DividendAmounts: 0.0450
 ExDividendDates: []
StockSpecB =
struct with fields:
 FinObj: 'StockSpec'
 Sigma: 0.1600
 AssetPrice: 51
 DividendType: {'continuous'}
 DividendAmounts: 0.0500
 ExDividendDates: []
```

Compute the price of the options for different correlation levels.
Strike = 50.25;
Corr $=[-0.5 ; 0 ; 0.5]$;
OptSpec = 'put';
Price = minassetbystulz(RateSpec, StockSpecA, StockSpecB, Settle,...
Maturity, OptSpec, Strike, Corr)

Price =
3.4320
3.1384
2.7694

The values $3.43,3.14$, and 2.77 are the price of the European rainbow put options with a correlation level of $-0.5,0$, and 0.5 respectively.

- "Equity Derivatives Using Closed-Form Solutions" on page 3-139


## More About

- "Rainbow Option" on page 3-33
- "Supported Equity Derivatives" on page 3-24

See Also<br>intenvset | maxassetsensbystulz | minassetsensbystulz | stockspec<br>Introduced in R2009a

## minassetsensbystulz

Determine European rainbow option prices or sensitivities on minimum of two risky assets using Stulz pricing model

## Syntax

PriceSens = minassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr)
PriceSens = minassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr, OutSpec)

## Arguments

RateSpec	The annualized continuously compounded rate term structure.   For information on the interest rate specification, see   intenvset.
StockSpec1	Stock specification for asset 1. See stockspec.
StockSpec2	Stock specification for asset 2. See stockspec.
Settle	NINST-by-1 vector of settlement or trade dates.
Maturity	NINST-by-1 vector of maturity dates.
OptSpec	NINST-by-1 cell array of character vectors 'call' or 'put '.
Strike	NINST-by-1 vector of strike price values.
Corr	liNST-by-1 vector of correlation between the underlying asset   prices.
OutSpec	(Optional) All optional inputs are specified as matching   parameter name/value pairs. The parameter name is specified   as a character vector, followed by the corresponding parameter   value. You can specify parameter name/value pairs in any
order. Names are case-insensitive and partial matches are	
allowed provided no ambiguities exist. Valid parameter names	
are:	


	NOUT-by-1 or 1-by-NOUT cell array of character vectors indicating the nature and order of the outputs for the function. Possible values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.   For example, OutSpec = \{'Price'; 'Lambda'; 'Rho' \} specifies that the output should be Price, Lambda, and Rho, in that order.   To invoke from a function: [Price, Lambda, Rho] = minassetsensbystulz(..., 'OutSpec', \{'Price', 'Lambda', 'Rho'\})   OutSpec $=\{$ 'All' $\}$ specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.   - Default is OutSpec = \{'Price' $\}$.

## Description

PriceSens = minassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr) computes rainbow option prices using the Stulz option pricing model.

PriceSens = minassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr, OutSpec) computes rainbow option prices or sensitivities using the Stulz option pricing model.

PriceSens is a NINST-by-1 or NINST-by-2 vector of expected prices or sensitivities.

## Examples

## Compute Rainbow Option Prices and Sensitivities Using the Stulz Option Pricing Model

Consider a European rainbow put option that gives the holder the right to sell either stock A or stock B at a strike of 50.25 , whichever has the lower value on the expiration
date May 15, 2009. On November 15, 2008, stock A is trading at 49.75 with a continuous annual dividend yield of $4.5 \%$ and has a return volatility of $11 \%$. Stock B is trading at 51 with a continuous dividend yield of $5 \%$ and has a return volatility of $16 \%$. The risk-free rate is $4.5 \%$. Using this data, if the correlation between the rates of return is $-0.5,0$, and 0.5 , calculate the price and sensitivity of the minimum of two assets that are European rainbow put options. First, create the RateSpec:

```
Settle = 'Nov-15-2008';
Maturity = 'May-15-2009';
Rates = 0.045;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: -1
 Disc: 0.9778
 Rates: 0.0450
 EndTimes: 0.5000
 StartTimes: 0
 EndDates: 733908
 StartDates: 733727
 ValuationDate: 733727
 Basis: 1
 EndMonthRule: 1
```

Create the two StockSpec definitions.

```
AssetPriceA = 49.75;
AssetPriceB = 51;
SigmaA = 0.11;
SigmaB = 0.16;
DivA = 0.045;
DivB = 0.05;
StockSpecA = stockspec(SigmaA, AssetPriceA, 'continuous', DivA)
StockSpecB = stockspec(SigmaB, AssetPriceB, 'continuous', DivB)
```

```
StockSpecA =
struct with fields:
 FinObj: 'StockSpec'
 Sigma: 0.1100
 AssetPrice: 49.7500
 DividendType: {'continuous'}
 DividendAmounts: 0.0450
 ExDividendDates: []
```

```
StockSpecB =
```

StockSpecB =
struct with fields:
struct with fields:
FinObj: 'StockSpec'
FinObj: 'StockSpec'
Sigma: 0.1600
Sigma: 0.1600
AssetPrice: 51
AssetPrice: 51
DividendType: {'continuous'}
DividendType: {'continuous'}
DividendAmounts: 0.0500
DividendAmounts: 0.0500
ExDividendDates: []

```
 ExDividendDates: []
```

Calculate price and delta for different correlation levels.

```
Strike = 50.25;
Corr = [-0.5;0;0.5];
OptSpec = 'put';
OutSpec = {'Price'; 'delta'};
[P, D] = minassetsensbystulz(RateSpec, StockSpecA, StockSpecB,...
Settle, Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)
P =
 3.4320
 3.1384
 2.7694
D =
 -0.4183-0.3496
```

```
-0.3746 -0.3189
-0.3304 -0.2905
```

The output Delta has two columns: the first column represents the Delta with respect to the stock A (asset 1), and the second column represents the Delta with respect to the stock B (asset 2). The value 0.4183 represents Delta with respect to the stock A for a correlation level of -0.5. The Delta with respect to stock B, for a correlation of zero is -0.3189.

- "Equity Derivatives Using Closed-Form Solutions" on page 3-139


## More About

- "Rainbow Option" on page 3-33
- "Supported Equity Derivatives" on page 3-24

See Also<br>intenvset | minassetsensbystulz | stockspec<br>Introduced in R2009a

## mkbush

Create bushy tree

## Syntax

[Tree, NumStates] = mkbush(NumLevels, NumChild, NumPos, Trim, NodeVal)

## Arguments

NumLevels	Number of time levels of the tree.
NumChild	1-by- number of levels (NUMLEVELS) vector with number of branches   (children) of the nodes in each level.
NumPos	1-by-NUMLEVELS vector containing the length of the state vectors in   each time level.
Trim	(Optional) Scalar 0 or 1. If Trim $=1$, NumPos decreases by 1 when   moving from one time level to the next. Otherwise, if Trim $=0$   (Default), NumPos does not decrease.
NodeVal	(Optional) Initial value at each node of the tree. Default = NaN.

## Description

[Tree, NumStates] = mkbush(NumLevels, NumChild, NumPos, Trim, NodeVal) creates a bushy tree Tree with initial values NodeVal at each node. NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in each level.

## Examples

Create a tree with four time levels, two branches per node, and a vector of three elements in each node with each element initialized to NaN .


## More About

- "Overview of Interest-Rate Tree Models" on page 2-35


## See Also

bushpath | bushshape
Introduced before R2006a

## mktree

Create recombining binomial tree

## Syntax

```
Tree = mktree(NumLevels, NumPos, NodeVal, IsPriceTree)
```


## Arguments

NumLevels	Number of time levels of the tree.
NumPos	1 -by-NUMLEVELS vector containing the length of the state   vectors in each time level.
NodeVal	(Optional) Initial value at each node of the tree. Default $=\mathrm{NaN}$.
IsPriceTree	(Optional) Boolean determining if a final horizontal branch is   added to the tree. Default $=0$.

## Description

Tree $=$ mktree(NumLevels, NumPos, NodeVal, IsPriceTree) creates a recombining tree Tree with initial values NodeVal at each node.

## Examples

Create a recombining tree of four time levels with a vector of two elements in each node and each element initialized to NaN.

```
Tree = mktree(4, 2);
```


## More About

- "Overview of Interest-Rate Tree Models" on page 2-35
See Alsotreepath | treeshape
Introduced before R2006a


## mktrintree

Create recombining trinomial tree

## Syntax

TrinTree = mktrintree(NumLevels, NumPos, NumStates, NodeVal)

## Arguments

NumLevels	Number of time levels of the tree.
NumPos	1-by-NUMLEVELS vector containing the length of the state vectors in   each time level.
NumStates	1 -by-NUMLEVELS vector containing the number of state vectors in   each time level.
NodeVal	(Optional) Initial value at each node of the tree. Default $=$ NaN.

## Description

TrinTree = mktrintree(NumLevels, NumPos, NumStates, NodeVal) creates a recombining tree Tree with initial values NodeVal at each node.

## Examples

Create a recombining trinomial tree of four time levels with a vector of two elements in each node and each element initialized to NaN .

```
TrinTree = mktrintree(4, [2 2 2 2], [1 3 5 7]);
```


## More About

- "Overview of Interest-Rate Tree Models" on page 2-35

See Also<br>trintreepath | trintreeshape<br>Introduced before R2006a

## mmktbybdt

Create money-market tree from Black-Derman-Toy interest-rate tree

## Syntax

MMktTree $=$ mmktbybdt (BDTTree)

## Arguments

BDTTree	Interest-rate tree structure created by bdttree.

## Description

MMktTree $=$ mmktbybdt (BDTTree) creates a money-market tree from an interest-rate tree structure created by bdttree.

## Examples

load deriv.mat;
MMktTree $=$ mmktbybdt(BDTTree); treeviewer (MMktTree)


## More About

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2


## See Also

bdttree

Introduced before R2006a

## mmktbyhim

Create money-market tree from Heath-Jarrow-Morton interest-rate tree

## Syntax

MMktTree $=$ mmktbyhjm(HJMTree)

## Arguments

HJMTree	Forward-rate tree structure created by hjmtree.

## Description

MMktTree $=$ mmktbyhjm (HJMTree) creates a money-market tree from a forward-rate tree structure created by hjmtree.

## Examples

load deriv.mat;
MMktTree = mmktbyhjm(HJMTree); treeviewer (MMktTree)


## More About

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Supported Interest-Rate Instruments" on page 2-2


## See Also

hjmtree

Introduced before R2006a

## numerix class

Create numerix object to set up Numerix CAIL environment

## Description

The numerix object makes the Numerix engine directly accessible from MATLAB. To use the capabilities of Numerix CAIL, you must have CAIL client software installed on your local desktop.

## Construction

$N=$ numerix(DATADIRECTORYPATH) constructs the numerix object and sets up the Numerix CrossAsset Integration Layer (CAIL) environment given the path, DATADIRECTORYPATH.

## Properties

The following properties are from the numerix class.

## Path

Defines the path for DATADIRECTORYPATH. This path is the location of the templates and is created by the client installation of CAIL. A template defines the interface; it encapsulates the instructions for performing calculations, the calculation's required and optional input parameters, and the calculation's outputs.

## Attributes:

SetAccess
public
GetAccess
public

RepositoryPath
RepositoryPath defines the path location for the repository folder in a file system.

## Attributes:

SetAccess
GetAccess
public
public

## Repository

Repositories are collections of templates and are defined as a folder in a file system.

## Attributes:

SetAccess
public
GetAccess
public

## Context

The calculation context manages all the CAIL information.Context contains the location of the template repository and is responsible for creating a CAIL application context in which to perform the calculations.

## Attributes:

SetAccess
public
GetAccess
public

## LookupsPath

Defines the path for the numeric instruments data types.

## Attributes:

SetAccess
GetAccess
public
public

## MarketsPath

Defines a path for the logical schema for naming all the market data. MarketsPath enables you to provide a data dictionary to map business market data to CAIL to reduce the task of inputting market data into CAIL objects directly.

## Attributes:

SetAccess
public
GetAccess
public

## FixingsPath

Defines the path for the schema for naming historical fixing data for rates and prices.

## Attributes:

SetAccess
public
GetAccess

## TradesPath

Defines the path to the trade instrument definitions.

## Attributes:

SetAccess
public
GetAccess
public

## Parameters

Defines the calculation parameters and market data, if available.
Attributes:

SetAccess
public
GetAccess

## Methods

parseResults

Converts Numerix CAIL data to MATLAB data types

## Definitions

## CrossAsset Integration Layer (CAIL)

The CrossAsset Integration Layer (CAIL) is an application programming interface (API), which extends the data-driven approach of Numerix.

The calculation workflow of CAIL is:
1 Select a trade template for a specified deal or trade from the repository. The trade template specifies a set of inputs, a set of outputs, and the dependencies on other information (model, market data, calendar, etc.).
2 Provide the input parameters to the trade template and call the calculation context. The calculation context follows the dependency path to collect the needed information and produces the output specified by the template.


## Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

## Examples

## Construct a Numerix Object

Initialize Numerix CAIL environment.

```
import com.numerix.integration.*;
import com.numerix.integration.implementation.*;
```

Construct a numerix object.

```
n = numerix('i:\NumeriX_java_10_3_0\data')
```

$\mathrm{n}=$
Path: 'i:\NumeriX_java_10_3_0\data'
RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository
Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
Context: [1x1 com.numerix.integration.implementation. LocalCalculationContext]
LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades
Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

- "Working with Simple Numerix Trades" on page 10-2
- "Working with Advanced Numerix Trades" on page 10-5
- "Use Numerix to Price Cash Deposits" on page 10-10
- "Use Numerix for Interest-Rate Risk Assessment" on page 10-12
- Class Attributes
- Property Attributes


## See Also

numerixCrossAsset | parseResults

## External Websites

- http://www.numerix.com/cail

11 Functions - Alphabetical List

Introduced in R2013b

## numerixCrossAsset class

Create numerixCrossAsset object to set up Numerix CAIL environment

## Description

Creating a numerixCrossAsset object initializes a Numerix Cross Asset Integration Layer object based on the Numerix data-driven CAIL API. To use the Numerix engine directly from MATLAB, you must have the CAIL client installed on your local desktop.

## Construction

c = numerixCrossAsset constructs the numerixCrossAsset object and sets up the Numerix CrossAsset Integration Layer (CAIL) environment.

## Properties

## Application - Application object

object
Application object, created when numerixCrossAsset object is initialized.
Example: app = Application;
Attributes:

SetAccess private
GetAccess public

## ApplicationWarning - ApplicationWarning object <br> object

ApplicationWarning object, created when numerixCrossAsset object is initialized.
Example: appWarnings = ApplicationWarning;

## Attributes:

SetAccess
GetAccess
private
public

## Methods

applicationCall
applicationData
applicationMatrix
close
getdata

Create and register Numerix CAIL Call object
Create and register data with Numerix CAIL Application Data object
Create and register Numerix CAIL Application Matrix object
Close numerixCrossAsset object
Convert Numerix CAIL Application object to MATLAB structure

## Definitions

## CrossAsset Integration Layer (CAIL)

The CrossAsset Integration Layer (CAIL) is an application programming interface (API), which extends the data-driven approach of Numerix.

## Examples

## Construct a numerixCrossAsset Object

Construct a numerixCrossAsset object.
c = numerixCrossAsset
$\mathrm{c}=$
numerixCrossAsset with properties:

Application: [1x1 com.numerix.pro.Application]
ApplicationWarning: [1x1 com.numerix.pro.ApplicationWarning]

- "Numerix CAIL Interface Workflow Example Using Matrix, Data, and Call Objects" on page 10-15


## See Also

applicationCall | applicationData | applicationMatrix | close | getdata

## More About

- Class Attributes
- Property Attributes


## External Websites

- http://www.numerix.com/cail

Introduced in R2016b

## applicationCall

Class: numerixCrossAsset
Create and register Numerix CAIL Call object

## Syntax

applicationCall(C,Headers, Name, Value)

## Description

applicationCall(C,Headers, Name, Value) creates and registers the Numerix CAIL Call object with additional options specified by one or more Name, Value pair arguments. The name-value parameters conform to the Numerix Cross Asset Integration Layer interface and are defined by $\mathrm{N} 1, \mathrm{~N} 2, \ldots, \mathrm{~N} N$ to the values given in $\mathrm{V} 1, \mathrm{~V} 2, \ldots, \mathrm{~V} N$.

Creating and registering the Call object calculates values in the Numerix Cross Asset Integration Layer and returns the data in MATLAB.

## Input Arguments

## C - Connection object to Numerix CAIL

object
Connection object to Numerix CAIL, specified using the numerixCrossAsset constructor.

## Headers - Output names of the returned values from numerixCrossAsset connection object <br> cell array of character vectors

Output names of the returned values from numerixCrossAsset connection object, specified as a cell array of character vectors.

Data Types: cell

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## ' N1 ' - Numerix name-value parameter

name-value parameter defined by Numerix
Numerix parameters, specified as a Name, Value argument pair.
Example: applicationCall(c,Headers, 'ID', 'RATESPEC' , 'OBJECT' , 'MARKET DATA', 'TYPE', 'YIELD', 'COMMENT', 'Comments
here', 'SKIP',false,'INTERPMETHOD','LogLinear', 'INTERPVARIABLE', 'DF', 'CURRENCY'
Data Types: char | double | logical

## ' N2 ' - Numerix name-value parameters

name-value parameter defined by Numerix
Numerix parameter, specified as a Name, Value argument pair.
Example: applicationCall(c,Headers, 'ID', 'RATESPEC', 'OBJECT', 'MARKET DATA', 'TYPE', 'YIELD', 'COMMENT', 'Comments here', 'SKIP',false,'INTERPMETHOD','LogLinear', 'INTERPVARIABLE', 'DF', 'CURRENCY' Data Types: char | double | logical

## Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB ObjectOriented Programming documentation.

## Examples

## Create and Register a Numerix CAIL Call Object

Create a datetime object.

```
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
 '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
 17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
 '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
 '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019';
 '20-Feb-2020';'22-Feb-2021';'22-Feb-2022' ;'21-Feb-2023';
 '20-Feb-2024';'20-Feb-2025';'20-Feb-2026';'20-Feb-2029 ';
 '21-Feb-2034';'22-Feb-2039';'22-Feb-2044';'20-Feb-2054';
 '20-Feb-2064'});
```

Create the corresponding vector of discount factors for a 3 -month LIBOR curve.

```
discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385; ...
 0.998122;0.997941;0.997159;0.996157;0.994825;0.993065; ...
 0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
 0.922223;0.888128;0.852291;0.816462;0.781228;0.746677;...
 0.712892;0.680462;0.592285;0.474003;0.383493;0.312617; ...
 0.213809;0.152345];
```

Create a Numerix CAIL object.

```
c = numerixCrossAsset;
```

Add data to the Numerix Cross Asset Application Data object.

```
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountFactors)
```

Define the Headers input and add the RateSpec Call object to the Numerix Cross Asset Application object using name-value pairs, where USD_3MLIBOR_CURVE denotes the yield curve data object created previously.

```
headers = {'ID','LOCAL ID','TIMER','TIMER CPU','UPDATED'};
applicationCall(c,headers,'ID','RATESPEC','OBJECT','MARKET DATA','TYPE','YIELD','COMMENT','Comments here',...
 'SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE', 'DF ', ...
 CURRENCY','USD', 'DATA', 'USD_3MLIBOR_CURVE',''BASIS', 'ACT/360');
```

- "Numerix CAIL Interface Workflow Example Using Matrix, Data, and Call Objects" on page 10-15


## References

## See Also

applicationData | applicationMatrix | close | getdata | numerixCrossAsset

## External Websites

- http://www.numerix.com/cail

Introduced in R2016b

## applicationData

Class: numerixCrossAsset
Create and register data with Numerix CAIL Application Data object

## Syntax

```
applicationData(C,Desc,Name,Value)
applicationData(C,Desc,T)
applicationData(C,Desc,S)
```


## Description

applicationData(C,Desc, Name, Value) applicationData creates and registers the data for Numerix CAIL Application Data object with additional options specified by one or more Name, Value pair arguments. The name-value parameters conform to the Numerix Cross Asset Integration Layer interface and are defined by N1, N2, ..., NN to the values given in $\mathrm{V} 1, \mathrm{~V} 2, \ldots, \mathrm{~V} N$.
applicationData (C,Desc, T) creates and registers the data for Numerix CAIL Application Data object in table T.
applicationData (C,Desc, S) creates and registers the data in the structure, S. The structure fieldnames represents the property names for the values in each field.

## Input Arguments

## C - Connection object to Numerix CAIL <br> object

Connection object to Numerix CAIL, specified using the numerixCrossAsset constructor.

## Desc - Description of data

character vector or cell array of character vectors
Description of data, specified as a character vector or cell array of character vectors.

## Data Types: char | cell

## T - Table input <br> table VariableNames represents the property names for values in the corresponding column

Table input for data to register for the Numerix CAIL Application Data object, specified using VariableNames.

Data Types: table

## S - Structure input

structure fieldnames represents the property names for the values in each field
Structure input for data to register for the Numerix CAIL Application Data object, specified using the fieldnames.

Data Types: struct

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## ' N1 ' - Numerix name-value parameter

name-value parameter defined by Numerix
Numerix parameter, specified as Name, Value argument pair.

## Example:

applicationData(c, 'USD_3MLIBOR_CURVE', 'DATE', dates, 'DISCOUNTFACTOR', discountFa
Data Types: char | double | logical

## ' N2 ' - Numerix name-value parameters

name-value parameter defined by Numerix
Numerix parameter, specified as Name, Value argument pair.
Example:
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountFa

## Data Types: char | double | logical

## Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB ObjectOriented Programming documentation.

## Examples

## Create a Numerix CAIL Application Data Object

Create a datetime object.

```
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
 '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
 '17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
 '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
 '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019';
 '20-Feb-2020';'22-Feb-2021';'22-Feb-2022';'21-Feb-2023';
 '20-Feb-2024' ; '20-Feb-2025'; '20-Feb-2026' ; '20-Feb-2029 ';
 '21-Feb-2034';'22-Feb-2039 ';'22-Feb-2044';'20-Feb-2054';
 '20-Feb-2064'});
```

Create the corresponding vector of discount factors for a 3-month LIBOR curve.

```
discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385;...
 0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
 0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;..
 0.922223;0.888128;0.852291;0.816462;0.781228;0.746677; ...
 0.712892;0.680462;0.592285;0.474003;0.383493;0.312617; ...
 0.213809;0.152345];
```

Create a Numerix CAIL object.
c = numerixCrossAsset;
Create and register the data with the Numerix Cross Asset Application Data object.
applicationData(c,'USD_3MLIBOR_CURVE', 'DATE', dates,'DISCOUNTFACTOR', discountFactors)

- "Numerix CAIL Interface Workflow Example Using Matrix, Data, and Call Objects" on page 10-15


## References

## See Also

applicationCall|applicationMatrix | close | getdata | numerixCrossAsset

## External Websites

- http://www.numerix.com/cail

Introduced in R2016b

## applicationMatrix

Class: numerixCrossAsset
Create and register Numerix CAIL Application Matrix object

## Syntax

applicationMatrix(C,Desc,Rdata, Cdata,Mdata)

## Description

applicationMatrix (C, Desc, Rdata, Cdata, Mdata) creates the Application Matrix object from the row information (Rdata), column information (Cdata), and matrix (Mdata).

## Input Arguments

## C - Connection object to Numerix CAIL

(default) | object
Connection object to Numerix CAIL, specified using the numerixCrossAsset constructor.

## Desc - Description of data

character vector or cell array of character vectors
Description of data, specified as a character vector or cell array of character vectors.
Data Types: char | cell
Rdata - Row information for Application Matrix object
numeric values
Row information for Application Matrix object, specified using numeric values.
Example: Rdata $=[41992,42020,42449,42905,43115]$;
Data Types: double

## Cdata - Column information for Application Matrix object <br> numeric values

Column information for Application Matrix object, specified as numeric values.
Example: Cdata $=[390,395,400,405]$;
Data Types: double

## Mdata - Volatility information for Application Matrix object

numeric values
Volatility information for Application Matrix object, specified as numeric values.
Example: Mdata $=[0.35778,0.35132,0.34394,0.33582 ; \ldots$
$0.33405,0.32819,0.32669,0.31904 ; \ldots$
0.31576, 0.31235, 0.30371, 0.30261; ...
0.29391, 0.29366, 0.28962, 0.28932;...
0.28787, NaN, 0.28347, NaN ];

Data Types: double

## Attributes

Access
public
Static
false
Hidden
false
To learn about attributes of methods, see Method Attributes in the MATLAB ObjectOriented Programming documentation.

## Examples

## Create a Numerix CAIL Application Matrix Object

Create a volatility matrix with dates describing the rows and strike prices describing the columns with the description BYSTRIKEVOLDATA. Missing values in the matrix input are denoted as NaN.

Create a Numerix CAIL object.

```
c = numerixCrossAsset;
```

Define the matrix data.

```
rowData = [41992, 42020, 42449, 42905, 43115];
colData = [390, 395, 400, 405];
volData = [0.35778, 0.35132, 0.34394, 0.33582;...
 0.33405, 0.32819, 0.32669, 0.31904;...
 0.31576, 0.31235, 0.30371, 0.30261;...
 0.29391, 0.29366, 0.28962, 0.28932;...
 0.28787, NaN, 0.28347, NaN];
```

Create and register a Numerix CAIL Application Matrix object.
applicationMatrix(c, 'BYSTRIKEVOLDATA', rowData, colData, volData);

- "Numerix CAIL Interface Workflow Example Using Matrix, Data, and Call Objects" on page 10-15


## References

## See Also

applicationCall| applicationData | close | getdata | numerixCrossAsset

## External Websites

- http://www.numerix.com/cail


## Introduced in R2016b

## close

Class: numerixCrossAsset
Close numerixCrossAsset object

## Syntax

AppData $=$ close (C)

## Description

AppData $=$ close(C) closes the numerixCrossAsset object (C).

## Input Arguments

## C - Connection object to Numerix CAIL <br> object

Connection object to Numerix CAIL, specified using the numerixCrossAsset constructor.
Example:

## Attributes

Access	public
Static	false
Hidden	false

To learn about attributes of methods, see Method Attributes in the MATLAB ObjectOriented Programming documentation.

## Examples

## Close the Numerix CAIL Object

Construct a numerixCrossAsset object.
c = numerixCrossAsset
$\mathrm{c}=$
numerixCrossAsset with properties:
Application: [1x1 com.numerix.pro.Application]
ApplicationWarning: [1x1 com.numerix.pro.ApplicationWarning]
Close the numerixCrossAsset object.
close(c)

- "Numerix CAIL Interface Workflow Example Using Matrix, Data, and Call Objects" on page 10-15


## References

## See Also

applicationCall| applicationData | applicationMatrix | getdata | numerixCrossAsset

## External Websites

- http://www.numerix.com/cail

Introduced in R2016b

## getdata

Class: numerixCrossAsset
Convert Numerix CAIL Application object to MATLAB structure

## Syntax

AppData = getdata(C)

## Description

AppData = getdata( C ) converts a Numerix CAIL Application object to a MATLAB structure.

## Input Arguments

## C - Connection object to Numerix CAIL <br> object

Connection object to Numerix CAIL, specified using the numerixCrossAsset constructor.
Example:

## Output Arguments

AppData - Converted Numerix CAIL Application object
structure
Converted Numerix CAIL Application object, returned as a MATLAB structure

## Atributes

Access
public
Static
false
Hidden
false

To learn about attributes of methods, see Method Attributes in the MATLAB ObjectOriented Programming documentation.

## Examples

## Convert Numerix CAIL Application Object to a MATLAB Structure

Create a datetime object.

```
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
 '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
 17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
 '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
 '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019 ';
 '20-Feb-2020';'22-Feb-2021';'22-Feb-2022';'21-Feb-2023';
 '20-Feb-2024';'20-Feb-2025';'20-Feb-2026';'20-Feb-2029';
 '21-Feb-2034';'22-Feb-2039';'22-Feb-2044';'20-Feb-2054 ';
 '20-Feb-2064'});
```

Create the corresponding vector of discount factors for a 3-month LIBOR curve.

```
discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385;...
 0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
 0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
 0.922223;0.888128;0.852291;0.816462;0.781228;0.746677; ...
 0.712892;0.680462;0.592285;0.474003;0.383493;0.312617; ...
 0.213809;0.152345];
```

Create a Numerix CAIL object.

```
c = numerixCrossAsset;
```

Add data to the Numerix Cross Asset Application Data object.

```
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountFactors)
```

Add the RATESPEC Call object to the Numerix Cross Asset Application object using name-value pairs, where USD_3MLIBOR_CURVE denotes yield curve data object created previously.

```
headers = {'ID','LOCAL ID','TIMER','TIMER CPU','UPDATED'};
 applicationCall(c,headers,'ID','RATESPEC','OBJECT','MARKET DATA','TYPE','YIELD','COMMENT','Comments here',...
 'SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE', 'DF', ...
 'CURRENCY','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');
```

Use getdata to convert the Numerix CAIL Application object to a MATLAB structure.

APPDATA $=$ getdata $(C)$

- "Numerix CAIL Interface Workflow Example Using Matrix, Data, and Call Objects" on page 10-15


## References

## See Also

applicationCall | applicationData | applicationMatrix | close | numerixCrossAsset

## External Websites

- http://www.numerix.com/cail

Introduced in R2016b

## parseResults

Class: numerix
Converts Numerix CAIL data to MATLAB data types

## Syntax

R = parseResults(N,Results)

## Description

$R$ = parseResults(N,Results) returns Numerix CAIL data in native MATLAB data types.

## Input Arguments

N
Numerix object constructed using numerix.

## Results

Result instances for each trade instance.

## Output Arguments

## R

Results from Numerix table output represented as MATLAB data types.

## Attributes

Access
public
Static
false
Hidden
false

To learn about attributes of methods, see Method Attributes in the MATLAB ObjectOriented Programming documentation.

## Examples

## Return Results for Numerix CAIL API to Price a Callable Reverse Floater

Initialize Numerix environment.

```
import com.numerix.integration.*;
import com.numerix.integration.implementation.*;
n = numerix('i:\NumeriX_java_10_3_0\data')
n =
 Path: 'i:\NumeriX_java_10_3_0\data'
 RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository
 Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
 Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
 LookupsPath: 'i:\NumeriX java 10 3 0\data\Data\LookupRules
 MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
 FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings
 TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
 Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]
```

Create a market.
quotes = java.util.HashMap;
quotes.put('IR.USD-LIBOR-3M.SWAP-1Y.MID', 0.0066056);
quotes.put('IR.USD-LIBOR-3M.SWAP-10Y.MID', 0.022465005);
quotes.put('IR.USD-LIBOR-3M.SWAP-20Y.MID', 0.027544995);
market $=$ Market('EOD_14-NOV-2011', DateExtensions.date('14-Nov-2011'), quotes.entrySet);
Define a trade instance based on instrument template found in the Repository.

```
tradeDescriptor = 'TRADE.IR.CALLABLEREVERSEFLOATER';
tradeParameters = java.util.HashMap;
tradeParameters.put('Trade ID','1001');
tradeParameters.put('Quote Type', 'MID');
tradeParameters.put('Currency', 'USD');
tradeParameters.put('Notional', 1000000.0);
tradeParameters.put('Effective Date', DateExtensions.date('1-Dec-2011'));
tradeParameters.put('Termination Date', DateExtensions.date('1-Dec-2021'));
tradeParameters.put('IR Index', 'LIBOR');
tradeParameters.put('IR Index Tenor', '3М');
tradeParameters.put('Structured Freq', '3M');
```

```
tradeParameters.put('Structured Side', 'Receive');
tradeParameters.put('Structured Coupon Floor', 0.0);
tradeParameters.put('Structured Coupon UpBd', 0.08);
tradeParameters.put('StructuredCoupon Multiplier', 1.4);
tradeParameters.put('Structured Coupon Cap', 0.05);
tradeParameters.put('Structured Basis', 'ACT/360');
tradeParameters.put('Funding Freq', '3M');
tradeParameters.put('Funding Side', 'Pay');
tradeParameters.put('Funding Spread', 0.003);
tradeParameters.put('Funding Basis', 'ACT/360');
tradeParameters.put('Call Start Date', DateExtensions.date('1-Dec-2013'));
tradeParameters.put('Call End Date', DateExtensions.date('1-Dec-2020'));
tradeParameters.put('Option Side', 'Short');
tradeParameters.put('Option Type', 'Right to Terminate');
tradeParameters.put('Call Frequency', '3M');
tradeParameters.put('Model', 'IR.USD-LIBOR-3M.MID.DET');
tradeParameters.put('Method', 'BackwardAnalytic');
```

Create a trade instance.
trade $=$ RepositoryExtensions.createTradeInstance(n.Repository, tradeDescriptor, tradeParameters);
Price the trades.

```
results = CalculationContextExtensions.calculate(n.Context, trade, market, Request.getAll);
```

Parse the results for MATLAB and display.

```
r = n.parseResults(results)
disp([r.Name r.Category r.Currency r.Data])
r =
 Category: {13x1 cell}
 Currency: {13x1 cell}
 Name: {13\times1 cell}
 Data: {13x1 cell}
\begin{tabular}{|c|c|c|c|}
\hline 'Reporting Currency' & 'Price \({ }^{\text {' }}\) & '' & 'USD' \\
\hline 'Structured Cashflow Log' & 'Cashflow' & & \{41x20 cell\} \\
\hline 'Structured Leg PV Accrued' & 'Price' & 'USD ' & \(0]\) \\
\hline 'PV' & 'Price' & 'USD ' & \(6.4133 \mathrm{e}+04]\) \\
\hline 'Structured Leg PV Clean' & 'Price' & 'USD' & [4.2637e+05] \\
\hline 'Option PV' & 'Price' & 'USD ' & [-1.3220e+05] \\
\hline 'Funding Cashflow Log' & 'Cashflow' & & \{41x20 cell\} \\
\hline 'Structured Leg PV' & 'Price' & 'USD ' & [4.2637e+05] \\
\hline 'Funding Leg PV' & 'Price' & 'USD ' & [-2.3004e+05] \\
\hline 'Funding Leg PV Accrued' & 'Price' & 'USD ' & 0] \\
\hline 'Funding Leg PV Clean' & 'Price \({ }^{\prime}\) & 'USD ' & [-2.3004e+05] \\
\hline 'Yield Risk Report' & ', & ', & \{ \(4 \times 30\) cell \(\}\) \\
\hline 'Messages' & & & \{ \(4 \times 1\) cell\} \\
\hline
\end{tabular}
```

- "Working with Simple Numerix Trades" on page 10-2
- "Working with Advanced Numerix Trades" on page 10-5
- "Use Numerix to Price Cash Deposits" on page 10-10
- "Use Numerix for Interest-Rate Risk Assessment" on page 10-12


## See Also

numerix

## External Websites

- http://www.numerix.com/cail

Introduced in R2013b

## oasbybdt

Determine option adjusted spread using Black-Derman-Toy model

## Syntax

[OAS, OAD, OAC] = oasbybdt(BDTTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates)
[OAS, OAD, OAC] = oasbybdt(BDTTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, Name, Value)

## Description

[OAS, OAD, OAC] = oasbybdt(BDTTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates) calculates option adjusted spread (OAS), duration (OAD), and convexity (OAC) using a BDT model.
[OAS, OAD, OAC] = oasbybdt(BDTTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, Name, Value) calculates option adjusted spread (OAS), duration (OAD), and convexity (OAC) using a BDT model with additional options specified by one or more Name, Value pair arguments.

## Input Arguments

## BDTTree

Interest-rate tree structure created by bdttree.

## Price

NINST-by- 1 vector of market prices of bonds with embedded options.

## CouponRate

NINST-by-1 vector for decimal annual rate.

## Settle

NINST-by-1 vector for settlement date.

## Maturity

NINST-by-1 vector for maturity date.

## OptSpec

NINST-by-1 cell array of character vectors for 'call' or 'put'.

## Strike

Matrix of strike price values for supported option types:

- European option: NINST-by-1 vector of strike price values.
- Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

- American option: NINST-by-1 vector of strike price values for each option.


## ExerciseDates

Matrix of exercise callable or puttable dates for supported option types:

- NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.
- American option: NINST-by-2 vector of exercise date boundaries. For each instrument, the option is exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option is exercised between the underlying bond Settle and the single listed exercise date.


## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'AmericanOpt'

NINST-by-1 vector for option flags: 0 (European/Bermuda) or 1 (American).
Default: 0 (European/Bermuda)

## 'Basis'

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- $2=$ actual/ 360
- 3 = actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

## 'EndMonthRule'

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and 0 (not in effect).
Default: 1 (in effect)

## 'IssueDate'

NINST-by- 1 vector of bond issue date.
Default: If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.

## 'Face'

NINST-by- 1 vector for face value.
Default: 100

```
'FirstCouponDate'
```

NINST-by-1 vector. Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## 'LastCouponDate'

NINST-by-1 vector. Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

```
'Period'
```

NINST-by-1 vector for coupons per year.
Default: 2 per year

## 'Options'

Structure created with derivset containing derivatives pricing options.
Default: None

## Output Arguments

## OAS

NINST-by-1 vector for option adjusted spread.

## OAD

NINST-by-1 vector for option adjusted duration.

## OAC

NINST-by- 1 vector for option adjusted convexity.

## Examples

## Compute OAS Using the Black-Derman-Toy (BDT) Model

This example shows how to compute OAS using the Black-Derman-Toy (BDT) model with the following data.

```
ValuationDate = 'Oct-1-2010';
Rates = [0.035; 0.042; 0.047; 0.052];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;
% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding);
% specify VolSpec and TimeSpec
Sigma = 0.20;
VS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)));
TS = bdttimespec(ValuationDate, EndDates, Compounding);
% build the BDT tree
BDTTree = bdttree(VS, RateSpec, TS);
BDTTreenew = cvtree(BDTTree);
% instrument information
CouponRate = 0.065;
Settle = ValuationDate;
Maturity = '01-Oct-2014';
OptSpec = 'call';
Strike = 100;
ExerciseDates ='01-Oct-2011';
Period = 1;
Price = 101.58;
```

```
% compute the OAS
OAS = oasbybdt(BDTTree, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period)
% use treviewer to observe the tree
treeviewer(BDTTree)
OAS =
36.5591
```


$\left[\begin{array}{ll}\text { Tree Visualization } & \text { Visualization } \\ \text { Selection } & \text { O Table } \\ \text { - Path } & \text { Diagram } \\ \text { Node and Children } & \text { Plot } \\ \hline\end{array}\right.$


- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11


## More About

## Bond with Embedded Options

A bond with embedded option allows the issuer to buy back (callable) or redeem (puttable) the bond at a predetermined price at specified future dates. Financial Instruments Toolbox software supports American, European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:

- Callable bond - The holder bought a bond and sold a call option to the issuer. For example, if interest rates go down by the time of the call date, the issuer is able to refinance its debt at a cheaper level and can call the bond. The price of a callable bond is:

```
 Price callable bond=Price Option free bond - Price call option
```

- Puttable bond - The holder bought a bond and a put option. For example, if interest rates rise, the future value of coupon payments becomes less valuable. Therefore, the investor can sell the bond back to the issuer and then lend proceeds elsewhere at a higher rate. The price of a puttable bond is:

> Price puttable bond=Price Option free bond+Price put option

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2


## References

Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, , 2005.
Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg Press, 2007.

## See Also

bdtprice | bdttree | instoptembnd | oasbybk | oasbyhjm | oasbyhw | optembndbybdt

Introduced in R201 la

## oasbybk

Determine option adjusted spread using Black-Karasinski model

## Syntax

[OAS, OAD, OAC] = oasbybk(BKTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates)
[OAS, OAD, OAC] = oasbybk(BKTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, Name, Value)

## Description

[OAS, OAD, OAC] = oasbybk(BKTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates) calculates option adjusted spread (OAS), duration (OAD), and convexity (OAC) using a BK model.
[OAS, OAD, OAC] = oasbybk(BKTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, Name, Value) calculates option adjusted spread (OAS), duration (OAD), and convexity (OAC) using a BK model with additional options specified by one or more Name, Value pair arguments.

## Input Arguments

## BKTree

Interest-rate tree structure created by bktree.

## Price

NINST-by-1 vector of market prices of bonds with embedded options.

## CouponRate

NINST-by-1 vector for decimal annual rate.

## Settle

NINST-by- 1 vector for settlement date.

## Maturity

NINST-by- 1 vector for maturity date.

## OptSpec

NINST-by- 1 cell array of character vectors for 'call' or 'put'.

## Strike

Matrix of strike price values for supported option types:

- European option: NINST-by-1 vector of strike price values.
- Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

- American option: NINST-by-1 vector of strike price values for each option.


## ExerciseDates

Matrix of exercise callable or puttable dates for supported option types:

- NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.
- American option: NINST-by-2 vector of exercise date boundaries. For each instrument, the option is exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option is exercised between the underlying bond Settle and the single listed exercise date.


## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'AmericanOpt'

NINST-by-1 vector for option flags: 0 (European/Bermuda) or 1 (American).
Default: 0 (European/Bermuda)

## 'Basis'

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- $12=$ actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

## 'EndMonthRule'

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and 0 (not in effect).
Default: 1 (in effect)

## 'IssueDate'

NINST-by- 1 vector of bond issue date.
Default: If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs

## 'Face'

NINST-by-1 vector for face value.
Default: 100
'FirstCouponDate'
NINST-by-1 vector. Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## 'LastCouponDate'

NINST-by- 1 vector. Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## 'Period'

NINST-by- 1 vector for coupons per year.
Default: 2 per year

## 'Options'

Structure created with derivset containing derivatives pricing options.

Default: None

## Output Arguments

## OAS

NINST-by-1 vector for option adjusted spread.

## OAD

NINST-by-1 vector for option adjusted duration.

## OAC

NINST-by- 1 vector for option adjusted convexity.

## Examples

## Compute OAS and OAD Using the Black-Karasinski (BK) Model

This example shows how to compute OAS and OAD using the Black-Karasinski (BK) model using the following data.

```
ValuationDate = 'Aug-2-2010';
Rates = [0.0355; 0.0382; 0.0427; 0.0489];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;
% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding);
% specify VolSpec and TimeSpec
Sigma = 0.10;
Alpha = 0.01;
VS = bkvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)),...
EndDates, Alpha*ones(size(EndDates)));
TS = bktimespec(ValuationDate, EndDates, Compounding);
```

```
% build the BK tree
BKTree = bktree(VS, RateSpec, TS);
% instrument information
CouponRate = 0.045;
Settle = ValuationDate;
Maturity = '02-Aug-2014';
OptSpec = 'put';
Strike = 100;
ExerciseDates ='02-Aug-2013';
Period = 1;
AmericanOpt = 1;
Price = 101;
% compute OAS and OAD
[OAS, OAD] = oasbybk(BKTree, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'AmericanOpt', AmericanOpt)
OAS =
 21.1298
OAD =
 1.7866
```

- "Pricing Using Interest-Rate Tree Models" on page 2-84


## More About

## Bond with Embedded Options

A bond with embedded option allows the issuer to buy back (callable) or redeem (puttable) the bond at a predetermined price at specified future dates. Financial Instruments Toolbox software supports American, European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:

- Callable bond - The holder bought a bond and sold a call option to the issuer. For example, if interest rates go down by the time of the call date, the issuer is able to refinance its debt at a cheaper level and can call the bond. The price of a callable bond is:

```
Price callable bond=Price Option free bond - Price call option
```

- Puttable bond - The holder bought a bond and a put option. For example, if interest rates rise, the future value of coupon payments becomes less valuable. Therefore, the investor can sell the bond back to the issuer and then lend proceeds elsewhere at a higher rate. The price of a puttable bond is:


## Price puttable bond=Price Option free bond+Price put option

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2


## References

Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, , 2005.
Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg Press, 2007.

## See Also

bkprice | bktree | instoptembnd | oasbybdt | oasbyhjm | oasbyhw | optembndbybk

Introduced in R201la

## oasbyhim

Determine option adjusted spread using Heath-Jarrow-Morton model

## Syntax

[OAS, OAD, OAC] = oasbyhjm(HJMTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates)
[OAS, OAD, OAC] = oasbyhjm(HJMTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, Name, Value)

## Description

[OAS, OAD, OAC] = oasbyhjm(HJMTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates) calculates option adjusted spread (OAS), duration (OAD), and convexity (OAC) using an HJM model.
[OAS, OAD, OAC] = oasbyhjm(HJMTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, Name, Value) calculates option adjusted spread (OAS), duration (OAD), and convexity (OAC) using an HJM model with additional options specified by one or more Name, Value pair arguments.

## Input Arguments

## HJMTree

Interest-rate tree structure created by hjmtree.

## Price

NINST-by-1 vector of market prices of bonds with embedded options.

## CouponRate

NINST-by-1 vector for decimal annual rate.

## Settle

NINST-by-1 vector for settlement date.

## Maturity

NINST-by- 1 vector for maturity date.

## OptSpec

NINST-by- 1 cell array of character vectors for 'call' or 'put'.

## Strike

Matrix of strike price values for supported option types:

- European option: NINST-by-1 vector of strike price values.
- Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

- American option: NINST-by-1 vector of strike price values for each option.


## ExerciseDates

Matrix of exercise callable or puttable dates for supported option types:

- NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.
- American option: NINST-by-2 vector of exercise date boundaries. For each instrument, the option is exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option is exercised between the underlying bond Settle and the single listed exercise date.


## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'AmericanOpt'

NINST-by-1 vector for option flags: 0 (European/Bermuda) or 1 (American).
Default: 0 (European/Bermuda)

## 'Basis'

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

## 'EndMonthRule'

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and 0 (not in effect).
Default: 1 (in effect)

## 'IssueDate'

NINST-by- 1 vector of bond issue date.
Default: If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.

```
'Face'
```

NINST-by-1 vector for face value.
Default: 100
'FirstCouponDate'
NINST-by-1 vector. Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## 'LastCouponDate'

NINST-by- 1 vector. Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## 'Period'

NINST-by- 1 vector for coupons per year.
Default: 2 per year

## 'Options'

Structure created with derivset containing derivatives pricing options.

Default: None

## Output Arguments

## OAS

NINST-by-1 vector for option adjusted spread.

## OAD

NINST-by-1 vector for option adjusted duration.

## OAC

NINST-by- 1 vector for option adjusted convexity.

## Examples

## Compute OAS Using the Heath-Jarrow-Morton (HJM) Model

This example shows how to compute OAS using the Heath-Jarrow-Morton (HJM) model using the following data.

```
ValuationDate = 'Nov-1-2010';
Rates = [0.0356; 0.0427; 0.0478; 0.0529];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;
% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding);
% specify VolSpec and TimeSpec
Sigma = 0.02;
VS = hjmvolspec('Constant', Sigma);
TS = hjmtimespec(ValuationDate, EndDates, Compounding);
% build the HJM tree
```

```
HJMTree = hjmtree(VS, RateSpec, TS);
HJMTreenew = cvtree(HJMTree);
% instrument information
CouponRate = 0.05;
Settle = ValuationDate;
Maturity = '01-Nov-2014';
OptSpec = 'call';
Strike = 100;
ExerciseDates ='01-Nov-2011';
Period = 1;
Price = 97.5;
% compute the OAS
OAS = oasbyhjm(HJMTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', Period)
OAS =
 5.0601
```

- "Computing Instrument Prices" on page 2-84


## More About

## Bond with Embedded Options

A bond with embedded option allows the issuer to buy back (callable) or redeem (puttable) the bond at a predetermined price at specified future dates. Financial Instruments Toolbox software supports American, European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:

- Callable bond - The holder bought a bond and sold a call option to the issuer. For example, if interest rates go down by the time of the call date, the issuer is able to refinance its debt at a cheaper level and can call the bond. The price of a callable bond is:

Price callable bond=Price Option free bond - Price call option

- Puttable bond - The holder bought a bond and a put option. For example, if interest rates rise, the future value of coupon payments becomes less valuable. Therefore, the investor can sell the bond back to the issuer and then lend proceeds elsewhere at a higher rate. The price of a puttable bond is:


## Price puttable bond=Price Option free bond + Price put option

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2


## References

Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, , 2005.
Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg Press, 2007.

## See Also

hjmprice | hjmtree | instoptembnd | oasbybdt | oasbybk | oasbyhw | optembndbyhjm

Introduced in R2011a

## oasbyhw

Determine option adjusted spread using Hull-White model

## Syntax

[OAS, OAD, OAC] = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates)
[OAS, OAD, OAC] = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, Name, Value)

## Description

[OAS, OAD, OAC] = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates) calculates option adjusted spread (OAS), duration (OAD), and convexity (OAC) using an HW model.
[OAS, OAD, OAC] = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, Name, Value) calculates option adjusted spread (OAS), duration (OAD), and convexity (OAC) using an HW model with additional options specified by one or more Name, Value pair arguments.

## Input Arguments

## HWTree

Interest-rate tree structure created by hwtree.

## Price

NINST-by- 1 vector of market prices of bonds with embedded options.

## CouponRate

NINST-by-1 vector for decimal annual rate.

## Settle

NINST-by- 1 vector for settlement date.

## Maturity

NINST-by- 1 vector for maturity date.

## OptSpec

NINST-by-1 cell array of character vectors for 'call' or 'put'.

## Strike

Matrix of strike price values for supported option types:

- European option: NINST-by-1 vector of strike price values.
- Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

- American option: NINST-by-1 vector of strike price values for each option.


## ExerciseDates

Matrix of exercise callable or puttable dates for supported option types:

- NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.
- American option: NINST-by-2 vector of exercise date boundaries. For each instrument, the option is exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option is exercised between the underlying bond Settle and the single listed exercise date.


## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'AmericanOpt'

NINST-by-1 vector for option flags: 0 (European/Bermuda) or 1 (American).
Default: 0 (European/Bermuda)

## 'Basis'

Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- $12=$ actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

## 'EndMonthRule'

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and 0 (not in effect).
Default: 1 (in effect)

## 'Face'

NINST-by-1 vector for face value.
Default: 100

## 'IssueDate'

NINST-by- 1 vector of bond issue date.
Default: If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.

## 'FirstCouponDate'

NINST-by-1 vector. Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

## LastCouponDate'

NINST-by-1 vector. Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

## 'Period'

NINST-by-1 vector for coupons per year.
Default: 2 per year

## 'Options'

Structure created with derivset containing derivatives pricing options.

Default: None

## Output Arguments

## OAS

NINST-by-1 vector for option adjusted spread.

## OAD

NINST-by-1 vector for option adjusted duration.

## OAC

NINST-by- 1 vector for option adjusted convexity.

## Examples

## Compute OAS and OAD Using the Hull-White (HW) Model

This example shows how to compute OAS and OAD using the Hull-White (HW) model using the following data.

```
ValuationDate = 'October-25-2010';
Rates = [0.0355; 0.0382; 0.0427; 0.0489];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;
% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates, 'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding);
% specify VolsSpec and TimeSpec
Sigma = 0.05;
Alpha = 0.01;
VS = hwvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)),...
EndDates, Alpha*ones(size(EndDates)));
TS = hwtimespec(ValuationDate, EndDates, Compounding);
```

```
% build the HW tree
HWTree = hwtree(VS, RateSpec, TS);
% instrument information
CouponRate = 0.045;
Settle = ValuationDate;
Maturity = '25-October-2014';
OptSpec = 'call';
Strike = 100;
ExerciseDates = {'25-October-2010','25-0ctober-2013'};
Period = 1;
AmericanOpt = 0;
Price = 97;
% compute the OAS
[OAS, OAD] = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'AmericanOpt', AmericanOpt)
OAS =
 -12.9021
OAD =
 3.3049
```


## Compute the OAS to Measure Cost of an Embedded Option Relative to a Risk-Free Curve

This example shows how to compute the price of a callable bond using a Hull-White tree.
Use the following bond data:

```
Settle = datenum('20-Aug-2014');
% Bond Properties
Maturity = datenum('01-Apr-2034');
CouponRate = .0625;
CallDates = datemnth('01-0ct-2014', 6*(0:19));
CallStrikes = [ll02.85 102.7 102.55 102.4 102.25 102.1 101.95 101.8 ...
 101.65 101.5 101.35 101.2 101.05 100.9 100.75 100.6 100.45 100.3 _..
 100.15 100];
```

Use the following zero-curve data:

```
CurveDates = datemnth(Settle,12*[1 2 3 5 7 10 20 30]');
ZeroRates = [.11 0.30 0.64 1.44 2.07 2.61 3.29 3.55]'/100;
```

Define the RateSpec and build the HW tree.

```
RateSpec = intenvset('StartDate',Settle,'EndDates',CurveDates,'Rates',ZeroRates);
% HW Model Properties
alpha = .1;
sigma = .01;
TimeSpec = hwtimespec(Settle,cfdates(Settle,Maturity,12),2);
VolSpec = hwvolspec(Settle,Maturity,sigma,Maturity,alpha);
HWTree = hwtree(VolSpec,RateSpec,TimeSpec,'method','HW2000')
HWTree =
 struct with fields:
 FinObj: 'HWFwdTree'
 VolSpec: [1\times1 struct]
 TimeSpec: [1\times1 struct]
 RateSpec: [1\times1 struct]
 tObs: [1\times236 double]
 dObs: [1\times236 double]
 CFlowT: {1\times236 cell}
 Probs: {1\times235 cell}
 Connect: {1\times235 cell}
 FwdTree: {1\times236 cell}
Compute the OAS for the bond.
```

```
Price = 103.25;
```

Price = 103.25;
OAS = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity, 'call', CallStrikes, CallDa
OAS =

```
 124.0326

If you want to compute an OAS that only measures the option cost, you can pass in an issuer-specific curve instead of a risk-free curve (this would be done in the RateSpec argument).
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}

\section*{Bond with Embedded Options}

A bond with embedded option allows the issuer to buy back (callable) or redeem (puttable) the bond at a predetermined price at specified future dates. Financial Instruments Toolbox software supports American, European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:
- Callable bond - The holder bought a bond and sold a call option to the issuer. For example, if interest rates go down by the time of the call date, the issuer is able to refinance its debt at a cheaper level and can call the bond. The price of a callable bond is:

Price callable bond=Price Option free bond - Price call option
- Puttable bond - The holder bought a bond and a put option. For example, if interest rates rise, the future value of coupon payments becomes less valuable. Therefore, the investor can sell the bond back to the issuer and then lend proceeds elsewhere at a higher rate. The price of a puttable bond is:

> Price puttable bond=Price Option free bond + Price put option
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, , 2005.

Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg Press, 2007.

\section*{See Also}
hwprice | hwtree | instoptembnd | oasbybdt | oasbybk | oasbyhjm | optembndbyhw

\section*{Introduced in R201 la}

\section*{optbndbybdt}

Price bond option from Black-Derman-Toy interest-rate tree

\section*{Syntax}
[Price, PriceTree] = optbndbybdt(BDTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)

\section*{Arguments}
\(\left.\begin{array}{|l|l|}\hline \text { BDTTree } & \text { Forward-rate tree structure created by bdttree. } \\
\hline \text { OptSpec } & \begin{array}{l}\text { Number of instruments (NINST-by-1) cell array of } \\
\text { character vectors with values 'Call' or 'Put '. }\end{array} \\
\hline \text { Strike } & \begin{array}{l}\text { European option: NINST-by-1 vector of strike price } \\
\text { values. } \\
\text { Bermuda option: NINST by number of strikes } \\
\text { (NSTRIKES) matrix of strike price values. }\end{array} \\
& \begin{array}{l}\text { Each row is the schedule for one option. If an option } \\
\text { has fewer than NSTRIKES exercise opportunities, the } \\
\text { end of the row is padded with NaNs. }\end{array} \\
\text { For an American option: } \\
\text { NINST-by-1 vector of strike price values for each } \\
\text { option. }\end{array} \quad \begin{array}{l}\text { NINST-by-1 (European option) or NINST-by-NSTRIKES } \\
\text { (Bermuda option) matrix of exercise dates. Each row } \\
\text { is the schedule for one option. For a European option, } \\
\text { there is only one exercise date, the option expiry date. }\end{array}\right\}\)\begin{tabular}{l}
For an American option:
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
NINST-by-2 vector of exercise date boundaries. For \\
each instrument, the option can be exercised on any \\
coupon date between or including the pair of dates \\
on that row. If only one non-NaN date is listed, or if \\
ExerciseDates is NINST-by-1, the option can be \\
exercised between the underlying bond Settle and \\
the single listed exercise date.
\end{tabular} \\
\hline AmericanOpt & \begin{tabular}{l}
NINST-by-1 vector of flags: 0 (European/Bermuda) or 1 \\
(American).
\end{tabular} \\
\hline CouponRate & \begin{tabular}{l}
Decimal annual rate. CouponRate is a NINST-by-1 \\
vector.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
Settlement date. A vector of serial date numbers or \\
date character vectors. Settle must be earlier than \\
Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Maturity date. A vector of serial date numbers or date \\
character vectors.
\end{tabular} \\
\hline Period & \begin{tabular}{l}
(Optional) Coupons per year of the bond. A vector \\
of integers. Allowed values are 1, 2, 3, 4, 6, and 12. \\
Default = 2.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual \(/ 360\) \\
- \(3=\) actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline IssueDate & (Optional) Date when a bond was issued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline FirstCouponDate & \begin{tabular}{l}
(Optional) Date when a bond makes its first \\
coupon payment; used when bond has an irregular \\
first coupon period. When FirstCouponDate \\
and LastCouponDate are both specified, \\
FirstCouponDate takes precedence in determining \\
the coupon payment structure. If you do not specify a \\
FirstCouponDate, the cash flow payment dates are \\
determined from other inputs.
\end{tabular} \\
\hline LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond before the \\
maturity date; used when bond has an irregular \\
last coupon period. In the absence of a specified \\
FirstCouponDate, a specified LastCouponDate \\
determines the coupon structure of the bond. The \\
coupon structure of a bond is truncated at the \\
LastCouponDate, regardless of where it falls, and is \\
followed only by the bond's maturity cash flow date. If \\
you do not specify a LastCouponDate, the cash flow \\
payment dates are determined from other inputs.
\end{tabular} \\
\hline StartDate & \begin{tabular}{l}
(Optional) Date when a bond actually starts (the date \\
from which a bond cash flow is considered). To make \\
an instrument forward-starting, specify this date as \\
a future date. If you do not specify StartDate, the \\
effective start date is the Settle date.
\end{tabular} \\
\hline Face & \begin{tabular}{l}
(Optional) Face or par value. Face is a NINST-by-1 \\
vector. Default = 100.
\end{tabular} \\
\hline Options & \begin{tabular}{l}
(Optional) Derivatives pricing options structure \\
created with derivset.
\end{tabular} \\
\hline
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the BDT tree. The bond argument Settle is ignored.

\section*{Description}
[Price, PriceTree] = optbndbybdt(BDTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,

LastCouponDate, StartDate, Face, Options) computes the price of a bond option from a BDT interest-rate tree.

Price is an NINST-by- 1 matrix of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

Example 1. Using the BDT interest-rate tree in the deriv.mat file, price a European call option on a \(10 \%\) bond with a strike of 95 . The exercise date for the option is Jan. 01, 2002. The settle date for the bond is Jan. 01, 2000, and the maturity date is Jan. 01, 2003.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and forward-rate information needed to price the bond.
```

load deriv.mat;

```

Use optbondbybdt to compute the price of the option.
```

Price = optbndbybdt(BDTTree,'Call',95,'01-Jan-2002',...
0,0.10,'01-Jan-2000','01-Jan-2003',1)
Price =

```
 1.7657

Example 2. Now use optbndbybdt to compute the price of a put option on the same bond.
```

Price = optbndbybdt(BDTTree,'Put',95,'01-Jan-2002',...

```
0,0.10,'01-Jan-2000','01-Jan-2003', 1)

\section*{Price =}
0.5740

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bdtprice | bdttree | instoptbnd
Introduced before R2006a

\section*{optbndbybk}

Price bond option from Black-Karasinski interest-rate tree

\section*{Syntax}
[Price, PriceTree] = optbndbybk(BKTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)

\section*{Arguments}
\(\left.\begin{array}{|l|l|}\hline \text { BKTree } & \text { Forward-rate tree structure created by bktree. } \\ \hline \text { OptSpec } & \begin{array}{l}\text { Number of instruments (NINST-by-1) cell array of } \\ \text { character vectors with values 'Call' or 'Put '. }\end{array} \\ \hline \text { Strike } & \begin{array}{l}\text { European option: NINST-by-1 vector of strike price } \\ \text { values. } \\ \text { Bermuda option: NINST-by-number of strikes } \\ \text { (NSTRIKES) matrix of strike price values. }\end{array} \\ & \begin{array}{l}\text { Each row is the schedule for one option. If an option has } \\ \text { fewer than NSTRIKES exercise opportunities, the end of } \\ \text { the row is padded with NaNs. }\end{array} \\ \text { For an American option: } \\ \text { NINST-by-1 vector of strike price values for each option. }\end{array}\right\}\)
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any coupon \\
date between or including the pair of dates on that row. \\
If only one non-NaN date is listed, or if ExerciseDates \\
is NINST-by-1, the option can be exercised between the \\
underlying bond Settle and the single listed exercise \\
date.
\end{tabular} \\
\hline AmericanOpt & \begin{tabular}{l}
NINST-by-1 vector of flags: 0 (European/Bermuda) or 1 \\
(American).
\end{tabular} \\
\hline CouponRate & \begin{tabular}{l}
Decimal annual rate. CouponRate is a NINST-by-1 \\
vector.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
Settlement date. A vector of serial date numbers or \\
date character vectors. Settle must be earlier than \\
Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Maturity date. A vector of serial date numbers or date \\
character vectors.
\end{tabular} \\
\hline Period & \begin{tabular}{l}
(Optional) Coupons per year of the bond. A vector \\
of integers. Allowed values are 1, 2, 3, 4, 6, and 12. \\
Default = 2.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- 8 = actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline IssueDate & (Optional) Date when a bond was issued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline FirstCouponDate & \begin{tabular}{l}
(Optional) Date when a bond makes its first \\
coupon payment; used when bond has an irregular \\
first coupon period. When FirstCouponDate \\
and LastCouponDate are both specified, \\
FirstCouponDate takes precedence in determining \\
the coupon payment structure. If you do not specify a \\
FirstCouponDate, the cash flow payment dates are \\
determined from other inputs.
\end{tabular} \\
\hline LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond before the \\
maturity date; used when bond has an irregular \\
last coupon period. In the absence of a specified \\
FirstCouponDate, a specified LastCouponDate \\
determines the coupon structure of the bond. The \\
coupon structure of a bond is truncated at the \\
LastCouponDate, regardless of where it falls, and is \\
followed only by the bond's maturity cash flow date. If \\
you do not specify a LastCouponDate, the cash flow \\
payment dates are determined from other inputs.
\end{tabular} \\
\hline StartDate & \begin{tabular}{l}
(Optional) Date when a bond actually starts (the date \\
from which a bond cash flow is considered). To make \\
an instrument forward-starting, specify this date as \\
a future date. If you do not specify StartDate, the \\
effective start date is the Settle date.
\end{tabular} \\
\hline Face & \begin{tabular}{l}
(Optional) Face or par value. Face is a NINST-by-1 \\
vector. Default = 100.
\end{tabular} \\
\hline Options & \begin{tabular}{l}
(Optional) Derivatives pricing options structure created \\
with derivset.
\end{tabular} \\
\hline
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the BK tree. The bond argument Settle is ignored.

\section*{Description}
[Price, PriceTree] = optbndbybk(BKTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,

LastCouponDate, StartDate, Face, Options) computes the price of a bond option from a Black-Karasinski interest rate tree.

Price is an NINST-by- 1 matrix of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

Example 1. Using the BK interest rate tree in the deriv.mat file, price a European call option on a \(4 \%\) bond with a strike of 96 . The exercise date for the option is Jan. 01, 2006. The settle date for the bond is Jan. 01, 2005, and the maturity date is Jan. 01, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and forward-rate information needed to price the bond.
```

load deriv.mat;

```

Use optbondbybk to compute the price of the option.
```

Price = optbndbybk(BKTree,'Call',96,'01-Jan-2006',...
0,0.04,'01-Jan-2005','01-Jan-2009')
Warning: OptBonds are valued at Tree ValuationDate rather than Settle
> In optbndbytrintree at 43
In optbndbybk at 88
Warning: Not all cash flows are aligned with the tree. Result will be
approximated.
> In optbndbytrintree at 151
In optbndbybk at 88
Price =
0.1512

```

Example 2. Now use optbndbybk to compute the price of a put option on the same bond.
```

Price = optbndbybk(BKTree,'Put',96,'01-Jan-2006',...
0,0.04,'01-Jan-2005','01-Jan-2009')
Warning: OptBonds are valued at Tree ValuationDate rather than Settle
> In optbndbytrintree at 43
In optbndbybk at 88

```
```

Warning: Not all cash flows are aligned with the tree. Result will be
approximated.
> In optbndbytrintree at 151
In optbndbybk at 88
Price =
0.0272

```

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bkprice | bktree | instoptbnd

\section*{Introduced before R2006a}

\section*{optbndbyhjm}

Price bond option from Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}
[Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline HJMTree & Forward-rate tree structure created by hjmtree. \\
\hline OptSpec & \begin{tabular}{l}
Number of instruments (NINST-by-1) cell array of \\
character vectors with values 'Call' or 'Put'.
\end{tabular} \\
\hline Strike & \begin{tabular}{l}
European option: NINST-by-1 vector of strike price values. \\
Bermuda option: NINST by number of strikes (NSTRIKES) \\
matrix of strike price values. \\
Each row is the schedule for one option. If an option has \\
fewer than NSTRIKES exercise opportunities, the end of \\
the row is padded with NaNs. \\
For an American option: \\
NINST-by-1 vector of strike price values for each option.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l}
NINST-by-1 (European option) or NINST-by-NSTRIKES \\
(Bermuda option) matrix of exercise dates. Each row is \\
the schedule for one option. For a European option, there \\
is only one exercise date, the option expiry date. \\
For an American option: \\
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any coupon
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
date between or including the pair of dates on that row. \\
If only one non-NaN date is listed, or if ExerciseDates \\
is NINST-by-1, the option can be exercised between the \\
underlying bond Settle and the single listed exercise \\
date.
\end{tabular} \\
\hline AmericanOpt & \begin{tabular}{l}
NINST-by-1 vector of flags: 0 (European/Bermuda) or 1 \\
(American).
\end{tabular} \\
\hline CouponRate & \begin{tabular}{l}
Decimal annual rate. CouponRate is a NINST-by-1 \\
vector.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
Settlement date. A vector of serial date numbers or \\
date character vectors. Settle must be earlier than \\
Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Maturity date. A vector of serial date numbers or date \\
character vectors.
\end{tabular} \\
\hline Period & \begin{tabular}{l}
(Optional) Coupons per year of the bond. A vector of \\
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default \\
\(=2\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\mathrm{actual} / 365\) (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline IssueDate & (Optional) Date when a bond was issued. \\
\hline FirstCouponDate & (Optional) Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond before the maturity \\
date; used when bond has an irregular last coupon \\
period. In the absence of a specified FirstCouponDate, \\
a specified LastCouponDate determines the coupon \\
structure of the bond. The coupon structure of a bond is \\
truncated at the LastCouponDate, regardless of where \\
it falls, and is followed only by the bond's maturity cash \\
flow date. If you do not specify a LastCouponDate, the \\
cash flow payment dates are determined from other \\
inputs.
\end{tabular} \\
\hline StartDate & \begin{tabular}{l}
(Optional) Date when a bond actually starts (the date \\
from which a bond cash flow is considered). To make an \\
instrument forward-starting, specify this date as a future \\
date. If you do not specify StartDate, the effective start \\
date is the Settle date.
\end{tabular} \\
\hline Face & \begin{tabular}{l}
(Optional) Face or par value. Face is a NINST-by-1 vector. \\
Default = 100.
\end{tabular} \\
\hline Options & \begin{tabular}{l}
(Optional) Derivatives pricing options structure created \\
with derivset.
\end{tabular} \\
\hline
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the HJM tree. The bond argument Settle is ignored.

\section*{Description}
[Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond option from an HJM forward-rate tree.

Price is an NINST-by- 1 matrix of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

\section*{Compute the Price of a Bond Option From an HJM Forward-Rate Tree}

Using the HJM forward-rate tree in the deriv.mat file, price a European call option on a \(4 \%\) bond with a strike of 96 . The exercise date for the option is Jan. 01, 2003. The settle date for the bond is Jan. 01, 2000, and the maturity date is Jan. 01, 2004. Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the bond.
```

load deriv.mat;

```

Use the function | optbondbyhjm | to compute the price of the option.
```

Price = optbndbyhjm(HJMTree,'Call',96,'01-Jan-2003',...

```
0,0.04,'01-Jan-2000','01-Jan-2004')

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Price =
2.2410
- "Computing Instrument Prices" on page 2-84

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
hjmprice | hjmtree | instoptbnd

\section*{Introduced before R2006a}

\section*{optbndbyhw}

Price bond option from Hull-White interest-rate tree

\section*{Syntax}
[Price, PriceTree] = optbndbyhw(HWTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline HWTree & Forward-rate tree structure created by hwtree. \\
\hline OptSpec & \begin{tabular}{l}
Number of instruments (NINST-by-1) cell array of \\
character vectors with values 'Call' or 'Put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l}
European option: NINST-by-1 vector of strike price \\
values. \\
Bermuda option: NINST by number of strikes \\
(NSTRIKES) matrix of strike price values.
\end{tabular} \\
& \begin{tabular}{l}
Each row is the schedule for one option. If an option \\
has fewer than NSTRIKES exercise opportunities, the \\
end of the row is padded with NaNs.
\end{tabular} \\
For an American option: \\
ExerciseDates & \begin{tabular}{l}
NINST-by-1 vector of strike price values for each \\
option.
\end{tabular} \\
\hline \begin{tabular}{l}
NINST-by-1 (European option) or NINST-by-NSTRIKES \\
(Bermuda option) matrix of exercise dates. Each row \\
is the schedule for one option. For a European option, \\
there is only one exercise date, the option expiry date.
\end{tabular} \\
For an American option:
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
NINST-by-2 vector of exercise date boundaries. For \\
each instrument, the option can be exercised on any \\
coupon date between or including the pair of dates \\
on that row. If only one non-NaN date is listed, or if \\
ExerciseDates is NINST-by-1, the option can be \\
exercised between the underlying bond Settle and \\
the single listed exercise date.
\end{tabular} \\
\hline AmericanOpt & \begin{tabular}{l}
NINST-by-1 vector of flags: 0 (European/Bermuda) or \\
1 (American).
\end{tabular} \\
\hline CouponRate & \begin{tabular}{l}
Decimal annual rate. CouponRate is a NINST-by-1 \\
vector.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
Settlement date. A vector of serial date numbers or \\
date character vectors. Settle must be earlier than \\
Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Maturity date. A vector of serial date numbers or date \\
character vectors.
\end{tabular} \\
\hline Period & \begin{tabular}{l}
(Optional) Coupons per year of the bond. A vector \\
of integers. Allowed values are 1, 2, 3, 4, 6, and 12. \\
Default = 2.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- 8 = actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline IssueDate & (Optional) Date when a bond was issued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline FirstCouponDate & \begin{tabular}{l}
(Optional) Date when a bond makes its first \\
coupon payment; used when bond has an irregular \\
first coupon period. When FirstCouponDate \\
and LastCouponDate are both specified, \\
FirstCouponDate takes precedence in determining \\
the coupon payment structure. If you do not specify a \\
FirstCouponDate, the cash flow payment dates are \\
determined from other inputs.
\end{tabular} \\
\hline LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond before the \\
maturity date; used when bond has an irregular \\
last coupon period. In the absence of a specified \\
FirstCouponDate, a specified LastCouponDate \\
determines the coupon structure of the bond. The \\
coupon structure of a bond is truncated at the \\
LastCouponDate, regardless of where it falls, and is \\
followed only by the bond's maturity cash flow date. If \\
you do not specify a LastCouponDate, the cash flow \\
payment dates are determined from other inputs.
\end{tabular} \\
\hline StartDate & \begin{tabular}{l}
(Optional) Date when a bond actually starts (the date \\
from which a bond cash flow is considered). To make \\
an instrument forward-starting, specify this date as \\
a future date. If you do not specify StartDate, the \\
effective start date is the Settle date.
\end{tabular} \\
\hline Face & \begin{tabular}{l}
(Optional) Face or par value. Face is a NINST-by-1 \\
vector. Default = 100.
\end{tabular} \\
\hline Options & \begin{tabular}{l}
(Optional) Derivatives pricing options structure \\
created with derivset.
\end{tabular} \\
\hline
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the HW tree. The bond argument Settle is ignored.

\section*{Description}
[Price, PriceTree] = optbndbyhw(HWTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,

LastCouponDate, StartDate, Face, Options) computes the price of a bond option from a Hull-White interest rate tree.

Price is an NINST-by- 1 matrix of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

Example 1. Using the HW interest rate tree in the deriv.mat file, price a European call option on a \(4 \%\) bond with a strike of 96 . The exercise date for the option is Jan. 01 , 2006. The settle date for the bond is Jan. 01, 2005, and the maturity date is Jan. 01, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and forward-rate information needed to price the bond.
```

load deriv.mat;

```

Use optbondbyhw to compute the price of the option.
```

Price = optbndbyhw(HWTree,'Call',96,'01-Jan-2006',...
0,0.04,'01-Jan-2005','01-Jan-2009')
Warning: OptBonds are valued at Tree ValuationDate rather than Settle
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =
1.1556

```

Example 2. Now use optbondbyhw to compute the price of a put option on the same bond.
```

Price = optbndbyhw(HWTree,'Put',96,'01-Jan-2006',...
0,0.04,'01-Jan-2005','01-Jan-2009')
Warning: OptBonds are valued at Tree ValuationDate rather than Settle
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

```
Price \(=\)

\subsection*{1.0150}

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also \\ hwprice | hwtree | instoptbnd}

Introduced before R2006a

\section*{optembndbybdt}

Price bonds with embedded options by Black-Derman-Toy interest-rate tree

\section*{Syntax}
```

[Price, PriceTree] = optembndbybdt(BDTTree, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
'Name1', Value1, 'Name2', Value2, ...)

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline CouponRate & \begin{tabular}{l}
Decimal annual rate. CouponRate is a NINST-by-1 vector \\
or NINST-by-1 cell array of decimal annual rates, or \\
decimal annual rate schedules. For the latter case of a \\
variable coupon schedule, each element of the cell array \\
is a NumDates-by-2 cell array, where the first column is \\
dates and the second column is its associated rate. The \\
date indicates the last day that the coupon rate is valid.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
NINST-by-1 matrix for the settlement date. A vector of \\
serial date numbers or date character vectors. Settle \\
must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
NINST-by-1 matrix for the maturity date. A vector of \\
serial date numbers or date character vectors.
\end{tabular} \\
\hline OptSpec & \begin{tabular}{l}
NINST-by-1 cell array of character vectors 'call' or \\
'put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l}
European option: NINST-by-1 vector of strike price values. \\
Bermuda option: NINST by number of strikes (NSTRIKES) \\
matrix of strike price values. \\
Each row is the schedule for one option. If an option has \\
fewer than NSTRIKES exercise opportunities, the end of \\
the row is padded with NaNs.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l}
For an American option: \\
EINST-by-1 vector of strike price values for each option.
\end{tabular} \\
\hline & \begin{tabular}{l}
NINST-by-1 (European option) or NINST-by-NSTRIKES \\
(Bermuda option) matrix of exercise dates. Each row is \\
the schedule for one option. For a European option, there \\
is only one exercise date, the option expiry date.
\end{tabular} \\
For an American option: \\
& \begin{tabular}{l}
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any coupon \\
date between or including the pair of dates on that row. \\
If only one non-NaN date is listed, or if ExerciseDates \\
is NINST-by-1, the option can be exercised between the \\
underlying bond Settle and the single listed exercise \\
date.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline 'Name1', 'Value1' \\
'Name2', 'Value2'...
\end{tabular}
(Optional) The name/value pairs are a variable length list of parameters. All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case insensitive and partial matches are allowed provided no ambiguities exist. Valid parameter names are as follows:
- AmericanOpt is a NINST-by-1 matrix for flags options: 0 (European/Bermuda) or 1 (American). Default is 0 .
- Period is a NINST-by- 1 matrix for coupons per year. The default value is 2 .
- Basis is a day-count basis of the instrument. Basis is a vector of integers with the following possible values:
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual \(/ 360\)
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- 11 = 30/360E (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
- EndMonthRule is a NINST-by-1 matrix for the end-ofmonth rule. This rule applies only when Maturity is
an end-of-month date for a month having 30 or fewer days. When the value is 0 the end-of-month rule is ignored; this means that a bond's coupon payment date is always the same numerical day of the month. Use 1 to set the rule on; this is the default value and means that a bond's coupon payment date is always the last actual day of the month.
- IssueDate is a NINST-by-1 matrix for the bond issue date.
- FirstCouponDate is a NINST-by-1 matrix for a date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.
- LastCouponDate is a NINST-by- 1 matrix for a last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
- StartDate is a NINST-by-1 matrix for date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forwardstarting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.
- Face is a NINST-by- 1 vector or NINST-by- 1 cell array of face values, or face value schedules. For the latter case, each element of the cell array is a NumDates-by- 2 cell array, where the first column is dates and
the second column is its associated face value. The date indicates the last day that the face value is valid. Default is 100 .
- Options is a derivatives pricing options structure created with derivset.

Note: The Settle date for every bond with an embedded option is set to the ValuationDate of the BDT tree; the bond's argument for Settle date is ignored.

\section*{Description}
[Price, PriceTree] = optembndbybdt(BDTTree, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'Name1', Value1, 'Name2', Value2, ...) prices bonds with embedded options using a BDT interest-rate tree.

Price is a number of instruments (NINST)-by- 1 matrix of expected prices at time 0 .
PriceTree is a MATLAB structure of trees containing vectors of instrument prices and observation times for each node. Within PriceTree
- PriceTree. PTree contains the clean prices.
- PriceTree.tObs contains the observation times.
optembndbybdt computes prices of vanilla bonds with embedded options, stepped coupon bonds with embedded options, and bonds with sinking fund option provisions.

\section*{Examples}

\section*{Price a Callable Bond Using a BDT Interest-Rate Tree Model}

Create a BDTTree with the following data:
```

ZeroRates = [ 0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

```

Create a RateSpec.
```

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [3\times1 double]
Rates: [3\times1 double]
EndTimes: [ }3\times1\mathrm{ double]
StartTimes: [ }3\times1\mathrm{ double]
EndDates: [ }3\times1\mathrm{ double]
StartDates: 733043
ValuationDate: 733043
Basis: 0
EndMonthRule: 1

```

Create a VolSpec.
```

Volatility = 0.10 * ones (3,1);
VolSpec =
struct with fields:
FinObj: 'BDTVolSpec'
ValuationDate: 733043
VolDates: [ 3\times1 double]
VolCurve: [ }3\times1\mathrm{ double]
VolInterpMethod: 'linear'

```
VolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

Create a TimeSpec.
TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
Build the BDTTree.
```

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)
BDTTree =
struct with fields:
FinObj: 'BDTFwdTree'
VolSpec: [ 1 1 1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1\times1 struct]
tObs: [0 1 1 2]
dObs: [733043 733408 733774]
TFwd: {[3\times1 double] [2\times1 double] [2]}
CFlowT: {[3\times1 double] [2\times1 double] [3]}
FwdTree: {[1.0350] [1.0406 1.0495] [1.0447 1.0546 1.0667]}

```

To compute the price of an American callable bond that pays a \(5.25 \%\) annual coupon, matures in Jan-1-2010, and is callable on Jan-1-2008 and 01-Jan-2010.
```

BondSettlement = 'jan-1-2007';
BondMaturity = 'jan-1-2010';
CouponRate = 0.0525;
Period = 1;
OptSpec = 'call';
Strike = [100];
ExerciseDates = {'jan-1-2008' '01-Jan-2010'};
AmericanOpt = 1;
PriceCallBond = optembndbybdt(BDTTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates, 'Period', 1,'AmericanOp', 1)
PriceCallBond =

```
```

    101.4750
    ```

\section*{Price Single Stepped Callable Bonds Using a BDT Interest-Rate Tree Model}

Price the following single stepped callable bonds using the following data: The data for the interest rate term structure is as follows:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];

```
```

ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2012'; %Callable in two years
% Build the tree
% Assume the volatility to be 10%
Sigma = 0.1;
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);
% The first row corresponds to the price of the callable bond with maturity
% of three years. The second row corresponds to the price of the callable bond
% with maturity of four years.
PBDT= optembndbybdt(BDTT, CouponRate, Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

```

PBDT \(=\)
100.0945
100.0297

\section*{Price a Sinking Fund Bond Using a BDT Interest-Rate Tree Model}

A corporation issues a three year bond with a sinking fund obligation requiring the company to sink \(1 / 3\) of face value after the first year and \(1 / 3\) after the second year. The company has the option to buy the bonds in the market or call them at \(\$ 98\). The following data describes the details needed for pricing the sinking fund bond:

Rates \(=[0.1 ; 0.1 ; 0.1 ; 0.1] ;\)
```

ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;
% Create RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
% Build the BDT tree
% Assume the volatility to be 10%
Sigma = 0.1;
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);
% Instrument
% The bond has a coupon rate of 9%, a period of one year and matures in
% 1-Jan-2014. Face decreases 1/3 after the first year and 1/3 after the
% second year.
CouponRate = 0.09;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
Period = 1;
Face = { ...
{'Jan-1-2012' 100; ...
'Jan-1-2013' 66.6666; ...
'Jan-1-2014' 33.3333};
};
% Option provision
OptSpec = 'call';
Strike = [98 98];
ExerciseDates ={'Jan-1-2012', 'Jan-1-2013'};
% Price of non-sinking fund bond.
PNSF = bondbybdt(BDTT, CouponRate, Settle, Maturity, Period)
PNSF =
97.5131
Price of the bond with the option sinking provision.

```

PriceSF = optembndbybdt(BDTT, CouponRate, Settle, Maturity,... OptSpec, Strike, ExerciseDates,'Period', Period, 'Face', Face)

PriceSF =
96.8364
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11

\section*{More About}

\section*{Vanilla Bond with Embedded Option}

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time. The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment. A vanilla bond with an embedded option is where an option contract has an underlying asset of a vanilla bond.

\section*{Stepped Coupon Bond with Callable and Puttable Features}

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond. Stepped coupon bonds can have options features (call and puts).

\section*{Sinking Fund Bond with Embedded Option}

A sinking fund bond is a coupon bond with a sinking fund provision. This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting bond prices since the time of the principal repayment changes. This means that investors receive the coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk, since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer to retire the sinking fund obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via a sinking fund call, whichever is cheaper. If interest rates are
high, then the issuer will buy back the requirement amount of bonds from the market since bonds will be cheap, but if interest rates are low (bond prices are high), then most likely the issuer will be buying the bonds at the call price. Unlike a call feature, however, if a bond has a sinking fund option provision, it is an obligation, not an option, for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond trades at a lower price than a non-sinking fund bond.
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bdtprice | bdttree | cfamounts | instoptembnd \\ \section*{Introduced in R2008a}
}

\section*{optembndbybk}

Price bonds with embedded options by Black-Karasinski interest-rate tree

\section*{Syntax}
```

[Price, PriceTree] = optembndybk(BKTree, CouponRate,
Settle, Maturity, OptSpec, Strike, Strike, ExerciseDates,
'Name1', Value1, 'Name2', Value2, ...)

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline BKTree & Interest-rate tree structure created by bktree. \\
\hline CouponRate & \begin{tabular}{l}
Decimal annual rate. CouponRate is a NINST-by-1 vector \\
or NINST-by-1 cell array of decimal annual rates, or \\
decimal annual rate schedules. For the latter case of a \\
variable coupon schedule, each element of the cell array \\
is a NumDates-by-2 cell array, where the first column is \\
dates and the second column is its associated rate. The \\
date indicates the last day that the coupon rate is valid.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
NINST-by-1 matrix for the settlement date. A vector of \\
serial date numbers or date character vectors. Settle \\
must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
NINST-by-1 matrix for the maturity date. A vector of \\
serial date numbers or date character vectors.
\end{tabular} \\
\hline OptSpec & \begin{tabular}{l}
NINST-by-1 cell array of character vectors 'call ' or \\
'put '.
\end{tabular} \\
\hline Strike & \begin{tabular}{l}
European option: NINST-by-1 vector of strike price values. \\
Bermuda option: NINST by number of strikes (NSTRIKES) \\
matrix of strike price values.
\end{tabular} \\
\hline & \begin{tabular}{l}
Each row is the schedule for one option. If an option has \\
fewer than NSTRIKES exercise opportunities, the end of \\
the row is padded with NaNs.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
For an American option: \\
NINST-by-1 vector of strike price values for each option.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l}
NINST-by-1 (European option) or NINST-by-NSTRIKES \\
(Bermuda option) matrix of exercise dates. Each row is \\
the schedule for one option. For a European option, there \\
is only one exercise date, the option expiry date.
\end{tabular} \\
For an American option: \\
& \begin{tabular}{l}
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any coupon \\
date between or including the pair of dates on that row. \\
If only one non-NaN date is listed, or if ExerciseDates \\
is NINST-by-1, the option can be exercised between the \\
underlying bond Settle and the single listed exercise \\
date.
\end{tabular} \\
\hline
\end{tabular}
```

'Name1', Value1,
'Name2', Value2 ...

```
(Optional) The name/value pairs are a variable length list of parameters. All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case insensitive and partial matches are allowed provided no ambiguities exist. Valid parameter names are as follows:
- AmericanOpt is a NINST-by-1 matrix for flags options: 0 (European/Bermuda) or 1 (American). Default is 0 .
- Period is a NINST-by-1 matrix for coupons per year. Default is 2.
- Basis is a day-count basis of the instrument. Basis is a vector of integers with the following supported values:
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual \(/ 365\)
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
- EndMonthRule is a NINST-by- 1 matrix for the end-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. When the value is 0 , the end-of-month rule is ignored, meaning that a bond's coupon payment date is always the same numerical day of the month. When the value is 1 , the end-of-month rule is set on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
- IssueDate is a NINST-by- 1 matrix for the bond issue date.
- FirstCouponDate is a NINST-by-1 matrix for a date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.
- LastCouponDate is a NINST-by- 1 matrix for a last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
- StartDate is a NINST-by-1 matrix for date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forwardstarting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.
- Face is a NINST-by- 1 vector or NINST-by- 1 cell array of face values, or face value schedules. For the latter
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
case, each element of the cell array is a NumDates- \\
by-2 cell array, where the first column is dates and \\
the second column is its associated face value. The \\
date indicates the last day that the face value is valid. \\
Default is 100.
\end{tabular} \\
\begin{tabular}{l}
Options is a derivatives pricing options structure \\
created with derivset.
\end{tabular} \\
\hline
\end{tabular}

Note: The Settle date for every bond with embedded option is set to the ValuationDate of the BKTree; the bond's argument for Settle date is ignored.

\section*{Description}
[Price, PriceTree] = optembndybk(BKTree, CouponRate, Settle, Maturity, OptSpec, Strike, Strike, ExerciseDates, 'Name1', Value1, 'Name2', Value2, ...) prices bonds with embedded options by a BK interest-rate tree.

Price is a number of instruments (NINST)-by- 1 matrix of expected prices at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and observation times for each node. Within PriceTree:
- PriceTree.PTree contains the clean prices.
- PriceTree.tObs contains the observation times.
optembndbybk computes prices of vanilla bonds with embedded options, stepped coupon bonds with embedded options, and bonds with sinking fund option provisions.

\section*{Examples}

\section*{Price a Callable Bond Using a BK Interest-Rate Tree Model}

Create a BKTree with the following data:
```

ZeroRates = [ 0.035;0.04;0.045];

```
Compounding = 1;
StartDates \(=\left[{ }^{\prime} j a n-1-2007^{\prime} ; ' j a n-1-2008^{\prime} ; ' j a n-1-2009^{\prime}\right] ;\)
```

EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';
Create a RateSpec.
RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)
RateSpec =
struct with fields:
Fin0bj: 'RateSpec'
Compounding: 1
Disc: [3\times1 double]
Rates: [ }3\times1\mathrm{ double]
EndTimes: [ }3\times1\mathrm{ double]
StartTimes: [ }3\times1\mathrm{ double]
EndDates: [ }3\times1\mathrm{ double]
StartDates: 733043
ValuationDate: 733043
Basis: 0
EndMonthRule: 1
Create a VolSpec.

```
```

VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];

```
VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
VolCurve = 0.01;
AlphaDates = 'jan-1-2010';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve)
BKVolSpec =
struct with fields:
 FinObj: 'BKVolSpec'
 ValuationDate: 733043
 VolDates: [3\times1 double]
 VolCurve: [3\times1 double]
 AlphaCurve: 0.1000
 AlphaDates: 734139
```


## VolInterpMethod: 'linear'

Create a TimeSpec.

BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);
Build the BKTree.

```
BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec)
```

BKTree =
struct with fields:

```
 FinObj: 'BKFwdTree
 VolSpec: [1\times1 struct]
 TimeSpec: [1×1 struct]
 RateSpec: [1×1 struct]
 tObs: [[0 1 2]
 dObs: [733043 733408 733774]
 CFlowT: {[3\times1 double] [2\times1 double] [3]}
 Probs: {[3\times1 double] [3\times3 double]}
 Connect: {[2] [2 3 4]}
 FwdTree: {[1.0350] [1.0458 1.0450 1.0442] [1\times5 double]}
```

To compute the price of an American puttable bond that pays an annual coupon of $5.25 \%$, matures on January 1, 2010, and is callable on January 1, 2008 and January 1, 2010.

```
BondSettlement = 'jan-1-2007';
BondMaturity = 'jan-1-2010';
CouponRate = 0.0525;
Period = 1;
OptSpec = 'put';
Strike = [100];
ExerciseDates = {'jan-1-2008' '01-Jan-2010'};
AmericanOpt = 1;
PricePutBondBK = optembndbybk(BKTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates,'Period', 1, 'AmericanOpt', 1)
```

102.3820

## Price Single Stepped Callable Bonds Using a BK Interest-Rate Tree Model

Price the following single stepped callable bonds using the following data: The data for the interest rate term structure is as follows:

```
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2012'; %Callable in two years
% Build the tree with the following data
VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;
```

BKVolSpec $=$ bkvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);
\% The first row corresponds to the price of the callable bond with maturity
\% of three years. The second row corresponds to the price of the callable bond
\% with maturity of four years.
PBK= optembndbybk(BKT, CouponRate, Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

PBK =
100.0945
100.0945

- "Pricing Using Interest-Rate Tree Models" on page 2-84


## More About

## Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time. The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment. A vanilla bond with an embedded option is where an option contract has an underlying asset of a vanilla bond.

## Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond. Stepped coupon bonds can have options features (call and puts).

## Sinking Fund Bond with Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision. This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting bond prices since the time of the principal repayment changes. This means that investors receive the coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk, since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer to retire the sinking fund obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer will buy back the requirement amount of bonds from the market since bonds will be cheap, but if interest rates are low (bond prices are high), then most
likely the issuer will be buying the bonds at the call price. Unlike a call feature, however, if a bond has a sinking fund option provision, it is an obligation, not an option, for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond trades at a lower price than a non-sinking fund bond.

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2


## See Also

bkprice | bktree | cfamounts | instoptembnd

## Introduced in R2008a

## optembndbyhjm

Price bonds with embedded options by Heath-Jarrow-Morton interest-rate tree

## Syntax

```
[Price, PriceTree] = optembndbyhjm(HJMTree, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
'Name1', Value1, 'Name2', Value2, ...)
```


## Arguments

| HJMTree | Interest-rate tree structure created by hjmtree. |
| :--- | :--- |
| CouponRate | Decimal annual rate. CouponRate is a NINST-by-1 vector <br> or NINST-by-1 cell array of decimal annual rates, or <br> decimal annual rate schedules. For the latter case of a <br> variable coupon schedule, each element of the cell array <br> is a NumDates-by-2 cell array, where the first column is <br> dates and the second column is its associated rate. The <br> date indicates the last day that the coupon rate is valid. |
| Settle | NINST-by-1 matrix for the settlement date. A vector of <br> serial date numbers or date character vectors. Settle <br> must be earlier than Maturity. |
| Maturity | NINST-by-1 matrix for the maturity date. A vector of <br> serial date numbers or date character vectors. |
| OptSpec | NINST-by-1 cell array of character vectors 'call ' or <br> 'put '. |
| Strike | European option: NINST-by-1 vector of strike price values. <br> Bermuda option: NINST by number of strikes (NSTRIKES) <br> matrix of strike price values. |
| Each row is the schedule for one option. If an option has <br> fewer than NSTRIKES exercise opportunities, the end of <br> the row is padded with NaNs. |  |


|  | For an American option: <br> NINST-by-1 vector of strike price values for each option. |
| :--- | :--- |
| ExerciseDates | NINST-by-1 (European option) or NINST-by-NSTRIKES <br> (Bermuda option) matrix of exercise dates. Each row is <br> the schedule for one option. For a European option, there <br> is only one exercise date, the option expiry date. |
| For an American option: |  |
|  | NINST-by-2 vector of exercise date boundaries. For each <br> instrument, the option can be exercised on any coupon <br> date between or including the pair of dates on that row. <br> If only one non-NaN date is listed, or if ExerciseDates <br> is NINST-by-1, the option can be exercised between the <br> underlying bond Settle and the single listed exercise <br> date. |

```
'Name1', Value1,
'Name2', Value2 ...
```

(Optional) The name/value pairs are a variable length list of parameters. All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case insensitive and partial matches are allowed provided no ambiguities exist. Valid parameter names are as follows:

- AmericanOpt is a NINST-by-1 matrix for flags options: 0 (European/Bermuda) or 1 (American). Default is 0 .
- Period is a NINST-by-1 matrix for coupons per year. Default is 2 .
- Basis is a day-count basis of the instrument. Basis is a vector of integers with the following supported values:
- $0=$ actual/actual (default)
- $1=30 / 360$ (SIA)
- 2 = actual/360
- $3=$ actual $/ 365$
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.

- EndMonthRule is a NINST-by-1 matrix for the end-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. When the value is 0 , the end-of-month rule is ignored, meaning that a bond's coupon payment date is always the same numerical day of the month. When the value is 1 , the end-of-month rule is set on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
- IssueDate is a NINST-by- 1 matrix for the bond issue date.
- FirstCouponDate is a NINST-by-1 matrix for a date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.
- LastCouponDate is a NINST-by- 1 matrix for a last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
- StartDate is a NINST-by-1 matrix for date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forwardstarting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.
- Face is a NINST-by- 1 vector or NINST-by- 1 cell array of face values, or face value schedules. For the latter

|  | case, each element of the cell array is a NumDates- <br> by-2 cell array, where the first column is dates and <br> the second column is its associated face value. The <br> date indicates the last day that the face value is valid. <br> Default is 100. |
| :--- | :--- |
| Options is a derivatives pricing options structure <br> created with derivset. |  |

Note: The Settle date for every bond with embedded option is set to the ValuationDate of the HJM tree; the bond's argument for Settle date is ignored.

## Description

[Price, PriceTree] = optembndbyhjm(HJMTree, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'Name1', Value1, 'Name2', Value2, ...) prices bonds with embedded options by an HJM interest-rate tree.

Price is a number of instruments (NINST)-by- 1 matrix of expected prices at time 0.
PriceTree is a structure of trees containing vectors of instrument prices and observation times for each node. Within PriceTree:

- PriceTree. PBush contains the clean prices.
- PriceTree.tObs contains the observation times.
optembndbyhjm computes prices of vanilla bonds with embedded options, stepped coupon bonds with embedded options, and bonds with sinking fund option provisions.


## Examples

Price a Callable Bond Using an HJM Interest-Rate Tree Model
Create a HJMTree with the following data:
Rates $=[0.05 ; 0.06 ; 0.07]$;
Compounding = 1;

```
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';
Create a RateSpec.
RateSpec = intenvset('Rates', Rates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [3\times1 double]
 Rates: [3 < 1 double]
 EndTimes: [}3\times1\mathrm{ double]
 StartTimes: [}3\times1\mathrm{ double]
 EndDates: [}3\times1\mathrm{ double]
 StartDates: 733043
 ValuationDate: 733043
 Basis: 0
 EndMonthRule: 1
Create a VolSpec.
```

```
VolSpec = hjmvolspec('Constant', 0.01)
```

VolSpec = hjmvolspec('Constant', 0.01)
VolSpec =
struct with fields:
FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}
FactorArgs: {{1\times1 cell}}
SigmaShift: 0
NumFactors: 1
NumBranch: 2
PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]

```
```

Create a TimeSpec
TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding)
TimeSpec =
struct with fields:
FinObj: 'HJMTimeSpec'
ValuationDate: 733043
Maturity: [3\times1 double]
Compounding: 1
Basis: 0
EndMonthRule: 1
Build the HJMTree.

```
```

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

```
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)
HJMTree =
 struct with fields:
```

```
 FinObj: 'HJMFwdTree'
```

            FinObj: 'HJMFwdTree'
    VolSpec: [1\times1 struct]
    VolSpec: [1\times1 struct]
    TimeSpec: [1×1 struct]
    TimeSpec: [1×1 struct]
    RateSpec: [1\times1 struct]
    RateSpec: [1\times1 struct]
        tObs: [llll}
        tObs: [llll}
        dObs: [733043 733408 733774]
        dObs: [733043 733408 733774]
        TFwd: {[3\times1 double] [2\times1 double] [2]}
        TFwd: {[3\times1 double] [2\times1 double] [2]}
            CFlowT: {[3\times1 double] [2\times1 double] [3]}
            CFlowT: {[3\times1 double] [2\times1 double] [3]}
            FwdTree: {[3\times1 double] [2\times1\times2 double] [1\times2\times2 double]}
    ```
 FwdTree: {[3\times1 double] [2\times1\times2 double] [1\times2\times2 double]}
```

To compute the price of an American callable bond that pays a $6 \%$ annual coupon and matures and is callable on January 1, 2010.

```
BondSettlement = 'jan-1-2007';
BondMaturity = 'jan-1-2010';
CouponRate = 0.06;
Period = 1;
OptSpec = 'call';
```

```
Strike = [98];
ExerciseDates = '01-Jan-2010';
AmericanOpt = 1;
[PriceCallBond,PT] = optembndbyhjm(HJMTree, CouponRate, BondSettlement, BondMaturity,.
OptSpec, Strike, ExerciseDates, 'Period', 1,'AmericanOp',1)
PriceCallBond =
 95.9492
PT =
 struct with fields:
 FinObj: 'HJMPriceTree'
 tObs: [[0 1 1 2 3]
 PBush: {[95.9492] [1\times1\times2 double] [1\times2\times2 double] [98 98 98 98]}
```


## Price Single Stepped Callable Bonds Using an HJM Interest-Rate Tree Model

Price the following single stepped callable bonds using the following data: The data for the interest rate term structure is as follows:

```
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2012'; %Callable in two years
```

```
% Build the tree with the following data
Volatility = [.2; .19; .18; .17];
CurveTerm = [1; 2; 3; 4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec, RS, HJMTimeSpec);
% The first row corresponds to the price of the callable bond with maturity
% of three years. The second row corresponds to the price of the callable
% bond with maturity of four years.
PHJM= optembndbyhjm(HJMT, CouponRate, Settle, Maturity,OptSpec, Strike,...
ExerciseDates, 'Period', 1)
```


## PHJM =

100.0484
99.8009

## Price a Sinking Fund Bond Using an HJM Interest-Rate Tree Model

A corporation issues a three year bond with a sinking fund obligation requiring the company to sink $1 / 3$ of face value after the first year and $1 / 3$ after the second year. The company has the option to buy the bonds in the market or call them at $\$ 99$. The following data describes the details needed for pricing the sinking fund bond:

```
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;
Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
```

```
 Disc: [4×1 double]
 Rates: [4\times1 double]
 EndTimes: [4×1 double]
 StartTimes: [4 < 1 double]
 EndDates: [4×1 double]
 StartDates: 734504
ValuationDate: 734504
 Basis: 0
 EndMonthRule: 1
```

Build the HJM tree.

```
Sigma = 0.1;
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
HJMVolSpec = hjmvolspec('Constant', Sigma);
HJMT = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)
HJMT =
 struct with fields:
 FinObj: 'HJMFwdTree'
 VolSpec: [1×1 struct]
 TimeSpec: [1\times1 struct]
 RateSpec: [1×1 struct]
 tObs: [0 1 1 2 3]
 dObs: [734504 734869 735235 735600]
 TFwd: {[4\times1 double] [3\times1 double] [2\times1 double] [3]}
 CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
 FwdTree: {[4\times1 double] [3\times1\times2 double] [2\times2\times2 double] [1\times4\times2 double]}
```

Define the sinking fund instrument. The bond has a coupon rate of $4.5 \%$, a period of one year and matures in 1-Jan-2013. Face decreases 1/3 after the first year.

```
CouponRate = 0.045;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2013';
Period = 1;
Face = { {'Jan-1-2012' 100; ...
 'Jan-1-2013' 66.6666}};
```

Define the option provision.

```
OptSpec = 'call';
```

Strike = 99;
ExerciseDates = 'Jan-1-2012';

Price of non-sinking fund bond.
PNSF = bondbyhjm(HJMT, CouponRate, Settle, Maturity, Period)

## PNSF =

100.5663

Price of the bond with the option sinking provision.
PriceSF = optembndbyhjm(HJMT, CouponRate, Settle, Maturity,... OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face)

PriceSF =
98.8736

- "Computing Instrument Prices" on page 2-84


## More About

## Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time. The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment. A vanilla bond with an embedded option is where an option contract has an underlying asset of a vanilla bond.

## Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. With these instruments, coupons increase (step up) or decrease (step down) at
specific times during the life of the bond. Stepped coupon bonds can have options features (call and puts).

## Sinking Fund Bond with Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision. This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting bond prices since the time of the principal repayment changes. This means that investors receive the coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk, since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer to retire the sinking fund obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer will buy back the requirement amount of bonds from the market since bonds will be cheap, but if interest rates are low (bond prices are high), then most likely the issuer will be buying the bonds at the call price. Unlike a call feature, however, if a bond has a sinking fund option provision, it is an obligation, not an option, for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond trades at a lower price than a non-sinking fund bond.

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

See Also<br>cfamounts | hjmprice | hjmtree | instoptembnd

## Introduced in R2008a

## optembndbyhw

Price bonds with embedded options by Hull-White interest-rate tree

## Syntax

```
[Price, PriceTree] = optembndbyhw(HWTree, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
'Name1', Value1, 'Name2', Value2, ...)
```


## Arguments

HWTree	Interest-rate tree structure created by hwtree.
CouponRate	Decimal annual rate. CouponRate is a NINST-by-1 vector   or NINST-by-1 cell array of decimal annual rates, or   decimal annual rate schedules. For the latter case of a   variable coupon schedule, each element of the cell array   is a NumDates-by-2 cell array, where the first column is   dates and the second column is its associated rate. The   date indicates the last day that the coupon rate is valid.
Settle	NINST-by-1 matrix for the settlement date. A vector of   serial date numbers or date character vectors. Settle   must be earlier than Maturity.
Maturity	NINST-by-1 matrix for the maturity date. A vector of   serial date numbers or date character vectors.
OptSpec	NINST-by-1 cell array of character vectors 'call ' or   'put '.
Strike	European option: NINST-by-1 vector of strike price values.   Bermuda option: NINST by number of strikes (NSTRIKES)
matrix of strike price values.	
Each row is the schedule for one option. If an option has	
fewer than NSTRIKES exercise opportunities, the end of	
the row is padded with NaNs.	


	For an American option:   NINST-by-1 vector of strike price values for each option.
ExerciseDates	NINST-by-1 (European option) or NINST-by-NSTRIKES   (Bermuda option) matrix of exercise dates. Each row is   the schedule for one option. For a European option, there   is only one exercise date, the option expiry date.
For an American option:	
	NINST-by-2 vector of exercise date boundaries. For each   instrument, the option can be exercised on any coupon   date between or including the pair of dates on that row.   If only one non-NaN date is listed, or if ExerciseDates   is NINST-by-1, the option can be exercised between the   underlying bond Settle and the single listed exercise   date.

```
'Name1', Value1
'Name2', Value2 ...
```

(Optional) The name/value pairs are a variable length list of parameters. All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case insensitive and partial matches are allowed provided no ambiguities exist. Valid parameter names are as follows:

- AmericanOpt is a NINST-by-1 matrix for flags options: 0 (European/Bermuda) or 1 (American). Default is 0 .
- Period is a NINST-by- 1 matrix for coupons per year. Default is 2.
- Basis is a day-count basis of the instrument. Basis is a vector of integers with the following supported values:
- $0=$ actual/actual (default)
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (BMA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.

- EndMonthRule is a NINST-by-1 matrix for the end-ofmonth rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. When the value is 0 , the end-of-month rule is ignored, meaning that a bond's coupon payment date is always the same numerical day of the month. When the value is 1 , the end-of-month rule is set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
- IssueDate is a NINST-by- 1 matrix for the bond issue date.
- FirstCouponDate is a NINST-by-1 matrix for a date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.
- LastCouponDate is a NINST-by-1 matrix for a last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.
- StartDate is a NINST-by-1 matrix for date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forwardstarting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.
- Face is a NINST-by- 1 vector or NINST-by- 1 cell array of face values, or face value schedules. For the latter

	case, each element of the cell array is a NumDates-   by-2 cell array, where the first column is dates and   the second column is its associated face value. The   date indicates the last day that the face value is valid.   Default is 100.
Options is a derivatives pricing options structure   created with derivset.	

Note: The Settle date for every bond with embedded option is set to the ValuationDate of the HW tree; the bond's argument for Settle date is ignored.

## Description

[Price, PriceTree] = optembndbyhw(HWTree, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'Name1', Value1, 'Name2', Value2, ...) prices bonds with embedded options by an HW interest-rate tree.

Price is a number of instruments (NINST)-by- 1 matrix of expected prices at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and observation times for each node. Within PriceTree:

- PriceTree. PTree contains the clean prices.
- PriceTree.tObs contains the observation times.
optembndbyhw computes prices of vanilla bonds with embedded options, stepped coupon bonds with embedded options, and bonds with sinking fund option provisions.


## Examples

## Price a Callable Bond Using an HW Interest-Rate Tree Model

Create a HWTree with the following data:
ZeroRates $=[0.035 ; 0.04 ; 0.045] ;$

```
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';
Create a RateSpec.
RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [3\times1 double]
 Rates: [3\times1 double]
 EndTimes: [}3\times1\mathrm{ double]
 StartTimes: [}3\times1\mathrm{ double]
 EndDates: [}3\times1\mathrm{ double]
 StartDates: 733043
 ValuationDate: 733043
 Basis: 0
 EndMonthRule: 1
Create a VolSpec.
VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
VolCurve = 0.01;
AlphaDates = 'jan-1-2010';
AlphaCurve = 0.1;
HWVolSpec \(=\) hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve)
HWVolSpec =
```

```
struct with fields:
```

struct with fields:
FinObj: 'HWVolSpec'
ValuationDate: 733043
VolDates: [ $3 \times 1$ double]
VolCurve: [ $3 \times 1$ double]

```
```

    AlphaCurve: 0.1000
    AlphaDates: 734139
    VolInterpMethod: 'linear'

```

Create a TimeSpec.
```

HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding)
HWTimeSpec =
struct with fields:
FinObj: 'HWTimeSpec
ValuationDate: 733043
Maturity: [3\times1 double]
Compounding: 1
Basis: 0
EndMonthRule: 1

```

Build the HWTree.
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)
HWTree =
 struct with fields:
 FinObj: 'HWFwdTree'
 VolSpec: [1×1 struct]
 TimeSpec: [1×1 struct]
 RateSpec: [1×1 struct]
 tObs: [lll \(\left.\begin{array}{lll}0 & 1 & 2\end{array}\right]\)
 dObs: [733043 733408733774\(]\)
 CFlowT: \{[3×1 double] [2×1 double] [3]\}
 Probs: \{[3×1 double] [3×3 double]\}
 Connect: \{[2] [2 3 4] \(\}\)
 FwdTree: \{[1.0350] [1.0633 1.0451 1.0271] [1×5 double]\}

Compute the price of an American puttable bond that pays an annual coupon of \(5.25 \%\), matures on January 1, 2010, and is puttable from January 1, 2008 to January 1, 2010.
```

BondSettlement = 'jan-1-2007';
BondMaturity = 'jan-1-2010';
CouponRate = 0.0525;
Period = 1;
OptSpec = 'put';
Strike = [100];
ExerciseDates = {'jan-1-2008' '01-Jan-2010'};
AmericanOpt = 1;
PricePutBondHW = optembndbyhw(HWTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates,'Period', 1, 'AmericanOpt', 1)
PricePutBondHW =

```
 102.9127

\section*{Price Single Stepped Callable Bonds Using an HW Interest-Rate Tree Model}

Price the following single stepped callable bonds using the following data: The data for the interest rate term structure is as follows:
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;
% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2012'; %Callable in two years
% Build the tree with the following data
VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';

```
```

AlphaCurve = 0.1;

```
```

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec);
% The first row corresponds to the price of the callable bond with maturity
% of three years. The second row corresponds to the price of the callable
% bond with maturity of four years.
PHW= optembndbyhw(HWT, CouponRate, Settle, Maturity,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

```

\section*{PHW =}
100.0326
99.7987

\section*{Price a Sinking Fund Bond Using an HW Interest-Rate Tree Model}

A corporation issues a two year bond with a sinking fund obligation requiring the company to sink \(1 / 3\) of face value after the first year. The company has the option to buy the bonds in the market or call them at \(\$ 99\). The following data describes the details needed for pricing the sinking fund bond:
```

Rates = [0.1;0.1;0.1;0.1];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;
% Create RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
% Build the HW tree
% The data to build the tree is as follows:
VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;

```
```

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);
% Instrument
% The bond has a coupon rate of 9%, a period of one year and matures in
% 1-Jan-2013. Face decreases 1/3 after the first year.
CouponRate = 0.09;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2013';
Period = 1;
Face = { ...
{'Jan-1-2012' 100; ...
'Jan-1-2013' 66.6666}; ...
};
% Option provision
OptSpec = 'call';
Strike = 99;
ExerciseDates = 'Jan-1-2012';
% Price of non-sinking fund bond.
PNSF = bondbyhw(HWT, CouponRate, Settle, Maturity, Period)
PNSF =
98.2645
Price of the bond with the option sinking provision.
PriceSF = optembndbyhw(HWT, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face)
PriceSF =

```
 98.1553
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}

\section*{Vanilla Bond with Embedded Option}

A vanilla coupon bond is a security representing an obligation to repay a borrowed amount at a designated time and to make periodic interest payments until that time. The issuer of a bond makes the periodic interest payments until the bond matures. At maturity, the issuer pays to the holder of the bond the principal amount owed (face value) and the last interest payment. A vanilla bond with an embedded option is where an option contract has an underlying asset of a vanilla bond.

\section*{Stepped Coupon Bond with Callable and Puttable Features}

A step-up and step-down bond is a debt security with a predetermined coupon structure over time. With these instruments, coupons increase (step up) or decrease (step down) at specific times during the life of the bond. Stepped coupon bonds can have options features (call and puts).

\section*{Sinking Fund Bond with Embedded Option}

A sinking fund bond is a coupon bond with a sinking fund provision. This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting bond prices since the time of the principal repayment changes. This means that investors receive the coupon and a portion of the principal paid back over time. These types of bonds reduce credit risk, since it lowers the probability of investors not receiving their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer to retire the sinking fund obligation either by purchasing the bonds to be redeemed from the market or by calling the bond via a sinking fund call, whichever is cheaper. If interest rates are high, then the issuer will buy back the requirement amount of bonds from the market since bonds will be cheap, but if interest rates are low (bond prices are high), then most likely the issuer will be buying the bonds at the call price. Unlike a call feature, however, if a bond has a sinking fund option provision, it is an obligation, not an option, for the issuer to buy back the increments of the issue as stated. Because of this, a sinking fund bond trades at a lower price than a non-sinking fund bond.
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ cfamounts | hwprice | hwtree | instoptembnd \\ Introduced in R2008a
}

\section*{optemfloatbybdt}

Price embedded option on floating-rate note BDT interest-rate tree

\section*{Syntax}

Price = optemfloatbybdt(BDTTree,Spread,Settle,Maturity, OptSpec,Strike, ExerciseDates)
Price = optemfloatbybdt (BDTTree, Spread,Settle, Maturity, OptSpec, Strike, ExerciseDates,AmericanOpt,Reset, Basis, Principal, Options, EndMonthRule)
[Price,PriceTree] = optemfloatbybdt(\(\qquad\))

Price = optemfloatbybdt (BDTTree, Spread, Settle, Maturity, OptSpec, Strike, ExerciseDates)
Price = optemfloatbybdt \(\qquad\) , Name, Value)
[Price,PriceTree] = optemfloatbybdt(\(\qquad\))

\section*{Description}

Price \(=\) optemfloatbybdt(BDTTree, Spread,Settle, Maturity, OptSpec, Strike, ExerciseDates) returns the embedded option price of the instrument(s) at valuation date.

Price = optemfloatbybdt(BDTTree,Spread,Settle, Maturity,OptSpec, Strike, ExerciseDates, AmericanOpt, Reset, Basis, Principal,
Options, EndMonthRule) returns the embedded option price of the instrument(s) at valuation date using optional arguments.
[Price,PriceTree] = optemfloatbybdt(\(\qquad\)) returns the option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node.

Price = optemfloatbybdt(BDTTree,Spread,Settle,Maturity,OptSpec, Strike, ExerciseDates) returns the embedded option price of the instrument(s) at valuation date.

Price = optemfloatbybdt(\(\qquad\) , Name, Value) returns the embedded option price of the instrument(s) at valuation date using optional name-value pair arguments.
[Price,PriceTree] = optemfloatbybdt(\(\qquad\)) returns the embedded option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node using optional name-value pair arguments.

\section*{Examples}

\section*{Price Callable Embedded Option for Floating-Rate Note}

Define the interest-rate term structure.
Rates \(=[0.03 ; 0.034 ; 0.038 ; 0.04]\);
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = \{'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'\};
Compounding = 1;
Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',... StartDates, 'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec =
```

    struct with fields:
    ```
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [\(4 \times 1\) double]
 Rates: [\(4 \times 1\) double]
 EndTimes: [\(4 \times 1\) double]
 StartTimes: [\(4 \times 1\) double]
 EndDates: [\(4 \times 1\) double]
 StartDates: 734869
 ValuationDate: 734869
 Basis: 0
 EndMonthRule: 1

Build the BDT tree and assume a volatility of \(10 \%\).
```

Sigma = 0.1;
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);

```
```

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

```

Define the floater instruments with the embedded call option.
```

Spread = 10;
Settle = 'Jan-1-2012';
Maturity = {'Jan-1-2015';'Jan-1-2016'};
Period = 1;
OptSpec = {'call'};
Strike = 101;
ExerciseDates = 'Jan-1-2015';

```

Compute the price of the floaters with the embedded call.
Price= optemfloatbybdt(BDTT, Spread, Settle, Maturity, OptSpec, Strike,... ExerciseDates)

\section*{Price =}
100.2800
100.3655
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11

\section*{Input Arguments}

\section*{BDTTree - Interest-rate tree structure}
binomial tree structure
Interest-rate tree specified as a structure by using bdttree.

\section*{Data Types: struct}

\section*{Spread - Number of basis points over the reference rate}
nonnegative integer | vector of nonnegative integers
Number of basis points over the reference rate specified as a vector of nonnegative integers for the number of instruments (NINST)-by-1).

Data Types: single | double

\section*{Settle - Settlement dates of floating-rate note \\ ValuationDate of HW Tree (default) | nonnegative integer | vector of nonnegative integers}

Settlement dates of floating-rate note specified as nonnegative integers using a NINST-by- 1 vector of dates.

Note: The Settle date for every floating-rate note is set to the ValuationDate of the HW Tree. The floating-rate note argument Settle is ignored.

\section*{Data Types: char}

\section*{Maturity - Definition of option}
character vector | cell array of character vectors
Definition of option as 'call' or 'put' specified as a NINST-by- 1 cell array of character vectors for 'call' or 'put'.
Data Types: cell \| char

\section*{OptSpec - Definition of option}
character vector | cell array of character vectors
Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for 'call' or 'put'.
Data Types: cell|char

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers
Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of strike price values.
Data Types: single | double
ExerciseDates - Exercise date for option (European, Bermuda, or American)
nonnegative integer | vector of nonnegative integers
Exercise date for option (European, Bermuda, or American) specified as nonnegative integers using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.
- If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between or including the pair of dates on that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Data Types: char | cell}

\section*{AmericanOpt - (Optional) Option type}
scalar | vector of positive integers [0,1]
Option type specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1 -American

\section*{Data Types: single | double}

\section*{Reset - (Optional) Frequency of payments per year}

1 (default) | positive integer from the set[1, 2, 3, 4, 6, 12] | vector of positive integers from the set \([1,2,3,4,6,12]\)

Frequency of payments per year specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by-1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: double}

\section*{Basis - (Optional) Day-count basis of the instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.

\section*{Data Types: double}

\section*{Principal - (Optional) Principal values}

100 (default) | vector of nonnegative values | cell array of nonnegative values
Principal values specified as nonnegative values using a NINST-by- 1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.
Data Types: double | cell
Options - (Optional) Structure containing derivatives pricing options
structure
Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: Price = optemfloatbybdt(BDTTree, Spread, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'A
'AmericanOpt ' - Option type
scalar | vector of positive integers [0,1]
Option type specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1 -American

Data Types: single | double

\section*{'Reset ' - Frequency of payments per year}

1 (default) | positive integer from the set[1,2,3,4,6,12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: char}
```

'Basis' - Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

```

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.

\section*{Data Types: char}

\section*{'Principal' - (Optional) Principal values \\ 100 (default) | vector of nonnegative values | cell array of nonnegative values}

Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

\section*{Data Types: double | cell}

\section*{'Options' - Structure containing derivatives pricing options \\ structure}

Structure containing derivatives pricing options specified using derivset.

\section*{Data Types: struct}

\section*{'EndMonthRule' - End-of-month rule flag \\ 1 (in effect) (default) | nonnegative integer [0,1]}

End-of-month rule flag is specified as a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: char}

\section*{Output Arguments}

\section*{Price - Expected prices of the floating-rate note embedded option at time 0 scalar | vector}

Expected prices of the floating-rate note embedded option at time 0 is returned as a scalar or an NINST-by- 1 vector.

\section*{PriceTree - Structure of trees containing vectors of embedded option prices at each node} tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of observation times for each node returned as:
- PriceTree.PTree contains embedded option prices.

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2
See Alsoinstoptemfloat | optembndbybdt | optemfloatbybk| optemfloatbyhjm |optemfloatbyhw
Introduced in R2013a

\section*{optemfloatbybk}

Price embedded option on floating-rate note BK interest-rate tree

\section*{Syntax}

Price = optemfloatbybk(BKTree,Spread,Settle,Maturity, OptSpec, Strike, ExerciseDates)
Price = optemfloatbybk(BKTree,Spread,Settle, Maturity, OptSpec, Strike, ExerciseDates,AmericanOpt,Reset, Basis, Principal, Options, EndMonthRule)
[Price,PriceTree] = optemfloatbybk(___)
Price = optemfloatbybk(BKTree,Spread,Settle, Maturity, OptSpec, Strike, ExerciseDates)
Price = optemfloatbybk(\(\qquad\) , Name,Value) [Price,PriceTree] = optemfloatbybk(\(\qquad\))

\section*{Description}

Price \(=\) optemfloatbybk(BKTree,Spread,Settle, Maturity, OptSpec, Strike, ExerciseDates) returns the embedded option price of the instrument(s) at valuation date.

Price = optemfloatbybk(BKTree,Spread,Settle, Maturity, OptSpec, Strike, ExerciseDates, AmericanOpt, Reset, Basis, Principal,
Options, EndMonthRule) returns the embedded option price of the instrument(s) at valuation date using optional arguments.
[Price, PriceTree] = optemfloatbybk (__) returns the option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node.

Price = optemfloatbybk(BKTree,Spread,Settle,Maturity,OptSpec, Strike, ExerciseDates) returns the embedded option price of the instrument(s) at valuation date.

Price = optemfloatbybk(\(\qquad\) , Name, Value) returns the embedded option price of the instrument(s) at valuation date using optional name-value pair arguments.
[Price,PriceTree] = optemfloatbybk(\(\qquad\)) returns the embedded option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node using optional name-value pair arguments.

\section*{Examples}

\section*{Price European Callable Embedded Option for Floating-Rate Note}

Define the interest-rate term structure.
Rates \(=[0.03 ; 0.034 ; 0.038 ; 0.04]\);
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = \{'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'\};
Compounding = 1;
Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',... StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =
```

    struct with fields:
    ```

FinObj: 'RateSpec'
Compounding: 1
Disc: [\(4 \times 1\) double]
Rates: [\(4 \times 1\) double]
EndTimes: [\(4 \times 1\) double]
StartTimes: [\(4 \times 1\) double]
EndDates: [\(4 \times 1\) double]
StartDates: 734869
ValuationDate: 734869
Basis: 0
EndMonthRule: 1

Build the BK tree.
```

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;

```
```

AlphaDates = '01-01-2016';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec)
BKT =
struct with fields:
FinObj: 'BKFwdTree'
VolSpec: [1×1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1×1 struct]
tObs: [[0 1 1 2 3}
dObs: [734869 735235 735600 735965]
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6]}
FwdTree: {[1.0300] [1.0387 1.0380 1.0373] [1\times5 double] [1\times7 double]}

```

The floater instrument has a spread of 15 , a period of one year, and matures and is callable on Jan-1-2015.
```

Spread = 15;
Settle = 'Jan-1-2012';
Maturity = 'Jan-1-2015';
Period = 1;
OptSpec = {'call'};
Strike =101;
ExerciseDates = 'Jan-1-2015';

```

Compute the price of the floater with the embedded call.
Price= optemfloatbybk(BKT, Spread, Settle, Maturity,... OptSpec, Strike, ExerciseDates)

Price =
100.4201
- "Pricing Using Interest-Rate Tree Models" on page 2-84

\section*{Input Arguments}

\section*{BKTree - Interest-rate tree structure}
binomial tree structure
Interest-rate tree specified as a structure by using bktree.
Data Types: struct

\section*{Spread - Number of basis points over the reference rate nonnegative integer | vector of nonnegative integers}

Number of basis points over the reference rate specified as a vector of nonnegative integers for the number of instruments (NINST)-by-1).
Data Types: single | double

\section*{Settle - Settlement dates of floating-rate note}

ValuationDate of HW Tree (default) | nonnegative integer | vector of nonnegative integers

Settlement dates of floating-rate note specified as nonnegative integers using a NINST-by- 1 vector of dates.

Note: The Settle date for every floating-rate note is set to the ValuationDate of the HW Tree. The floating-rate note argument Settle is ignored.

\section*{Data Types: char}

\section*{Maturity - Floating-rate note maturity date}
nonnegative integer | vector of nonnegative integers
Floating-rate note maturity date specified as nonnegative integers using a NINST-by-1 vector of dates.

Data Types: char

\section*{OptSpec - Definition of option}
character vector | cell array of character vectors
Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for 'call' or 'put'.
Data Types: cell | char

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers
Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of strike price values.

Data Types: single | double

\section*{ExerciseDates - Exercise date for option (European, Bermuda, or American) nonnegative integer | vector of nonnegative integers}

Exercise date for option (European, Bermuda, or American) specified as nonnegative integers using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.
- If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between or including the pair of dates on that row. If there is only one non- NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Data Types: char | cell}

\section*{AmericanOpt - (Optional) Option type}
scalar | vector of positive integers [0,1]
Option type specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1 -American

Data Types: single | double

\section*{Reset - (Optional) Frequency of payments per year}

1 (default) | positive integer from the set[1, 2, 3, 4, 6, 12] | vector of positive integers from the set \([1,2,3,4,6,12]\)

Frequency of payments per year specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector. .

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: double}

\section*{Basis - (Optional) Day-count basis of the instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: double

\section*{Principal - (Optional) Principal values}

100 (default) | vector of nonnegative values | cell array of nonnegative values
Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Data Types: double | cell

\section*{Options - (Optional) Structure containing derivatives pricing options structure}

Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\section*{EndMonthRule - (Optional) End-of-month rule flag}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag is specified as nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . NameN, ValueN.
Example: Price = optemfloatbybk(BKTree, Spread, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'Ame
'AmericanOpt ' - Option type
scalar | vector of positive integers [0,1]
Option type specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1-American

Data Types: single | double

\section*{'Reset ' - Frequency of payments per year}

1 (default) | positive integer from the set[1,2,3,4,6,12]| vector of positive integers from the set \([1,2,3,4,6,12]\)

Frequency of payments per year specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: char}

\section*{'Basis' - Day-count basis of the instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual \(/ 360\)
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: char
```

'Principal' - (Optional) Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

```

Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

\section*{Data Types: double | cell}

\section*{'Options' - Structure containing derivatives pricing options \\ structure}

Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\author{
'EndMonthRule' - End-of-month rule flag \\ 1 (in effect) (default) | nonnegative integer [0,1]
}

End-of-month rule flag is specified as a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: char}

\section*{Output Arguments}

\section*{Price - Expected prices of the floating-rate note embedded option at time 0 scalar | vector}

Expected prices of the floating-rate note embedded option at time 0 is returned as a scalar or an NINST-by-1 vector.

PriceTree - Structure of trees containing vectors of embedded option prices at each node tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of observation times for each node returned as:
- PriceTree.PTree contains embedded option prices.

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
instoptemfloat | optembndbybk | optemfloatbybdt | optemfloatbyhjm | optemfloatbyhw

Introduced in R2013a

\section*{optemfloatbyhim}

Price embedded option on floating-rate note HJM interest-rate tree

\section*{Syntax}

Price = optemfloatbyhjm(HJMTree,Spread,Settle,Maturity, OptSpec,Strike,ExerciseDates)
Price = optemfloatbyhjm(HJMTree,Spread,Settle, Maturity, OptSpec, Strike,ExerciseDates,AmericanOpt,Reset, Basis, Principal, Options,EndMonthRule)
[Price,PriceTree] = optemfloatbyhjm(\(\qquad\))

Price = optemfloatbyhjm(HJMTree,Spread,Settle,Maturity,OptSpec, Strike,ExerciseDates)
Price = optemfloatbyhjm(\(\qquad\) ,Name,Value) [Price,PriceTree] = optemfloatbyhjm(\(\qquad\))

\section*{Description}

Price = optemfloatbyhjm(HJMTree,Spread,Settle,Maturity, OptSpec, Strike, ExerciseDates) returns the embedded option price of the instrument(s) at the valuation date.

Price = optemfloatbyhjm(HJMTree,Spread,Settle, Maturity,OptSpec, Strike, ExerciseDates, AmericanOpt, Reset, Basis, Principal,
Options, EndMonthRule) returns the embedded option price of the instrument(s) at the valuation date using optional arguments.
[Price,PriceTree] = optemfloatbyhjm(\(\qquad\)) returns the option price of the instrument(s) at the valuation date and a structure of trees containing vectors of option prices at each node.

Price = optemfloatbyhjm(HJMTree,Spread,Settle,Maturity,OptSpec, Strike, ExerciseDates) returns the embedded option price of the instrument(s) at the valuation date.

Price = optemfloatbyhjm(\(\qquad\) , Name, Value) returns the embedded option price of the instrument(s) at the valuation date using optional name-value pair arguments.
[Price,PriceTree] = optemfloatbyhjm(\(\qquad\)) returns the embedded option price of the instrument(s) at the valuation date and a structure of trees containing vectors of option prices at each node using optional name-value pair arguments.

\section*{Examples}

\section*{Price European Callable Embedded Option for a Floating-Rate Note}

Define the interest-rate term structure.
```

Rates = [0.03;0.035;0.040;0.045];
ValuationDate = 'Jan-1-2012';
StartDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;
Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4\times1 double]
Rates: [4\times1 double]
EndTimes: [ 4\times1 double]
StartTimes: [ 4×1 double]
EndDates: [4\times1 double]
StartDates: [4×1 double]
ValuationDate: 734869
Basis: 0
EndMonthRule: 1

```

Build the HJM tree.
```

VolSpec = hjmvolspec('Constant', 0.01);
TimeSpec = hjmtimespec(RateSpec.ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

```
```

HJMTree =
struct with fields:
FinObj: 'HJMFwdTree'
VolSpec: [1×1 struct]
TimeSpec: [1×1 struct]
RateSpec: [1×1 struct]
tObs: [l0 1 2 3]
dObs: [734869 735235 735600 735965]
TFwd: {[4\times1 double] [3\times1 double] [2\times1 double] [3]}
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
FwdTree: {[4\times1 double] [ 3\times1\times2 double] [2\times2\times2 double] [1\times4\times2 double]}

```

The floater instrument has a spread of 15 , a period of one year, and matures and is callable on Jan-1-2016.
```

Spread = 15;
Settle = 'Jan-1-2012';
Maturity = 'Jan-1-2016';
Period = 1;
OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2016';

```

Compute the price of the floater with the embedded call.
Price = optemfloatbyhjm(HJMTree, Spread, Settle, Maturity,... OptSpec, Strike, ExerciseDates)

Price =
96.2355
- "Computing Instrument Prices" on page 2-84

\section*{Input Arguments}

\section*{HJMTree - Interest-rate tree structure}
binomial tree structure

Interest-rate tree, specified as a structure by using hjmtree.

\section*{Data Types: struct}

\section*{Spread - Number of basis points over reference rate}
nonnegative integer | vector of nonnegative integers
Number of basis points over the reference rate, specified as a vector of nonnegative integers for the number of instruments (NINST)-by-1).

Data Types: single | double

\section*{Settle - Settlement dates of floating-rate note}

ValuationDate of HW tree (default) | nonnegative integer | vector of nonnegative integers

Settlement dates of floating-rate note, specified as nonnegative integers using a NINST-by-1 vector of dates.

Note: The Settle date for every floating-rate note is set to the ValuationDate of the HW tree. The floating-rate note argument Settle is ignored.

\section*{Data Types: char}

\section*{Maturity - Floating-rate note maturity date}
nonnegative integer | vector of nonnegative integers
Floating-rate note maturity date specified as nonnegative integers using a NINST-by-1 vector of dates.

Data Types: char

\section*{OptSpec - Option definition}
character vector | cell array of character vectors
Option definition specified as a 'call' or 'put' using a NINST-by- 1 cell array of character vectors.

Data Types: cell | char

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers

Option strike price values, specified as nonnegative integers using a NINST-by-NSTRIKES vector of strike price values.

\section*{Data Types: single | double}

\section*{ExerciseDates - Exercise date for European, Bermuda, or American option nonnegative integer | vector of nonnegative integers}

Exercise date for European, Bermuda, or American option, specified as nonnegative integers using a NINST-by-NSTRIKES or NINST-by-2 vector of option exercise dates.
- For a European or Bermuda option, ExerciseDates is a 1-by-1 (European) or 1 -by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- For an American option, ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between or including the pair of dates on that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Data Types: char | cell}

\section*{AmericanOpt - (Optional) Option type \\ scalar | vector of positive integers [0,1]}

Option type, specified as NINST-by-1 positive integer flags with values:
- 0 - European/Bermuda
- 1 -American

Data Types: single | double

\section*{Reset - (Optional) Frequency of payments per year}

1 (default) | positive integer from the set [1,2,3,4,6,12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year, specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: double}

\section*{Basis - (Optional) Day-count basis of instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument, specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: double

\section*{Principal - (Optional) Principal values}

100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values specified as nonnegative values using a NINST-by- 1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

\section*{Data Types: double | cell}

\section*{Options - (Optional) Structure containing derivatives pricing options}
structure
Structure containing derivatives pricing options, specified using derivset.
Data Types: struct

\section*{EndMonthRule - (Optional) End-of-month rule flag}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag, specified as nonnegative integer 0 or 1 using a NINST-by- 1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Data Types: double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Example: Price = optemfloatbyhjm(HJMTree, Spread, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'A

\section*{'American0pt ' - Option type}
scalar | vector of positive integers [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1 -American

Data Types: single | double

\section*{'Reset ' - Frequency of payments per year}

1 (default)| positive integer from the set [1,2,3,4,6,12] | vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year, specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: char}

\section*{'Basis' - Day-count basis of instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument, specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- 11 = 30/360E (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: char
```

'Principal' - (Optional) Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

```

Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Data Types: double | cell

\section*{'Options' - Structure containing derivatives pricing options structure}

Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\section*{'EndMonthRule' - End-of-month rule flag}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag, specified as a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: char}

\section*{Output Arguments}

\section*{Price - Expected prices of floating-rate note embedded option at time 0} scalar | vector

Expected prices of the floating-rate note embedded option at time 0 , returned as a scalar or a NINST-by- 1 vector.

PriceTree - Structure of trees containing vectors of embedded option prices at each node tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of observation times for each node, returned as:
- PriceTree. PTree contains embedded option prices.

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2
```

See Also
instoptemfloat | optembndbyhjm | optemfloatbybdt | optemfloatbybk |
optemfloatbyhw
Introduced in R2013a

```

\section*{optemfloatbyhw}

Price embedded option on floating-rate note HW interest-rate tree

\section*{Syntax}

Price = optemfloatbyhw(HWTree,Spread,Settle,Maturity, OptSpec,Strike,ExerciseDates)
Price = optemfloatbyhw(HWTree,Spread,Settle,Maturity,OptSpec, Strike,ExerciseDates,AmericanOpt,Reset,Basis, Principal, Options,EndMonthRule)
[Price,PriceTree] = optemfloatbyhw(__)
Price = optemfloatbyhw(HWTree,Spread,Settle, Maturity,OptSpec, Strike,ExerciseDates)
Price = optemfloatbyhw(\(\qquad\) ,Name,Value) [Price,PriceTree] = optemfloatbyhw(\(\qquad\))

\section*{Description}

Price = optemfloatbyhw(HWTree,Spread,Settle,Maturity, OptSpec, Strike, ExerciseDates) returns the embedded option price of the instrument(s) at the valuation date.

Price = optemfloatbyhw(HWTree,Spread,Settle, Maturity,OptSpec, Strike, ExerciseDates, AmericanOpt, Reset, Basis, Principal,
Options, EndMonthRule) returns the embedded option price of the instrument(s) at the valuation date using optional arguments.
[Price,PriceTree] = optemfloatbyhw(\(\qquad\)) returns the option price of the instrument(s) at the valuation date and a structure of trees containing vectors of option prices at each node.

Price = optemfloatbyhw(HWTree,Spread,Settle,Maturity,OptSpec, Strike, ExerciseDates) returns the embedded option price of the instrument(s) at the valuation date.

Price = optemfloatbyhw(\(\qquad\) , Name, Value) returns the embedded option price of the instrument(s) at the valuation date using optional name-value pair arguments.
[Price,PriceTree] = optemfloatbyhw (__) returns the embedded option price of the instrument(s) at the valuation date and a structure of trees containing vectors of option prices at each node using optional name-value pair arguments.

\section*{Examples}

\section*{Price European Callable Embedded Option for Floating-Rate Note}

Define the interest-rate term structure.
Rates \(=[0.03 ; 0.034 ; 0.038 ; 0.04]\);
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = \{'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'\};
Compounding = 1;
Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',... StartDates, 'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec =
```

    struct with fields:
    ```
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [\(4 \times 1\) double]
 Rates: [\(4 \times 1\) double]
 EndTimes: [\(4 \times 1\) double]
 StartTimes: [\(4 \times 1\) double]
 EndDates: [\(4 \times 1\) double]
 StartDates: 734869
 ValuationDate: 734869
 Basis: 0
 EndMonthRule: 1

Build the HW tree using the following:
```

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;

```
```

AlphaDates = '01-01-2016';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec)
HWT =
struct with fields:
FinObj: 'HWFwdTree'
VolSpec: [1×1 struct]
TimeSpec: [1×1 struct]
RateSpec: [1×1 struct]
tObs: [llllll}
dObs: [734869 735235 735600 735965]
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
Probs: {[3\times1 double] [ }3\times3\mathrm{ double] [3×5 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6]}
FwdTree: {[1.0300] [1.0562 1.0381 1.0202] [1\times5 double] [1\times7 double]}

```

Define the floater instruments with the embedded call option.
```

Spread = 10;
Settle = 'Jan-1-2012';
Maturity = {'Jan-1-2015';'Jan-1-2016'};
Period = 1;
OptSpec = {'call'};
Strike = 101;
ExerciseDates = 'Jan-1-2015';

```

Compute the price of the floaters with the embedded call.
Price= optemfloatbyhw(HWT, Spread, Settle, Maturity, OptSpec, Strike,... ExerciseDates)

Price =
100.2800
100.3655
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{Input Arguments}

\section*{HWTree - Interest-rate tree structure}
binomial tree structure
Interest-rate tree, specified as a structure by using hwtree.
Data Types: struct
Spread - Number of basis points over reference rate
nonnegative integer | vector of nonnegative integers
Number of basis points over the reference rate, specified as a vector of nonnegative integers for the number of instruments (NINST)-by-1).
Data Types: single | double

\section*{Settle - Settlement dates of floating-rate note}

ValuationDate of HW tree (default) | nonnegative integer | vector of nonnegative integers

Settlement dates of the floating-rate note, specified as nonnegative integers using a NINST-by- 1 vector of dates.

Note: The Settle date for every floating-rate note is set to the ValuationDate of the HW tree. The floating-rate note argument Settle is ignored.

\section*{Data Types: char}

\section*{Maturity - Floating-rate note maturity date}
nonnegative integer | vector of nonnegative integers
Floating-rate note maturity date specified as nonnegative integers using a NINST-by-1 vector of dates.

\section*{Data Types: char}

\section*{OptSpec - Option definition}
character vector | cell array of character vectors
Option definition, specified as 'call' or 'put' using a NINST-by-1 cell array of character vectors.

Data Types: cell \| char

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers
Option strike price values specified as nonnegative integers using a NINST-by-NSTRIKES vector of strike price values.

Data Types: single | double

\section*{ExerciseDates - Exercise date for option European, Bermuda, or American option} nonnegative integer | vector of nonnegative integers

Exercise date for European, Bermuda, or American option, specified as nonnegative integers using a NINST-by-NSTRIKES or NINST-by-2 vector of option exercise dates.
- For a European or Bermuda option, ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- For an American option, ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between or including the pair of dates on that row. If there is only one non- NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Data Types: char | cell}

\section*{AmericanOpt - (Optional) Option type}
scalar | vector of positive integers [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1 -American

Data Types: single | double

\section*{Reset - (Optional) Frequency of payments per year}

1 (default) | positive integer from the set \([1,2,3,4,6,12] \mid\) vector of positive integers from the set \([1,2,3,4,6,12]\)

Frequency of payments per year specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: double}

\section*{Basis - (Optional) Day-count basis of instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument, specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- \(12=\) actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: double

\section*{Principal - (Optional) Principal values}

100 (default) | vector of nonnegative values | cell array of nonnegative values
Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Data Types: double | cell

\section*{Options - (Optional) Structure containing derivatives pricing options structure}

Structure containing derivatives pricing options, specified using derivset.
Data Types: struct

\section*{EndMonthRule - (Optional) End-of-month rule flag}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag, specified as nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . NameN, ValueN.
Example: Price = optemfloatbyhw(HWTree, Spread, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'Ame
'AmericanOpt ' - Option type
scalar | vector of positive integers [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1-American

Data Types: single | double

\section*{'Reset ' - Frequency of payments per year}

1 (default) | positive integer from the set [1,2,3,4, 6, 12] | vector of positive integers from the set \([1,2,3,4,6,12]\)

Frequency of payments per year, specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: char}

\section*{'Basis' - Day-count basis of instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument, specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual \(/ 360\)
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: char
```

'Principal' - (Optional) Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

```

Principal values specified as nonnegative values using a NINST-by- 1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

\section*{Data Types: double | cell}

\section*{'Options' - Structure containing derivatives pricing options \\ structure}

Structure containing derivatives pricing options, specified using derivset.
Data Types: struct

\author{
'EndMonthRule' - End-of-month rule flag \\ 1 (in effect) (default) | nonnegative integer [0,1]
}

End-of-month rule flag, specified as a nonnegative integer [0,1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: char}

\section*{Output Arguments}

\section*{Price - Expected prices of floating-rate note embedded option at time 0 \\ scalar | vector}

Expected prices of the floating-rate note embedded option at time 0, returned as a scalar or an NINST-by-1 vector.

PriceTree - Structure of trees containing vectors of embedded option prices at each node tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of observation times for each node, returned as:
- PriceTree. PTree contains embedded option prices.

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
instoptemfloat | optembndbyhw | optemfloatbybdt | optemfloatbybk | optemfloatbyhjm

Introduced in R2013a

\section*{optfloatbybdt}

Price options on floating-rate notes for BDT interest-rate tree

\section*{Syntax}

Price = optfloatbybdt(BDTTree,OptSpec,Strike,ExerciseDates, AmericanOpt,
Spread,Settle,Maturity)
Price = optfloatbybdt(BDTTree,OptSpec,Strike,ExerciseDates, AmericanOpt, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) [Price,PriceTree] = optfloatbybdt(\(\qquad\))

Price = optfloatbybdt(BDTTree,OptSpec,Strike,ExerciseDates, AmericanOpt, Spread,Settle,Maturity)
Price = optfloatbybdt(\(\qquad\) , Name, Value) [Price,PriceTree] = optfloatbybdt(\(\qquad\))

\section*{Description}

Price = optfloatbybdt(BDTTree,OptSpec,Strike,ExerciseDates, AmericanOpt,
Spread, Settle, Maturity) returns the option price of the instrument(s) at valuation date.

Price = optfloatbybdt(BDTTree,OptSpec,Strike,ExerciseDates, American0pt,
Spread, Settle,Maturity,Reset, Basis, Principal, Options, EndMonthRule) returns the option price of the instrument(s) at valuation date using optional arguments.
[Price, PriceTree] = optfloatbybdt (__) returns the option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node.

Price = optfloatbybdt(BDTTree,OptSpec,Strike,ExerciseDates, AmericanOpt,

Spread, Settle, Maturity) returns the option price of the instrument(s) at valuation date.

Price = optfloatbybdt (\(\qquad\) , Name, Value) returns the option price of the instrument(s) at valuation date using optional Name-Value pairs.
[Price, PriceTree] = optfloatbybdt (__) returns the option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node using optional name-value pair arguments.

\section*{Examples}

\section*{Compute the Price of American Call and Put Options on a Floating-Rate Note}

Define the interest-rate term structure.
```

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

```

Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [4×1 double]
 Rates: [4×1 double]
 EndTimes: [\(4 \times 1\) double]
 StartTimes: [\(4 \times 1\) double]
 EndDates: [\(4 \times 1\) double]
 StartDates: 734869
 ValuationDate: 734869
 Basis: 0

\section*{EndMonthRule: 1}

Build the BDT tree and assume a volatility of \(10 \%\).
```

Sigma = 0.1;
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)
BDTT =
struct with fields:

```
```

    FinObj: 'BDTFwdTree
    VolSpec: [1×1 struct]
    TimeSpec: [1×1 struct]
    RateSpec: [1×1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
        TFwd: {[4\times1 double] [3\times1 double] [2\times1 double] [3]}
        CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
    FwdTree: {1\times4 cell}
    ```

The floater instrument has a spread of 10 , a period of one year, and matures on Jan-1-2016.
```

Spread = 10;
Settle = 'Jan-1-2012';
Maturity = 'Jan-1-2016';
Period = 1;

```

Define the option for the floating-rate note.
```

OptSpec = {'call'; 'put'};
Strike = [100;101];
ExerciseDates = 'Jan-1-2015';
AmericanOpt = 1;

```

Compute the price of the call and put options.
Price= optfloatbybdt(BDTT, OptSpec, Strike, ExerciseDates,AmericanOpt, Spread,...

Settle, Maturity)

Price =
0.3655
0.8087
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11

\section*{Input Arguments}

\section*{BDTTree - Interest-rate tree structure}
binomial tree structure
Interest-rate tree specified as a structure by using bdttree.
Data Types: struct

\section*{OptSpec - Definition of option}
character vector | cell array of character vectors
Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for 'call' or 'put'.

Data Types: cell|char

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers
Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of strike price values.
Data Types: single | double
ExerciseDates - Exercise date for option (European, Bermuda, or American)
nonnegative integer | vector of nonnegative integers
Exercise date for option (European, Bermuda, or American) specified as nonnegative integers using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.
- If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between or including the pair of dates on that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Data Types: char | cell}

\section*{AmericanOpt - Option type}
scalar | vector of positive integers [0,1]
Option type specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1 -American

Data Types: single | double

\section*{Spread - Number of basis points over the reference rate \\ nonnegative integer | vector of nonnegative integers}

Number of basis points over the reference rate specified as a vector of nonnegative integers for the number of instruments (NINST)-by-1).

Data Types: single | double

\section*{Settle - Settlement dates of floating-rate note}

ValuationDate of HW Tree (default) | nonnegative integer | vector of nonnegative integers

Settlement dates of floating-rate note specified as nonnegative integers using a NINST-by-1 vector of dates.

Note: The Settle date for every floating-rate note is set to the ValuationDate of the HW Tree. The floating-rate note argument Settle is ignored.

\section*{Maturity - Floating-rate note maturity date}
nonnegative integer | vector of nonnegative integers
Floating-rate note maturity date specified as nonnegative integers using a NINST-by-1 vector of dates.

\section*{Data Types: char}

\section*{Reset - (Optional) Frequency of payments per year}

1 (default)| positive integer from the set[1,2,3,4,6,12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: double}

\section*{Basis - (Optional) Day-count basis of the instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/ 365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: double

\section*{Principal - (Optional) Principal values}

\section*{100 (default) | vector of nonnegative values | cell array of nonnegative values}

Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.
Data Types: double | cell
Options - (Optional) Structure containing derivatives pricing options
structure
Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\section*{EndMonthRule - (Optional) End-of-month rule flag}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag is specified as nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: Price=
optfloatbybdt(BDTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, Spread, Settle, N

\section*{'Reset ' - Frequency of payments per year}

1 (default) | positive integer from the set[1,2,3,4,6,12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year specified as positive integers for the values \(1,2,3,4,6,12]\) in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: char}

\section*{'Basis' - Day-count basis of the instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual \(/ 360\)
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.

\section*{Data Types: char}

\section*{'Principal' - (Optional) Principal values \\ 100 (default) | vector of nonnegative values | cell array of nonnegative values}

Principal values specified as nonnegative values using a NINST-by- 1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

\section*{Data Types: double | cell}

\section*{'Principal' - Principal values \\ 100 (default) | nonnegative integer | vector of nonnegative integers}

Principal values specified as a nonnegative integer using a NINST-by-1 vector of notional principal amounts.

Data Types: char

\section*{'Options ' - Structure containing derivatives pricing options structure}

Structure containing derivatives pricing options specified using derivset.
Data Types: struct
'EndMonthRule' - End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag is specified as a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: char}

\section*{Output Arguments}

\section*{Price - Expected prices of the floating-rate note option at time 0 scalar | vector}

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an NINST-by- 1 vector.

PriceTree - Structure of trees containing vectors of option prices at each node
tree structure
Structure of trees containing vectors of instrument prices and accrued interest and a vector of observation times for each node returned as:
- PriceTree. PTree contains option prices.

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2
See Alsobdttree | bondbybdt | capbybdt | cfbybdt | floatbybdt | floorbybdt |instoptfloat | swapbybdt
Introduced in R2013a

\section*{optfloatbybk}

Price options on floating-rate notes for BK interest-rate tree

\section*{Syntax}

Price = optfloatbybk(BKTree,OptSpec,Strike,ExerciseDates, AmericanOpt,
Spread,Settle,Maturity)
Price = optfloatbybk(BKTree,OptSpec,Strike,ExerciseDates, AmericanOpt, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) [Price, PriceTree] = optfloatbybk (__)

Price = optfloatbybk(BKTree,OptSpec,Strike,ExerciseDates, AmericanOpt, Spread, Settle, Maturity)
Price = optfloatbybk(_ , Name, Value) [Price,PriceTree] = optfloatbybk(\(\qquad\)

\section*{Description}

Price \(=\) optfloatbybk(BKTree,OptSpec,Strike, ExerciseDates, AmericanOpt,
Spread, Settle, Maturity) returns the option price of the instrument(s) at valuation date.

Price = optfloatbybk(BKTree,OptSpec,Strike,ExerciseDates, AmericanOpt, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) returns the option price of the instrument(s) at valuation date using optional arguments.
[Price, PriceTree] = optfloatbybk (__) returns the option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node.

Price = optfloatbybk(BKTree,OptSpec,Strike,ExerciseDates, AmericanOpt,

Spread, Settle, Maturity) returns the option price of the instrument(s) at valuation date.

Price = optfloatbybk(\(\qquad\) , Name, Value) returns the option price of the instrument(s) at valuation date using optional Name-Value pairs.
[Price,PriceTree] = optfloatbybk(\(\qquad\)) returns the option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node using optional name-value pair arguments.

\section*{Examples}

\section*{Compute the Price of American and European Call Options on a Floating-Rate Note}

Define the interest-rate term structure.
```

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

```

Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [\(4 \times 1\) double]
 Rates: [\(4 \times 1\) double]
 EndTimes: [\(4 \times 1\) double]
 StartTimes: [\(4 \times 1\) double]
 EndDates: [\(4 \times 1\) double]
 StartDates: 734869
 ValuationDate: 734869
 Basis: 0

\section*{EndMonthRule: 1}

Build the BK tree.
```

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec)
HWT =
struct with fields:
FinObj: 'HWFwdTree'
VolSpec: [1\times1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1\times1 struct]
tObs: [0 1 2 3]
dObs: [734869 735235 735600 735965]
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6]}
FwdTree: {[1.0300] [1.0562 1.0381 1.0202] [1×5 double] [1\times7 double]}

```

The floater instrument has a spread of 10 , a period of one year, and matures on Jan-1-2016.
```

Spread = 10;

```
Settle = 'Jan-1-2012';
Maturity = 'Jan-1-2016';
Period = 1;

Define the option for the floating-rate note.
```

OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2016';

```

AmericanOpt = [0;1];
Compute the price of the call options.
Price= optfloatbyhw(HWT, OptSpec, Strike, ExerciseDates,AmericanOpt,... Spread, Settle, Maturity)

Price =
4.2740
5.3655
- "Pricing Using Interest-Rate Tree Models" on page 2-84

\section*{Input Arguments}

\section*{BKTree - Interest-rate tree structure}
binomial tree structure
Interest-rate tree specified as a structure by using bktree.

\section*{Data Types: struct}

\section*{OptSpec - Definition of option}
character vector | cell array of character vectors
Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for 'call' or 'put'.

Data Types: cell | char

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers
Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of strike price values.

Data Types: single | double
ExerciseDates - Exercise date for option (European, Bermuda, or American)
nonnegative integer | vector of nonnegative integers

Exercise date for option (European, Bermuda, or American) specified as nonnegative integers using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.
- If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between or including the pair of dates on that row. If there is only one non- NaN date, or if ExerciseDates is 1 -by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Data Types: char | cell}

\section*{American0pt - Option type}
scalar | vector of positive integers [0,1]
Option type specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1 -American

Data Types: single | double

\section*{Spread - Number of basis points over the reference rate nonnegative integer | vector of nonnegative integers}

Number of basis points over the reference rate specified as a vector of nonnegative integers for the number of instruments (NINST)-by-1).
Data Types: single | double

\section*{Settle - Settlement dates of floating-rate note}

ValuationDate of HW Tree (default) | nonnegative integer | vector of nonnegative integers

Settlement dates of floating-rate note specified as nonnegative integers using a NINST-by-1 vector of dates.

Note: The Settle date for every floating-rate note is set to the ValuationDate of the HW Tree. The floating-rate note argument Settle is ignored.

\section*{Data Types: char}

\section*{Maturity - Floating-rate note maturity date}

\section*{nonnegative integer | vector of nonnegative integers}

Floating-rate note maturity date specified as nonnegative integers using a NINST-by-1 vector of dates.

\section*{Data Types: char}

\section*{Reset - (Optional) Frequency of payments per year}

1 (default) | positive integer from the set [1, 2, 3, 4, 6, 12] | vector of positive integers from the set \([1,2,3,4,6,12]\)

Frequency of payments per year specified as positive integers for the values [1,2,3,4,6, 12] in a NINST-by-1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: double}

\section*{Basis - (Optional) Day-count basis of the instrument}
```

O (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

```

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual \(/ 360\)
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- \(13=\) BUS/252

For more information, see basis.
Data Types: double

\section*{Principal - (Optional) Principal values \\ 100 (default) | vector of nonnegative values | cell array of nonnegative values}

Principal values specified as nonnegative values using a NINST-by- 1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

\section*{Data Types: double | cell}

\section*{Options - (Optional) Structure containing derivatives pricing options}
structure
Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\section*{EndMonthRule - (Optional) End-of-month rule flag}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag is specified as nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

Example: Price=
optfloatbybk(BKTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, Spread, Settle, Ma

\section*{'Reset ' - Frequency of payments per year}

1 (default)| positive integer from the set[1,2,3,4,6,12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year specified as positive integers for the values \(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: char}

\section*{'Basis' - Day-count basis of the instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual \(/ 360\)
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: char
```

'Principal' - (Optional) Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

```

Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

\section*{Data Types: double | cell}

\section*{'Options' - Structure containing derivatives pricing options \\ structure}

Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\author{
'EndMonthRule' - End-of-month rule flag \\ 1 (in effect) (default) | nonnegative integer [0,1]
}

End-of-month rule flag is specified as a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: char}

\section*{Output Arguments}

\section*{Price - Expected prices of the floating-rate note option at time 0 \\ scalar | vector}

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an NINST-by-1 vector.

\section*{PriceTree - Structure of trees containing vectors of option prices at each node} tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of observation times for each node returned as:
- PriceTree.PTree contains option prices.

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
bktree | bondbybk | capbybk | cfbybk | floatbybk | floorbybk | instoptfloat | swapbybk

\section*{Introduced in R2013a}

\section*{optfloatbyhjm}

Price options on floating-rate notes for HJM interest-rate tree

\section*{Syntax}

Price = optfloatbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, AmericanOpt,
Spread,Settle,Maturity)
Price = optfloatbyhjm(HJMTree,OptSpec,Strike,ExerciseDates, AmericanOpt, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) [Price,PriceTree] = optfloatbyhjm(\(\qquad\))

Price = optfloatbyhjm(HJMTree,OptSpec,Strike,ExerciseDates, AmericanOpt, Spread, Settle, Maturity)
Price = optfloatbyhjm(__, Name, Value) [Price,PriceTree] = optfloatbyhjm(\(\qquad\))

\section*{Description}

Price = optfloatbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, AmericanOpt,
Spread, Settle, Maturity) returns the option price of the instrument(s) at valuation date.

Price = optfloatbyhjm(HJMTree,OptSpec,Strike,ExerciseDates, American0pt, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) returns the option price of the instrument(s) at valuation date using optional arguments.
[Price, PriceTree] = optfloatbyhjm(__) returns the option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node.

Price = optfloatbyhjm(HJMTree,OptSpec,Strike, ExerciseDates, AmericanOpt,

Spread, Settle, Maturity) returns the option price of the instrument(s) at valuation date.

Price = optfloatbyhjm(__, Name, Value) returns the option price of the instrument(s) at valuation date using optional Name-Value pairs.
[Price,PriceTree] = optfloatbyhjm(___) returns the option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node using optional name-value pair arguments.

\section*{Examples}

\section*{Compute the Price of American and European Call Options on a Floating-Rate Note}

Define the interest-rate term structure.
```

Rates = [0.03;0.035;0.040;0.045];
ValuationDate = 'Jan-1-2012';
StartDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;
Create the RateSpec.
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4\times1 double]
Rates: [4\times1 double]
EndTimes: [ 4×1 double]
StartTimes: [ 4×1 double]
EndDates: [ 4×1 double]
StartDates: [4×1 double]
ValuationDate: 734869
Basis: 0
EndMonthRule: 1

```

Build the HJM tree.
```

VolSpec = hjmvolspec('Constant', 0.01);
TimeSpec = hjmtimespec(RateSpec.ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)
HJMTree =
struct with fields:
FinObj: 'HJMFwdTree'
VolSpec: [1\times1 struct]
TimeSpec: [1 }\times1\mathrm{ struct]
RateSpec: [1\times1 struct]
tObs: [0 1 2 3]
dObs: [734869 735235 735600 735965]
TFwd: {[4\times1 double] [3\times1 double] [2\times1 double] [3]}
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
FwdTree: {[4\times1 double] [3\times1\times2 double] [2\times2\times2 double] [1\times4\times2 double]}

```

The floater instrument has a spread of 10 , a period of one year, and matures on Jan-1-2015.
```

Spread = 10;
Settle = 'Jan-1-2012';
Maturity = 'Jan-1-2015';
Period = 1;

```

Define the option for the floating-rate note.
```

OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2015';
AmericanOpt = [0;1];

```

Compute the price of the call options.
Price= optfloatbyhjm(HJMTree, OptSpec, Strike, ExerciseDates,AmericanOpt,... Spread, Settle, Maturity)

Price =
4.5098
- "Computing Instrument Prices" on page 2-84

\section*{Input Arguments}

\section*{HJMTree - Interest-rate tree structure}
binomial tree structure
Interest-rate tree specified as a structure by using hjmtree.
Data Types: struct

\section*{OptSpec - Definition of option}
character vector | cell array of character vectors
Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for 'call' or 'put'.

Data Types: cell|char

\section*{Strike - Option strike price values}
nonnegative integer | vector of nonnegative integers
Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of strike price values.

Data Types: single | double

\section*{ExerciseDates - Exercise date for option (European, Bermuda, or American) nonnegative integer | vector of nonnegative integers}

Exercise date for option (European, Bermuda, or American) specified as nonnegative integers using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.
- If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Data Types: char | cell}

\section*{AmericanOpt - Option type}
scalar | vector of positive integers [0,1]
Option type specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1 -American

Data Types: single | double

\section*{Spread - Number of basis points over the reference rate nonnegative integer | vector of nonnegative integers}

Number of basis points over the reference rate specified as a vector of nonnegative integers for the number of instruments (NINST)-by-1).

\section*{Data Types: single | double}

\section*{Settle - Settlement dates of floating-rate note}

ValuationDate of HW Tree (default) | nonnegative integer | vector of nonnegative integers

Settlement dates of floating-rate note specified as nonnegative integers using a NINST-by-1 vector of dates.

Note: The Settle date for every floating-rate note is set to the ValuationDate of the HW Tree. The floating-rate note argument Settle is ignored.

\section*{Data Types: char}

\section*{Maturity - Floating-rate note maturity date}
nonnegative integer | vector of nonnegative integers
Floating-rate note maturity date specified as nonnegative integers using a NINST-by-1 vector of dates.

Data Types: char

\section*{Reset - (Optional) Frequency of payments per year}

1 (default) | positive integer from the set[1,2,3,4,6, 12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: double}

\section*{Basis - (Optional) Day-count basis of the instrument}
```

O (actual/actual) (default)| positive integers of the set [1...13] | vector of positive

```
integers of the set [1...13]

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- \(12=\mathrm{actual} / 365\) (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: double

\section*{Principal - (Optional) Principal values}

100 (default) | vector of nonnegative values | cell array of nonnegative values
Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

Data Types: double | cell

\section*{Options - (Optional) Structure containing derivatives pricing options structure}

Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\section*{EndMonthRule - (Optional) End-of-month rule flag}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag is specified as nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Data Types: double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.
Example: Price= optfloatbyhjm(HJMTree,OptSpec,Strike,ExerciseDates,AmericanOpt,Spread, Settle, N

\section*{'Reset ' - Frequency of payments per year}

1 (default) | positive integer from the set[1,2,3,4,6,12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: char}

\section*{'Basis' - Day-count basis of the instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual \(/ 360\)
- 3 = actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: char
```

'Principal' - (Optional) Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

```

Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

\section*{Data Types: double | cell}

\section*{'Options' - Structure containing derivatives pricing options structure}

Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\section*{'EndMonthRule' - End-of-month rule flag}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag is specified as a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: char}

\section*{Output Arguments}

\section*{Price - Expected prices of the floating-rate note option at time 0}
scalar | vector
Expected prices of the floating-rate note option at time 0 is returned as a scalar or an NINST-by- 1 vector.

\section*{PriceTree - Structure of trees containing vectors of option prices at each node} tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of observation times for each node returned as:
- PriceTree.PTree contains option prices.

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2
```

See Also
bondbyhjm | capbyhjm | cfbyhjm | floatbyhjm| floorbyhw | hjmtree |
instoptfloat | swapbyhjm
Introduced in R2013a

```

\section*{optfloatbyhw}

Price options on floating-rate notes for HW interest-rate tree

\section*{Syntax}

Price = optfloatbyhw(HWTree,OptSpec,Strike,ExerciseDates, American0pt, Spread,Settle,Maturity) Price= optfloatbyhw(HWTree,OptSpec,Strike,ExerciseDates,AmericanOpt, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) [Price,PriceTree] = optfloatbyhw(\(\qquad\))

Price = optfloatbyhw(HWTree,OptSpec,Strike,ExerciseDates, AmericanOpt, Spread, Settle, Maturity)
Price = optfloatbyhw (__, Name, Value) [Price,PriceTree] = optfloatbyhw(___)

\section*{Description}

Price = optfloatbyhw(HWTree,OptSpec, Strike,ExerciseDates, AmericanOpt,
Spread, Settle, Maturity) returns the option price of the instrument(s) at valuation date.

Price \(=\) optfloatbyhw(HWTree,OptSpec,Strike, ExerciseDates, AmericanOpt, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) returns the option price of the instrument(s) at valuation date using optional arguments.
[Price, PriceTree] = optfloatbyhw (__) returns the option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node.

Price = optfloatbyhw(HWTree,OptSpec,Strike,ExerciseDates, AmericanOpt,
Spread, Settle, Maturity) returns the option price of the instrument(s) at valuation date.

Price = optfloatbyhw(\(\qquad\) , Name, Value) returns the option price of the instrument(s) at valuation date using optional Name-Value pairs.
[Price,PriceTree] = optfloatbyhw(\(\qquad\)) returns the option price of the instrument(s) at valuation date and a structure of trees containing vectors of option prices at each node using optional Name-Value pairs.

\section*{Examples}

\section*{Compute the Price of American and European Call Options on a Floating-Rate Note}

Define the interest-rate term structure.
```

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

```

Create the RateSpec.
```

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4×1 double]
Rates: [4×1 double]
EndTimes: [ 4×1 double]
StartTimes: [ 4×1 double]
EndDates: [4×1 double]
StartDates: 734869
ValuationDate: 734869
Basis: 0
EndMonthRule: 1

```

Build the HW tree using the following:
```

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec)
HWT =
struct with fields:
FinObj: 'HWFwdTree'
VolSpec: [1\times1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1\times1 struct]
tObs: [0 1 2 3]
dObs: [734869 735235 735600 735965]
CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6]}
FwdTree: {[1.0300] [1.0562 1.0381 1.0202] [1\times5 double] [1\times7 double]}

```

The floater instrument has a spread of 10 , a period of one year, and matures on Jan-1-2016.
```

Spread = 10;
Settle = 'Jan-1-2012';
Maturity = 'Jan-1-2016';
Period = 1;

```

Define the option for the floating-rate note.
```

OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2016';
AmericanOpt = [0;1];

```

Compute the price of the call options.
Price= optfloatbyhw(HWT, OptSpec, Strike, ExerciseDates,AmericanOpt,...

Spread, Settle, Maturity)

Price =
4.2740
5.3655
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{Input Arguments}

HWTree - Interest-rate tree structure
binomial tree structure
Interest-rate tree specified as a structure by using hwtree.
Data Types: struct

\section*{OptSpec - Definition of option}
character vector | cell array of character vectors
Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character vectors for 'call' or 'put'.
Data Types: cell \| char

\section*{Strike - Option strike price values \\ nonnegative integer | vector of nonnegative integers}

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES vector of strike price values.
Data Types: single | double

\section*{ExerciseDates - Exercise date for option (European, Bermuda, or American)}
nonnegative integer | vector of nonnegative integers
Exercise date for option (European, Bermuda, or American) specified as nonnegative integers using a NINST-by-NSTRIKES or NINST-by-2 vector of for the option exercise dates.
- If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1 -by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- If an American option, then ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between or including the pair of dates on that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Data Types: char | cell}

\section*{AmericanOpt - Option type}
scalar | vector of positive integers [0,1]
Option type specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1 -American

Data Types: single | double

\section*{Spread - Number of basis points over the reference rate}
nonnegative integer | vector of nonnegative integers
Number of basis points over the reference rate specified as a vector of nonnegative integers for the number of instruments (NINST)-by-1).
Data Types: single | double

\section*{Settle - Settlement dates of floating-rate note}

ValuationDate of HW Tree (default) | nonnegative integer | vector of nonnegative integers

Settlement dates of floating-rate note specified as nonnegative integers using a NINST-by-1 vector of dates.

Note: The Settle date for every floating-rate note is set to the ValuationDate of the HW Tree. The floating-rate note argument Settle is ignored.

\section*{Maturity - Floating-rate note maturity date}

\section*{nonnegative integer | vector of nonnegative integers}

Floating-rate note maturity date specified as nonnegative integers using a NINST-by-1 vector of dates.

\section*{Data Types: char}

\section*{Reset - (Optional) Frequency of payments per year}

1 (default) | positive integer from the set[1,2,3,4,6,12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: double}

\section*{Basis - (Optional) Day-count basis of the instrument}

0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive integers of the set [1...13]

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual \(/ 360\)
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.

\section*{Data Types: double}

\section*{Principal - (Optional) Principal values}

\section*{100 (default) | vector of nonnegative values | cell array of nonnegative values}

Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by-2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.
Data Types: double | cell
Options - (Optional) Structure containing derivatives pricing options
structure
Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\section*{EndMonthRule - (Optional) End-of-month rule flag}

1 (in effect) (default) | nonnegative integer [0,1]
End-of-month rule flag is specified as nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

Example: Price=
optfloatbyhw(HWTree, OptSpec, Strike, ExerciseDates, AmericanOpt, Spread, Settle, Mat

\section*{'Reset ' - Frequency of payments per year}

1 (default)| positive integer from the set[1,2,3,4,6,12]| vector of positive integers from the set [1, 2, 3, 4, 6, 12]

Frequency of payments per year specified as positive integers for the values [\(1,2,3,4,6,12\)] in a NINST-by- 1 vector.

Note: Payments on floating-rate notes (FRNs) are determined by the effective interestrate between reset dates. If the reset period for an FRN spans more than one tree level, calculating the payment becomes impossible due to the recombining nature of the tree. That is, the tree path connecting the two consecutive reset dates cannot be uniquely determined because there will be more than one possible path for connecting the two payment dates.

\section*{Data Types: char}
```

'Basis' - Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

```

Day-count basis of the instrument specified as a positive integer using a NINST-by-1 vector. The Basis value represents the basis used when annualizing the input forwardrate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual \(/ 360\)
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: char
```

'Principal' - (Optional) Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

```

Principal values specified as nonnegative values using a NINST-by-1 vector or NINST-by- 1 cell array of notional principal amounts. When using a NINST-by- 1 cell array, each element is a NumDates-by- 2 cell array where the first column is dates and the second column is associated principal amount. The date indicates the last day that the principal value is valid.

\section*{Data Types: double | cell}

\section*{'Options' - Structure containing derivatives pricing options \\ structure}

Structure containing derivatives pricing options specified using derivset.
Data Types: struct

\author{
'EndMonthRule' - End-of-month rule flag \\ 1 (in effect) (default) | nonnegative integer [0,1]
}

End-of-month rule flag is specified as a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Data Types: char}

\section*{Output Arguments}

\section*{Price - Expected prices of the floating-rate note option at time 0 \\ scalar | vector}

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an NINST-by- 1 vector.

\section*{PriceTree - Structure of trees containing vectors of option prices at each node} tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a vector of observation times for each node returned as:
- PriceTree. PTree contains option prices.

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2
```

See Also
bondbyhw | capbyhw | cfbyhw | floatbyhw | floorbyhw | hwtree | instoptfloat
| swapbyhw

```

\section*{Introduced in R2013a}

\section*{optsensbysabr}

Calculate option sensitivities using SABR model

\section*{Syntax}
```

Sens = optsensbysabr(ZeroCurve,Alpha,Beta,Rho,Nu,Settle,
ExerciseDate,
ForwardValue,Strike,OptSpec)
Sens = optsensbysabr(___,Name,Value)

```

\section*{Description}

Sens = optsensbysabr(ZeroCurve,Alpha, Beta, Rho,Nu,Settle, ExerciseDate,
ForwardValue,Strike,OptSpec) returns the sensitivities of an option value by using the SABR stochastic volatility model.

Sens = optsensbysabr(\(\qquad\) , Name, Value) returns the sensitivities of an option value by using the SABR stochastic volatility model and optional name-value pair arguments.

\section*{Examples}

\section*{Calculate the Sensitivity Values for an Interest-Rate Swaption}

Define the interest rate and the model parameters.
```

ForwardRate = 0.0357;
Strike = 0.03;
Alpha = 0.036;
Beta = 0.5;
Rho = -0.25;
Nu = 0.35;
Rates = 0.05;

```

Define the Settle, ExerciseDate, and OptSpec for an interest-rate swaption.
```

Settle = datenum('15-Sep-2013');
ExerciseDate = datenum('15-Sep-2015');
OptSpec = 'call';

```

Define the RateSpec for the interest-rate curve
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', ExerciseDate, 'Rates', Rates, 'Compounding', -1, 'Basis', 1)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9048
Rates: 0.0500
EndTimes: 2
StartTimes: 0
EndDates: 736222
StartDates: 735492
ValuationDate: 735492
Basis: 1
EndMonthRule: 1

```

Calculate the Delta and Vega sensitivity values for the interest-rate swaption.
[SABRDelta, SABRVega] = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, Settle, ... ExerciseDate, ForwardRate, Strike, OptSpec, 'OutSpec', \{'Delta', 'Vega'\})

SABRDelta =
0.7025

SABRVega =
0.0772
- "Calibrate the SABR Model " on page 2-21
- "Price a Swaption Using the SABR Model" on page 2-27

\section*{Input Arguments}

\section*{ZeroCurve - Annualized interest-rate term structure for zero-coupon bonds \\ structure}

Annualized interest-rate term structure for zero-coupon bonds, specified by using the RateSpec obtained from intenvset or an IRDataCurve with multiple rates using the IRDataCurve constructor.

Data Types: struct

\section*{Alpha - Current SABR volatility scalar}

Current SABR volatility, specified as a scalar.
Data Types: double

\section*{Beta - SABR constant elasticity of variance (CEV) exponent scalar}

SABR CEV exponent, specified as a scalar.
Data Types: double

\section*{Rho - Correlation between forward value and volatility scalar}

Correlation between forward value and volatility, specified as a scalar.
Data Types: double

\section*{Nu - Volatility of volatility}
scalar
Volatility of volatility, specified as a scalar.
Data Types: double

\section*{Settle - Settlement date \\ scalar for serial nonnegative date number | scalar for date character vector}

Settlement date, specified as a scalar using a serial nonnegative date number or date character vector.

Data Types: double | char

\section*{ExerciseDate - Option exercise date}
scalar for serial nonnegative date number | scalar for date character vector
Option exercise date, specified as a scalar using a serial nonnegative date number or date character vector.

Data Types: double | char

\section*{ForwardValue - Current forward value of underlying asset \\ scalar | vector}

Current forward value of the underlying asset, specified as a scalar or vector of size NINST-by-1.

Data Types: double

\section*{Strike - Option strike price values \\ scalar | vector}

Option strike price values, specified as a scalar value or a vector of size NINST-by-1.
Data Types: double

\section*{OptSpec - Definition of option}
character vector with value 'call' or 'put'
Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: ModifiedSABRDelta = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, Settle, ExerciseDate, ForwardValue, Stri

\section*{'OutSpec ' - Sensitivity outputs}
'Delta' (default)| character vector with values 'Delta', 'Vega', 'ModifiedDelta', 'ModifiedVega', 'dSigmadF','dSigmadAlpha' | cell array of character vectors

\section*{with values 'Delta', 'Vega', 'ModifiedDelta', 'ModifiedVega', 'dSigmadF', 'dSigmadAlpha'}

Sensitivity outputs, specified by a NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Delta', 'Vega', 'ModifiedDelta', 'ModifiedVega', 'dSigmadF', and 'dSigmadAlpha' where:
- 'Delta' is SABR Delta by Hagan et al. (2002).
- 'Vega' is SABR Vega by Hagan et al. (2002).
- 'ModifiedDelta' SABR Delta modified by Bartlett (2006).
- 'ModifiedVega' SABR Vega modified by Bartlett (2006).
- 'dSigmadF ' is the sensitivity of implied Black volatility with respect to the underlying current forward value, \(F\).
- 'dSigmadAlpha' is the sensitivity of implied Black volatility with respect to the Alpha parameter.

\section*{Example: OutSpec =}
\{'Delta', 'Vega', 'ModifiedDelta', 'ModifiedVega', 'dSigmadF', 'dSigmadAlpha' \}
Data Types: char | cell

\section*{Output Arguments}

\section*{Sens - Sensitivity values}
array
Sensitivity values, returned as an NINST-by- 1 array as defined by OutSpec.

\section*{More About}

\section*{Algorithms}

In the SABR model, an option with value \(V\) is given by the modified Black formula \(B\), where \(\sigma_{B}\) is the SABR implied Black volatility.
\[
V=B\left(F, K, T, \sigma_{B}(\alpha, \beta, \rho, v, F, K, T)\right)
\]

The Delta and Vega sensitivities under the SABR model are expressed in terms of partial derivatives in the original paper by Hagan (2002).
\[
\begin{aligned}
& \text { SABR Delt } a=\frac{\partial V}{\partial F}=\frac{\partial B}{\partial F}+\frac{\partial B}{\partial \sigma_{B}} \frac{\partial \sigma_{B}}{\partial F} \\
& \text { SABR Vega }=\frac{\partial V}{\partial \alpha}=\frac{\partial B}{\partial \sigma_{B}} \frac{\partial \sigma_{B}}{\partial \alpha}
\end{aligned}
\]

Later, Bartlett (2006) made better use of the model dynamics by incorporating the correlated changes between \(F\) and a
\[
\begin{aligned}
& \text { Modified SABR Delta }=\frac{\partial B}{\partial F}+\frac{\partial B}{\partial \sigma_{B}}\left(\frac{\partial \sigma_{B}}{\partial F}+\frac{\partial \sigma_{B}}{\partial \alpha} \frac{\rho v}{F^{\beta}}\right) \\
& \text { Modified SABR Vega }=\frac{\partial B}{\partial \sigma_{B}}\left(\frac{\partial \sigma_{B}}{\partial \alpha}+\frac{\partial \sigma_{B}}{\partial F} \frac{\rho F^{\beta}}{v}\right)
\end{aligned}
\]
where \(\frac{\partial B}{\partial F}\) is the classic Black Delta and \(\frac{\partial B}{\partial \sigma_{B}}\) is the classic Black Vega. The Black implied volatility \(\sigma_{B}\) is computed internally by calling blackvolbysabr, while its partial derivatives \(\frac{\partial \sigma_{B}}{\partial F}\) and \(\frac{\partial \sigma_{B}}{\partial \alpha}\) are computed using closed-form expressions by optsensbysabr.
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Hagan, P. S., D. Kumar. A. S. Lesniewski, and D. E. Woodward. "Managing Smile Risk." Wilmott Magazine, 2002.

Bartlett, B. "Hedging under SABR Model." Wilmott Magazine, 2006.

\author{
See Also \\ blackvolbysabr | intenvset | IRDataCurve | toRateSpec
}

11 Functions - Alphabetical List

Introduced in R2014b

\section*{optstockbybjs}

Price American options using Bjerksund-Stensland 2002 option pricing model

\section*{Syntax}

Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l}
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & NINST-by-1 cell array of character vectors 'call' 'or 'put '. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline
\end{tabular}

\section*{Description}

Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike) computes American option prices with continuous dividend yield using the Bjerksund-Stensland 2002 option pricing model.

Price is a NINST-by- 1 vector of expected option prices.

Note: optstockbybjs computes prices of American options with continuous dividend yield using the Bjerksund-Stensland option pricing model.

\section*{Examples}

\section*{Compute the American Option Prices With Continuous Dividend Yield Using the BierksundStensland 2002 Option Pricing Model}

This example shows how to compute the American option prices with continuous dividend yield using the Bjerksund-Stensland 2002 option pricing model. Consider two American stock options (a call and a put) with an exercise price of \(\$ 100\). The options expire on April 1, 2008. Assume the underlying stock pays a continuous dividend yield of \(4 \%\) as of January 1, 2008. The stock has a volatility of \(20 \%\) per annum and the annualized continuously compounded risk-free rate is \(8 \%\) per annum. Using this data, calculate the price of the American call and put, assuming the following current prices of the stock: \(\$ 90\) (for the call) and \(\$ 120\) (for the put).
```

Settle = 'Jan-1-2008';
Maturity = 'April-1-2008';
Strike = 100;
AssetPrice = [90;120];
DivYield = 0.04;
Rate = 0.08;
Sigma = 0.20;
% define the RateSpec and StockSpec
StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);
% define the option type
OptSpec = {'call'; 'put'};
Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Price =
0.8420
0.1108

```

The first element of the Price vector represents the price of the call (\(\$ 0.84\)); the second element represents the price of the put option (\$0.11).
- "Calibrate the SABR Model " on page 2-21
- "Price a Swaption Using the SABR Model" on page 2-27

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Bjerksund, P. and G. Stensland. "Closed-Form Approximation of American Options." Scandinavian Journal of Management. Vol. 9, 1993, , Suppl., pp. S88-S99.

Bjerksund, P. and G. Stensland. "Closed Form Valuation of American Options."
Discussion paper 2002 (http://www.scribd.com/doc/215619796/Closed-form-Valuation-of-American-Options-by-Bjerksund-and-Stensland\#scribd)

\author{
See Also \\ blackvolbysabr | intenvset | IRDataCurve | toRateSpec
}

\section*{Introduced in R2008b}

\section*{optstockbyblk}

Price options on futures and forwards using Black option pricing model

\section*{Syntax}

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, ForwardMaturity)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l}
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates for the option. \\
\hline OptSpec & NINST-by-1 cell array of character vectors ' call ' or 'put '. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline \begin{tabular}{l}
Note: Specify optional comma-separated pairs of Name, Value arguments. Name is the \\
argument name and Value is the corresponding value. Name must appear inside single \\
quotes (' '). You can specify several name and value pair arguments in any order as \\
Name1, Value1, ... , NameN, ValueN.
\end{tabular} \\
\hline ForwardMaturity & \begin{tabular}{l}
(Optional) NINST-by-1 maturity date or delivery date of the \\
forward contract. The default is equal to the Maturity of the \\
option.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity,

OptSpec, Strike) computes option prices on futures using the Black option pricing model.

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, ForwardMaturity) computes option prices on forwards using the Black option pricing model.

Price is a NINST-by- 1 vector of expected option prices.

Note: optstockbyblk calculates option prices on futures and forwards. If ForwardMaturity is not passed, the function calculates prices of future options. If ForwardMaturity is passed, the function computes prices of forward options. This function handles several types of underlying assets, for example, stocks and commodities. For more information on the underlying asset specification, see stockspec.

\section*{Examples}

\section*{Compute Option Prices on Futures Using the Black Option Pricing Model}

This example shows how to compute option prices on futures using the Black option pricing model. Consider two European call options on a futures contract with exercise prices of \(\$ 20\) and \(\$ 25\) that expire on September 1, 2008. Assume that on May 1, 2008 the contract is trading at \(\$ 20\), and has a volatility of \(35 \%\) per annum. The risk-free rate is \(4 \%\) per annum. Using this data, calculate the price of the call futures options using the Black model.
```

Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';
% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);
StockSpec = stockspec(Sigma, AssetPrice);
% define the call options

```
```

OptSpec = {'call'};
Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike)
Price =
1.5903
0.3037

```

\section*{Compute Option Prices on a Forward}

This example shows how to compute option prices on forwards using the Black pricing model. Consider two European options, a call and put on the Brent Blend forward contract that expires on January 1, 2015. The options expire on October 1, 2014 with an exercise price of \(\$ 200\) and \(\$ 98\) respectively. Assume that on January 1, 2014 the forward price is at \(\$ 107\), the annualized continuously compounded risk-free rate is \(3 \%\) per annum and volatility is \(28 \%\) per annum. Using this data, compute the price of the options.

Define the RateSpec.
```

ValuationDate = 'Jan-1-2014';
EndDates = 'Jan-1-2015';
Rates = 0.03;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, 'Rates', Rates,....
'Compounding', Compounding, 'Basis', Basis')
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9704
Rates: 0.0300
EndTimes: 1
StartTimes: 0
EndDates: 735965

```
```

    StartDates: 735600
    ValuationDate: 735600
Basis: 1
EndMonthRule: 1

```

Define the StockSpec.
```

AssetPrice = 107;
Sigma = 0.28;
StockSpec = stockspec(Sigma, AssetPrice);

```

Define the options.
```

Settle = 'Jan-1-2014';
Maturity = 'Oct-1-2014'; %Options maturity
Strike = [200;90];
OptSpec = {'call'; 'put'};

```

Price the forward call and put options.
```

ForwardMaturity = 'Jan-1-2015'; % Forward contract maturity
Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike,...
'ForwardMaturity', ForwardMaturity)

```

\section*{Price =}
0.0535
3.2111

\section*{Compute the Option Price on a Future}

Consider a call European option on the Crude Oil Brent futures. The option expires on December 1, 2014 with an exercise price of \(\$ 120\). Assume that on April 1, 2014 futures price is at \(\$ 105\), the annualized continuously compounded risk-free rate is \(3.5 \%\) per annum and volatility is \(22 \%\) per annum. Using this data, compute the price of the option.

Define the RateSpec.
```

ValuationDate = 'January-1-2014';
EndDates = 'January-1-2015';
Rates = 0.035;
Compounding = -1;

```
```

Basis = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis')
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9656
Rates: 0.0350
EndTimes: 1
StartTimes: 0
EndDates: 735965
StartDates: 735600
ValuationDate: 735600
Basis: 1
EndMonthRule: 1
Define the StockSpec.
AssetPrice = 105;
Sigma = 0.22;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2200
AssetPrice: 105
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the option.
Settle = 'April-1-2014';
Maturity = 'Dec-1-2014';

Strike = 120;
OptSpec = \{'call'\};
Price the futures call option.
Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =
2.5847
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Black Model" on page 3-144

\section*{More About}
- "Forwards Option" on page 3-46
- "Futures Option" on page 3-47
- "Black Model" on page 3-140
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ impvbyblk | intenvset | optstocksensbyblk | stockspec \\ Introduced in R2008b
}

\section*{optstockbybls}

Price options using Black-Scholes option pricing model

\section*{Syntax}

Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l}
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & NINST-by-1 cell array of character vectors 'call ' or 'put '. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline
\end{tabular}

\section*{Description}

Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price is a NINST-by-1 vector of expected option prices.

Note: When using StockSpec with optstockbybls, you can modify StockSpec to handle other types of underliers when pricing instruments that use the Black-Scholes model.

When pricing Futures (Black model), enter the following in StockSpec:

DivType = 'Continuous';
DivAmount = RateSpec.Rates;
For example, see "Compute Option Prices Using the Black-Scholes Option Pricing Model" on page 11-1167.

When pricing Foreign Currencies (Garman-Kohlhagen model), enter the following in StockSpec:

DivType = 'Continuous';
DivAmount = ForeignRate;
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country. For example, see "Compute Option Prices on Foreign Currencies Using the Garman-Kohlhagen Option Pricing Model" on page 11-1168.

\section*{Examples}

\section*{Compute Option Prices Using the Black-Scholes Option Pricing Model}

This example shows how to compute option prices using the Black-Scholes option pricing model. Consider two European options, a call and a put, with an exercise price of \(\$ 29\) on January 1, 2008. The options expire on May 1, 2008. Assume that the underlying stock for the call option provides a cash dividend of \(\$ 0.50\) on February 15, 2008. The underlying stock for the put option provides a continuous dividend yield of \(4.5 \%\) per annum. The stocks are trading at \(\$ 30\) and have a volatility of \(25 \%\) per annum. The annualized continuously compounded risk-free rate is \(5 \%\) per annum. Using this data, compute the price of the options using the Black-Scholes model.
```

Strike = 29;
AssetPrice = 30;
Sigma = .25;
Rates = 0.05;
Settle = 'Jan-01-2008';
Maturity = 'May-01-2008';
% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1);
DividendType = {'cash';'continuous'};
DividendAmounts = [0.50; 0.045];
ExDividendDates = {'Feb-15-2008';NaN};

```
```

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts,...
ExDividendDates);
OptSpec = {'call'; 'put'};
Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Price =
2.2030
1.2025

```

\section*{Compute Option Prices on Foreign Currencies Using the Garman-Kohlhagen Option Pricing Model}

This example shows how to compute option prices on foreign currencies using the Garman-Kohlhagen option pricing model. Consider a European put option on a currency with an exercise price of \(\$ 0.50\) on October 1, 2015. The option expires on June 1, 2016. Assume that the current exchange rate is \(\$ 0.52\) and has a volatility of \(12 \%\) per annum. The annualized continuously compounded domestic risk-free rate is \(4 \%\) per annum and the foreign risk-free rate is \(8 \%\) per annum. Using this data, compute the price of the option using the Garman-Kohlhagen model.
```

Settle = 'October-01-2015';
Maturity = 'June-01-2016';
AssetPrice = 0.52;
Strike = 0.50;
Sigma = .12;
Rates = 0.04;
ForeignRate = 0.08;

```

Define the RateSpec.
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1)
RateSpec =
struct with fields:

```
```

    FinObj: 'RateSpec'
    Compounding: -1
            Disc: 0.9737
            Rates: 0.0400
        EndTimes: 0.6667
    StartTimes: 0
        EndDates: 736482
    StartDates: 736238
    ValuationDate: 736238
Basis: 0
EndMonthRule: 1

```

Define the StockSpec.
```

DividendType = 'Continuous';

```
DividendAmounts = ForeignRate;
StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts)
StockSpec =
 struct with fields:
 FinObj: 'StockSpec'
 Sigma: 0.1200
 AssetPrice: 0.5200
 DividendType: \{'continuous'\}
 DividendAmounts: 0.0800
 ExDividendDates: []

Price the European put option.
OptSpec = \{'put'\};
Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =
0.0162
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing European Call Options Using Different Equity Models"
- "Pricing Using the Black-Scholes Model" on page 3-142

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
impvbybls | intenvset | optstocksensbybls | stockspec

Introduced in R2008b

\section*{optstockbycrr}

Price stock option from Cox-Ross-Rubinstein tree

\section*{Syntax}
[Price, PriceTree] = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline CRRTree & Stock tree structure created by crrtree. \\
\hline OptSpec & \begin{tabular}{l}
Number of instruments (NINST)-by-1 cell array of character \\
vectors 'call' or 'put '.
\end{tabular} \\
\hline \hline
\end{tabular}

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European or Bermuda option. If AmericanOpt \(=1\), the option is an American option.
\begin{tabular}{|l|l|}
\hline Strike & \begin{tabular}{l}
European option: NINST-by-1 vector of strike price values. \\
Bermuda option: NINST by number of strikes (NSTRIKES) \\
matrix of strike price values. \\
Each row is the schedule for one option. If an option has fewer \\
than NSTRIKES exercise opportunities, the end of the row is \\
padded with NaNs. \\
American option: NINST-by-1 vector of strike price values for \\
each option.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
NINST-by-1 vector of settlement or trade dates.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l}
NINST-by-1 (European option) or NINST-by-NSTRIKES \\
(Bermuda option) matrix of exercise dates. Each row is the \\
schedule for one option. For a European option, there is only \\
one exercise date, the option expiry date.
\end{tabular} \\
For an American option:
\end{tabular}

> NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the ValuationDate of the stock tree and the single listed ExerciseDate.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

\section*{Description}
[Price, PriceTree] = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) computes the price of a European, Bermuda, or American stock option.

Price is a NINST-by- 1 vector of expected option prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

\section*{Price an American Stock Option Using a CRR Binomial Tree}

This example shows how to price an American stock option using a CRR binomial tree by loading the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the American option.
```

load deriv.mat;
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2005';
AmericanOpt = 1;
Price = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ...

```
```

ExerciseDates, AmericanOpt)

```

\section*{Price =}
8.2863

\section*{Price a Bermudan Stock Option Using a CRR Binomial Tree}

Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the Bermudan option.
```

load deriv.mat;

```
```

% Option

```
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDatesBerm=\{'01-Jan-2004', '01-Jul-2004','01-Jan-2005','01-Jul-2005'\};

Price the Bermudan option.
Price = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDatesBerm)
Warning: Some ExerciseDates are not aligned with tree nodes. Result will be approximated.

Price =
9.6381
- "Computing Prices Using CRR" on page 3-120
- "Examining Output from the Pricing Functions" on page 3-128
- "Computing Equity Instrument Sensitivities" on page 3-133
- "Graphical Representation of Equity Derivative Trees" on page 3-131

\section*{More About}
- "Computing Instrument Prices" on page 3-119
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ crrtree | instoptstock \\ Introduced before R2006a
}

\section*{optstockbyeqp}

Price stock option from Equal Probabilities binomial tree

\section*{Syntax}
[Price, PriceTree] = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline EQPTree & Stock tree structure created by eqptree. \\
\hline OptSpec & \begin{tabular}{l}
Number of instruments (NINST)-by-1 cell array of character \\
vectors 'call' or 'put '.
\end{tabular} \\
\hline
\end{tabular}

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European or Bermuda option. If AmericanOpt \(=1\), the option is an American option.
\begin{tabular}{|l|l|}
\hline Strike & \begin{tabular}{l}
European option: NINST-by-1 vector of strike price values. \\
Bermuda option: NINST by number of strikes (NSTRIKES) \\
matrix of strike price values. \\
Each row is the schedule for one option. If an option has fewer \\
than NSTRIKES exercise opportunities, the end of the row is \\
padded with NaNs. \\
American option: NINST-by-1 vector of strike price values for \\
each option.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
NINST-by-1 vector of settlement or trade dates.
\end{tabular} \\
\hline ExerciseDates & \begin{tabular}{l}
NINST-by-1 (European option) or NINST-by-NSTRIKES \\
(Bermuda option) matrix of exercise dates. Each row is the \\
schedule for one option. For a European option, there is only \\
one exercise date, the option expiry date.
\end{tabular} \\
For an American option:
\end{tabular}

> NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the ValuationDate of the stock tree and the single listed ExerciseDate.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

\section*{Description}
[Price, PriceTree] = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) computes the price of a European/Bermuda or American stock option.

Price is a NINST-by-1 vector of expected option prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

\section*{Price an American Stock Option Using an EQP Equity Tree}

This example shows how to price an American stock option using an EQP equity tree by loading the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the American option.
```

load deriv.mat
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
Price = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ...

```
```

ExerciseDates, AmericanOpt)

```

Price =
12.2632

\section*{Price a Bermudan Stock Option Using a EQP Equity Tree}

Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the Bermudan option.
```

load deriv.mat;
% Option
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDatesBerm={'15-Jan-2004','15-Jul-2004', '15-Jan-2005','15-Jul-2005'};

```

Price the Bermudan option.
Price \(=\) optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDatesBerm)
Warning: Some ExerciseDates are not aligned with tree nodes. Result will be approximated.

Price =
12.0255
- "Computing Prices Using EQP" on page 3-122
- "Examining Output from the Pricing Functions" on page 3-128
- "Computing Equity Instrument Sensitivities" on page 3-133
- "Graphical Representation of Equity Derivative Trees" on page 3-131

\section*{More About}
- "Computing Instrument Prices" on page 3-119
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ eqptree | instoptstock \\ Introduced before R2006a
}

\section*{optstockbyfd}

Calculate vanilla option prices using finite difference method

\section*{Syntax}
```

[Price,PriceGrid,AssetPrices,Times] = optstockbyfd(RateSpec,
StockSpec,
OptSpec,Strike,Settle,ExerciseDates)
[Price,PriceGrid,AssetPrices,Times] = optstockbyfd(

```
\(\qquad\)
``` Name, Value)
```


Description

[Price,PriceGrid,AssetPrices,Times] = optstockbyfd(RateSpec, StockSpec,
OptSpec, Strike, Settle, ExerciseDates) calculates vanilla option prices using the finite difference method.

```
[Price,PriceGrid,AssetPrices,Times] = optstockbyfd(
```

\qquad

``` Name, Value) adds optional name-value pair arguments.
```


Examples

Price a Vanilla Call Option Using Finite Difference Method

Create a RateSpec.

```
AssetPrice = 50;
```

Strike = 45;
Rate $=0.035$;
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
Basis = 1;
RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',...
Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', Basis)

```
RateSpec =
    struct with fields:
            FinObj: 'RateSpec'
        Compounding: -1
            Disc: 0.9656
            Rates: 0.0350
            EndTimes: 1
        StartTimes: 0
            EndDates: 736330
            StartDates: 735965
    ValuationDate: 735965
            Basis: 1
    EndMonthRule: 1
Create a StockSpec.
StockSpec = stockspec(Volatility,AssetPrice)
StockSpec =
    struct with fields:
                        FinObj: 'StockSpec'
                        Sigma: 0.3000
            AssetPrice: 50
            DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
```

Calculate the price of a European vanilla call option using the finite difference method.
ExerciseDates = 'may-1-2015';
OptSpec = 'Call';
Price = optstockbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)

Price =
6.7350

Input Arguments

RateSpec - Interest-rate term structure

structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

StockSpec - Stock specification for underlying asset

structure
Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is StockSpec.DividendAmounts.

Data Types: struct

OptSpec - Definition of option

character vector with values 'call' or 'put' | string object with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or string object with values 'call' or 'put'.

Data Types: char | string

Strike - Option strike price value

nonnegative scalar | nonnegative vector
Option strike price value, specified as a nonnegative scalar or vector.

- For a European option, use a scalar of strike price.
- For a Bermuda option, use a 1-by-NSTRIKES vector of strike prices.
- For an American option, use a scalar of strike price.

Data Types: single | double

Settle - Settlement or trade date
 nonnegative integer | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a nonnegative integer, a date character vector, or a datetime object.

Data Types: double | char | datetime

ExerciseDates - Option exercise dates

nonnegative scalar integer | date character vector | datetime object
Option exercise dates, specified as a nonnegative scalar integer, a date character vector, or a datetime object:

- For a European option, use a 1-by-1 vector of dates, specified as a nonnegative scalar integer, a date character vector, or a datetime object. For a Bermuda option, use a 1 -by-NSTRIKES vector of dates, specified as a nonnegative scalar integer, date character vector, or datetime object.
- For an American option, use a 1-by-2 cell array of date character vectors. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1 -by- 1 vector of serial date numbers or a cell array of date character vectors, the option can be exercised between Settle and the single listed date in ExerciseDates.

Data Types: double | char | cell | datetime

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

Example: Price = optstockbyfd(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciceDates, 'AssetGrio

'AssetGridSize ' - Size of asset grid used for finite difference grid
400 (default) | positive scalar

Size of the asset grid used for a finite difference grid, specified as a positive scalar.

Data Types: double

'AssetPriceMax' - Maximum price for price grid boundary

if unspecified, StockSpec values are calculated using asset distributions at maturity (default) | scalar

Maximum price for price grid boundary, specified by as a scalar.
Data Types: single | double
'TimeGridSize ' - Size of time grid used for finite difference grid 100 (default) | positive scalar

Size of the time grid used for a finite difference grid, specified as a positive scalar.

Data Types: double

'American0pt' - Option type

0 (European/Bermuda) (default) | scalar with values [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:

- 0 - European/Bermuda
- 1 -American

Data Types: double

Output Arguments

Price - Expected prices for vanilla options

scalar
Expected prices for vanilla options, returned as a 1-by-1 matrix.
PriceGrid - Grid containing prices calculated by finite difference method grid

Grid containing prices calculated by the finite difference method, returned as a grid that is two-dimensional with size PriceGridSize*length(Times). The number of columns does not have to be equal to the TimeGridSize, because ex-dividend dates
in the StockSpec are added to the time grid. The price for $t=0$ is contained in PriceGrid(:, end).

AssetPrices - Prices of asset defined by StockSpec

vector
Prices of the asset defined by the StockSpec corresponding to the first dimension of PriceGrid, returned as a vector.

Times - Times corresponding to second dimension of PriceGrid vector

Times corresponding to second dimension of the PriceGrid, returned as a vector.

More About

- "Supported Equity Derivatives" on page 3-24

References

Haug, E. G., J. Haug, and A. Lewis. "Back to basics: a new approach to the discrete dividend problem." Vol. 9, Wilmott magazine, 2003, pp. 37-47.

Wu, L. and Y. K. Kwok. "A front-fixing finite difference method for the valuation of American options." Journal of Financial Engineering. Vol. 6.4, 1997, pp. 83-97.

See Also
optstockbyblk|optstockbylr | optstockbyls | optstocksensbyfd
Introduced in R2016b

optstocksensbyfd

Calculate vanilla option prices or sensitivities using finite difference method

Syntax

```
[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd(RateSpec,
StockSpec,
OptSpec,Strike,Settle,ExerciseDates)
[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd(
```

\qquad

```
Name,Value)
```


Description

[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd(RateSpec, StockSpec,
OptSpec,Strike, Settle, ExerciseDates) calculates vanilla option prices or sensitivities using the finite difference method.
[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd(\qquad Name, Value) adds optional name-value pair arguments.

Examples

Calculate the Price and Sensitivities for a Vanilla Call Option Using Finite Difference Method

Create a RateSpec.
AssetPrice $=50$;
Strike = 45;
Rate $=0.035$;
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle,'StartDates',Settle,'EndDates',...

```
Maturity,'Rates',Rate,'Compounding', -1, 'Basis', Basis)
RateSpec =
    struct with fields:
            Fin0bj: 'RateSpec'
        Compounding: -1
            Disc: 0.9656
            Rates: 0.0350
            EndTimes: 1
        StartTimes: 0
            EndDates: 736330
    StartDates: 735965
        ValuationDate: 735965
            Basis: 1
        EndMonthRule: 1
Create a StockSpec.
```

```
StockSpec = stockspec(Volatility,AssetPrice)
```

StockSpec = stockspec(Volatility,AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3000
AssetPrice: 50
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Calculate the price and sensitivities for of a European vanilla call option using the finite difference method.
```

ExerciseDates = 'may-1-2015';
OptSpec = 'Call';
OutSpec = {'price'; 'delta'; 'theta'};
[PriceSens, Delta, Theta] = optstocksensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,'OutSpec',OutSpec)

```

\section*{Delta =}
0.7766

Theta =
\(-4.9998\)

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset}
structure
Stock specification for the underlying asset. For information on the stock specification, see stockspec.
stockspec handles several types of underlying assets. For example, for physical commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the convenience yield is StockSpec.DividendAmounts.

Data Types: struct

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put' | string object with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a character vector or string object with values 'call' or 'put'.

Data Types: char | string

\section*{Strike - Option strike price value}
nonnegative scalar | nonnegative vector
Option strike price value, specified as a nonnegative scalar or vector.
- For a European option, use a scalar of strike price.
- For a Bermuda option, use a 1-by-NSTRIKES vector of strike prices.
- For an American option, use a scalar of strike price.

\section*{Data Types: single | double}

\section*{Settle - Settlement or trade date}
nonnegative integer | date character vector | datetime object
Settlement or trade date for the barrier option, specified as a nonnegative integer, a date character vector, or a datetime object.

Data Types: double | char | datetime

\section*{ExerciseDates - Option exercise dates}
date character vector | nonnegative scalar integer | datetime object
Option exercise dates, specified as a nonnegative scalar integer, date character vector, or datetime object:
- For a European option, use a 1-by-1 vector of dates, specified as a nonnegative scalar integer, a date character vector, or a datetime object. For a Bermuda option, use a 1 -by-NSTRIKES vector of dates, specified as a nonnegative scalar integer, date character vector, or datetime object.
- For an American option, use a 1-by-2 cell array of date character vectors. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1 -by- 1 vector of serial date numbers or a cell array of date character vectors, the option can be exercised between Settle and the single listed date in ExerciseDates.

Data Types: double | char | cell | datetime

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: PriceSens = optstocksensbyfd(RateSpec,StockSpec,OptSpec,Strike, Settle, ExerciseDates, 'OutSp \{'All'\},'AssetGridSize',1000)

\section*{'OutSpec' - Define outputs}
\{'Price'\} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specifying a NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec \(=\) \{'All'\} specifies that the output is Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity.
Example: OutSpec =
\{'delta', 'gamma','vega', 'lambda','rho','theta','price'\}
Data Types: char | cell

\section*{'AssetGridSize' - Size of asset grid used for finite difference grid 400 (default) | positive scalar}

Size of asset grid used for finite difference grid, specified as a positive scalar.
Data Types: double
'AssetPriceMax ' - Maximum price for price grid boundary
if unspecified, StockSpec values are calculated using asset distributions at maturity (default) | scalar

Maximum price for price grid boundary, specified by as a scalar.
Data Types: single | double

\section*{'TimeGridSize' - Size of time grid used for finite difference grid 100 (default) | positive scalar}

Size of the time grid used for a finite difference grid, specified as a positive scalar.

\section*{Data Types: double}

\section*{'AmericanOpt ' - Option type}

0 (European/Bermuda) (default) | scalar with values [0,1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European/Bermuda
- 1 -American

Data Types: double

\section*{Output Arguments}

\section*{PriceSens - Expected prices or sensitivities for vanilla options scalar}

Expected price or sensitivities (defined by OutSpec) of the vanilla option, returned as a 1-by-1 array.

\section*{PriceGrid - Grid containing prices calculated by finite difference method grid}

Grid containing prices calculated by the finite difference method, returned as a two-dimensional grid with size PriceGridSize*length(Times). The number of columns does not have to be equal to the TimeGridSize, because ex-dividend dates in the StockSpec are added to the time grid. The price for \(t=0\) is contained in PriceGrid(: , end).

\section*{AssetPrices - Prices of asset defined by StockSpec}
vector
Prices of the asset defined by the StockSpec corresponding to the first dimension of PriceGrid, returned as a vector.

Times - Times corresponding to second dimension of PriceGrid
vector

Times corresponding to second dimension of the PriceGrid, returned as a vector.

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Haug, E. G., J. Haug, and A. Lewis. "Back to basics: a new approach to the discrete dividend problem." Vol. 9, Wilmott magazine, 2003, pp. 37-47.

Wu, L. and Y. K. Kwok. "A front-fixing finite difference method for the valuation of American options." Journal of Financial Engineering. Vol. 6.4, 1997, pp. 83-97.

\author{
See Also \\ optstockbyblk | optstockbyfd | optstockbylr | optstockbyls \\ Introduced in R2016b
}

\section*{optstockbyitt}

Price options on stocks using implied trinomial tree (ITT)

\section*{Syntax}
[Price, PriceTree] = optstockbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ITTTree & Stock tree structure created by itttree. \\
\hline OptSpec & \begin{tabular}{l} 
Number of instruments (NINST)-by-1 cell array of character \\
vectors 'call' or 'put '.
\end{tabular} \\
\hline
\end{tabular}

Note The interpretation of the Strike and ExerciseDates arguments depends on the setting of the AmericanOpt argument. If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European or Bermuda option. If AmericanOpt \(=1\), the option is an American option.
\begin{tabular}{|l|l|}
\hline Strike & \begin{tabular}{l} 
European option: NINST-by-1 vector of strike price values. \\
Bermuda option: NINST by number of strikes (NSTRIKES) \\
matrix of strike price values. \\
Each row is the schedule for one option. If an option has fewer \\
than NSTRIKES exercise opportunities, the end of the row is \\
padded with NaNs. \\
American option: NINST-by-1 vector of strike price values for \\
each option.
\end{tabular} \\
\hline Settle & \begin{tabular}{l} 
NINST-by-1 vector of settlement or trade dates. \\
ExerciseDates \\
For a European or Bermuda option: \\
NINST-by-1 (European option) or NINST-by-NSTRIKES \\
(Bermuda option) matrix of exercise dates. Each row is the \\
schedule for one option. For a European option, there is only \\
one exercise date, the option expiry date.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|} 
& \begin{tabular}{l} 
For an American option: \\
NINST-by-2 vector of exercise date boundaries. For each \\
instrument, the option can be exercised on any tree date \\
between or including the pair of dates on that row. If only one \\
non-NaN date is listed, or if ExerciseDates is NINST-by-1, \\
the option can be exercised between the ValuationDate of the \\
stock tree and the single listed ExerciseDate.
\end{tabular} \\
\hline AmericanOpt & \begin{tabular}{l} 
(Optional) If AmericanOpt \(=0\), NaN, or is unspecified, the \\
option is a European or Bermuda option. If AmericanOpt \(=\) \\
1, the option is an American option.
\end{tabular} \\
\hline
\end{tabular}

Note: Data arguments for optstockbyitt are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries vectors with NaN . Only one data argument is required to create the instrument; the others may be omitted or passed as empty matrices [ ].

\section*{Description}
[Price, PriceTree] = optstockbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) computes the price of a European/Bermuda or American stock option.

Price is a NINST-by- 1 vector of expected option prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

Note: The Settle date for every option is set to the ValuationDate of the stock tree. The option argument, Settle, is ignored.

\section*{Examples}

\section*{Price an American Stock Option Using an ITT Equity Tree}

This example shows how to price an American stock option using an ITT equity tree by loading the file deriv.mat, which provides the ITTTree. The ITTTree structure
contains the stock specification and time information needed to price the American option.
```

load deriv.mat
OptSpec = 'Put';
Strike = 30;
Settle = '01-Jan-2006';
ExerciseDates = ' 01-Jan-2010 ';
AmericanOpt = 1;
Price = optstockbyitt(ITTTree, OptSpec, Strike, Settle,ExerciseDates, AmericanOpt)
Price =
0.1271

```

\section*{Price a Bermudan Stock Option Using an ITT Equity Tree}

Load the file deriv.mat, which provides an ITTTree. The ITTTree structure contains the stock specification and time information needed to price the Bermudan option.
```

load deriv.mat;
% Option
OptSpec = 'Put';
Strike = 30;
Settle = '01-Jan-2006';
ExerciseDatesBerm={'1-Jan-2007','1-Jul-2007','1-Jan-2008','1-Jul-2008'};

```

Price the Bermudan option.
```

Price = optstockbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDatesBerm)

```
Warning: Some ExerciseDates are not aligned with tree nodes. Result will be approximated.
> In procoptions at 171
    In optstockbystocktree at 22
    In optstockbyitt at 68
Price \(=\)
        0.0664
- "Computing Prices Using ITT" on page 3-124
- "Examining Output from the Pricing Functions" on page 3-128
- "Computing Equity Instrument Sensitivities" on page 3-133
- "Graphical Representation of Equity Derivative Trees" on page 3-131

\section*{More About}
- "Pricing Options Structure" on page B-2
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Chriss, Neil A., E. Derman, and I. Kani. "Implied trinomial trees of the volatility smile." Journal of Derivatives. 1996.

\author{
See Also \\ instoptstock|itttree \\ Introduced in R2007a
}

\section*{optstockbylr}

Price options on stocks using Leisen-Reimer binomial tree model

\section*{Syntax}
[Price, PriceTree] = optstockbylr(LRTree, OptSpec, Strike, Settle, ExerciseDates)
[Price, PriceTree] = optstockbylr(LRTree, OptSpec, Strike, Settle, ExerciseDates, Name, Value)

\section*{Description}
[Price, PriceTree] = optstockbylr(LRTree, OptSpec, Strike, Settle, ExerciseDates) computes option prices on stocks using the Leisen-Reimer binomial tree model.
[Price, PriceTree] = optstockbylr(LRTree, OptSpec, Strike, Settle, ExerciseDates, Name, Value) computes option prices on stocks using the Leisen-Reimer binomial tree model with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{LRTree}

Stock tree structure created by lrtree.

\section*{OptSpec}

NINST-by- 1 cell array of character vectors 'call' or 'put'.

\section*{Strike}

NINST-by-1 (European/American) or NINST-by-NSTRIKES (Bermuda) matrix of strike price values. Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

\section*{Settle}

NINST-by-1 matrix of settlement or trade dates.

Note: The settle date for every option is set to the ValuationDate of the stock tree. The option argument, Settle, is ignored.

\section*{ExerciseDates}

NINST-by-1 (European/American) or NINST-by-NSTRIKEDATES (Bermuda) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one ExerciseDate on the option expiry date. For the American type, the option can be exercised on any tree data between the ValuationDate and tree maturity. The last element of each row must be the same as the maturity of the tree.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

\section*{'AmericanOpt'}

NINST-by- 1 flags with a value of 0 (European/Bermuda) or 1 (American).
Default: 0

\section*{Output Arguments}

\section*{Price}

NINST-by- 1 expected prices at time 0 .

\section*{PriceTree}

Tree structure with a vector of instrument prices at each node.

\section*{Examples}

\section*{Price Options on Stocks Using the Leisen-Reimer Binomial Tree Model}

This example shows how to price options on stocks using the Leisen-Reimer binomial tree model. Consider European call and put options with an exercise price of \(\$ 95\) that expire on July 1, 2010. The underlying stock is trading at \(\$ 100\) on January 1, 2010, provides a continuous dividend yield of \(3 \%\) per annum and has a volatility of \(20 \%\) per annum. The annualized continuously compounded risk-free rate is \(8 \%\) per annum. Using this data, compute the price of the options using the Leisen-Reimer model with a tree of 15 and 55 time steps.

AssetPrice = 100;
Strike = 95;
ValuationDate = 'Jan-1-2010';
Maturity = 'July-1-2010';
\% define StockSpec
Sigma = 0.2;
DividendType = 'continuous';
DividendAmounts = 0.03;
StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);
\% define RateSpec
Rates = 0.08;
Settle = ValuationDate;
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);
\% build the Leisen-Reimer (LR) tree with 15 and 55 time steps
LRTimeSpec15 = lrtimespec(ValuationDate, Maturity, 15);
LRTimeSpec55 = lrtimespec(ValuationDate, Maturity, 55);
\% use the PP2 method
LRMethod = 'PP2';
LRTree15 = lrtree(StockSpec, RateSpec, LRTimeSpec15, Strike, 'method', LRMethod); LRTree55 = lrtree(StockSpec, RateSpec, LRTimeSpec55, Strike, 'method', LRMethod);
```

% price the call and the put options using the LR model:
OptSpec = {'call'; 'put'};
PriceLR15 = optstockbylr(LRTree15, OptSpec, Strike, Settle, Maturity);
PriceLR55 = optstockbylr(LRTree55, OptSpec, Strike, Settle, Maturity);
% calculate price using the Black-Scholes model (BLS) to compare values with
% the LR model:
PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike);
% compare values of BLS and LR
[PriceBLS PriceLR15 PriceLR55]
% use treeviewer to display LRTree of 15 time steps
treeviewer(LRTree15)
ans =
9.7258 9.7252 9.7257
2.4896 2.4890 2.4895

```

- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Pricing European Call Options Using Different Equity Models"

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Leisen D.P., M. Reimer. "Binomial Models for Option Valuation - Examining and Improving Convergence." Applied Mathematical Finance. Number 3, 1996, pp. 319-346.

\author{
See Also \\ instoptstock | lrtree \\ Introduced in R2010b
}

\section*{optstockbyls}

Price European, Bermudan, or American vanilla options using Longstaff-Schwartz model

\section*{Syntax}
```

Price = optstockbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
Price = optstockbyls(___ ,Name,Value)
[Price,Path,Times,Z] = optstockbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,
ExerciseDates)
[Price,Path,Times,Z] = optstockbyls(_
,Name,Value)

```

\section*{Description}

Price = optstockbyls(RateSpec,StockSpec,OptSpec,Strike,Settle, ExerciseDates) returns vanilla option prices using the Longstaff-Schwartz model. optstockbyls computes prices of European, Bermudan, and American vanilla options. For American and Bermudan options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.

Price = optstockbyls( \(\qquad\) , Name, Value) returns vanilla option prices using the Longstaff-Schwartz model using optional name-value pair arguments. optstockbyls computes prices of European, Bermudan, and American vanilla options. For American and Bermudan options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.
[Price,Path,Times, Z] = optstockbyls(RateSpec,StockSpec,OptSpec, Strike, Settle,
ExerciseDates) returns vanilla option prices using the Longstaff-Schwartz model. optstockbyls computes prices of European, Bermudan, and American vanilla options. For American and Bermudan options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.
[Price, Path,Times, Z] = optstockbyls(__ , Name, Value) returns vanilla option prices using the Longstaff-Schwartz model using optional name-value pair
arguments. optstockbyls computes prices of European, Bermudan, and American vanilla options. For American and Bermudan options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.

\section*{Examples}

\section*{Compute the Price of a Vanilla Option}

Define the RateSpec.
```

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.05;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates, 'Rates', Rates)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 2
Disc: 0.9060
Rates: 0.0500
EndTimes: 4
StartTimes: 0
EndDates: 735965
StartDates: 735235
ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Define the StockSpec for the asset.
AssetPrice = 100;
Sigma = 0.1;
StockSpec \(=\) stockspec(Sigma, AssetPrice)

StockSpec =
```

struct with fields:
FinObj: 'StockSpec'
Sigma: 0.1000
AssetPrice: 100
DividendType: []
DividendAmounts: 0
ExDividendDates: []

```

Define the vanilla option.
```

OptSpec = 'put';
Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2015';
Strike = 105;

```

Compute the vanilla option price using the Longstaff-Schwartz model.
Antithetic = true;
```

Price = optstockbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ...

```
ExerciseDates, 'Antithetic', Antithetic)

Price =
3.2292
- "Pricing Asian Options"

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset}
structure

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, stocks, stock indices, and commodities.

Data Types: struct

\section*{OptSpec - Definition of option}
character vector with value 'call' or 'put'
Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

\section*{Strike - Option strike price values}
nonnegative scalar integer
Option strike price value, specified with nonnegative scalar integer:
- For a European option, use a scalar of strike price.
- For a Bermuda option, use a 1-by-NSTRIKES vector of strike prices.
- For an American option, use a scalar of strike price.

\section*{Data Types: single | double}

\section*{Settle - Settlement date or trade date}
date character vector | nonnegative scalar integer
Settlement date or trade date for the vanilla option, specified as a date character vector or nonnegative scalar integer.

Data Types: double | char

\section*{ExerciseDates - Option exercise dates}
date character vector | nonnegative integer
Option exercise dates, specified as a date character vector or nonnegative scalar integer:
- For a European option, use a 1-by-1 vector of dates. For a European option, there is only one ExerciseDates on the option expiry date.
- For a Bermuda option, use a 1-by-NSTRIKES vector of dates.
- For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1 -by- 1 vector of serial date numbers or cell array of character vectors, the option can be exercised between Settle and the single listed ExerciseDates.

\section*{Data Types: double | char}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: Price = optstockbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, 'American0

\section*{'American0pt ' - Option type}

0 European or Bermuda (default) | scalar with values [0,1]
Option type, specified as positive integer scalar flags with values:
- 0 - European or Bermuda
- 1 -American

Data Types: single | double
```

'NumTrials' - Simulation trials
1000 (default) | scalar

```

Simulation trials, specified as a scalar number of independent sample paths.
Data Types: double
```

'NumPeriods' - Simulation periods per trial
100 (default) | scalar

```

Simulation periods per trial, specified as a scalar number. NumPeriods is considered only when pricing European vanilla options. For American and Bermuda vanilla options, NumPeriod is equal to the number of Exercise days during the life of the option.

Data Types: double

\section*{' Z' - Dependent random variates \\ scalar | nonnegative integer}

Dependent random variates used to generate the Brownian motion vector (that is, Wiener processes) that drive the simulation, specified as a be NumPeriods-by-1-by-NumTrials 3-D time series array.

Data Types: single | double

\section*{'Antithetic ' - Indicator for antithetic sampling \\ false (default) | logical flag with value of true or false}

Indicator for antithetic sampling, specified with a value of true or false.

\section*{Data Types: logical}

\section*{Output Arguments}

Price - Expected price of vanilla option
scalar
Expected price of the vanilla option, returned as a 1-by-1 scalar.

\section*{Path - Simulated paths of correlated state variables vector}

Simulated paths of correlated state variables, returned as a (NumPeriods + 1) -by-1-by-NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector \(X(t)\) at time \(t\) for a given trial.

\section*{Times - Observation times associated with simulated paths vector}

Observation times associated with simulated paths, returned as a (NumPeriods +1 )-by- 1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.

\section*{Z - Dependent random variates \\ vector}

Dependent random variates, if \(Z\) is specified as an optional input argument, the same value is returned. Otherwise, \(Z\) contains the random variates generated internally.

\section*{More About}
- "Vanilla Option" on page 3-42
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
optstocksensbyls

Introduced in R2013b

\section*{optstocksensbyls}

Calculate European, Bermudan, or American vanilla option prices or sensitivities using Longstaff-Schwartz model

\section*{Syntax}

PriceSens = optstocksensbyls(RateSpec,StockSpec,OptSpec,Strike, Settle,
ExerciseDates)
PriceSens = optstocksensbyls( \(\qquad\) , Name, Value)
[PriceSens,Path,Times,Z] = optstocksensbyls(RateSpec,StockSpec, OptSpec,Strike,Settle, ExerciseDates)
[PriceSens, Path,Times, Z] = optstocksensbyls( __ , Name, Value)

\section*{Description}

PriceSens = optstocksensbyls(RateSpec,StockSpec,OptSpec,Strike, Settle,
ExerciseDates) returns vanilla option prices or sensitivities using the LongstaffSchwartz model. optstocksensbyls computes prices or sensitivities of European, Bermudan, and American vanilla options. For American and Bermudan options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.

PriceSens = optstocksensbyls( \(\qquad\) , Name, Value) returns vanilla option prices or sensitivities using the Longstaff-Schwartz model and using optional name-value pair arguments. optstocksesbyls computes prices or sensitivities of European, Bermudan, and American vanilla options. For American and Bermudan options, the LongstaffSchwartz least squares method is used to calculate the early exercise premium.
[PriceSens,Path,Times, Z] = optstocksensbyls(RateSpec,StockSpec, OptSpec, Strike,Settle,
ExerciseDates) returns vanilla option prices or sensitivities using the LongstaffSchwartz model. optstocksensbyls computes prices or sensitivities of European,

Bermudan, and American vanilla options. For American and Bermudan options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.
[PriceSens, Path,Times, Z] = optstocksensbyls(__, Name, Value) returns vanilla option prices or sensitivities using the Longstaff-Schwartz model and using optional name-value pair arguments. optstocksensbyls computes prices or sensitivities of European, Bermudan, and American vanilla options. For American and Bermudan options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.

\section*{Examples}

\section*{Compute the Price and Sensitivities of a Vanilla Option}

Define the RateSpec.
```

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.05;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates, 'Rates', Rates)

```
RateSpec =
    struct with fields:
            FinObj: 'RateSpec'
        Compounding: 2
            Disc: 0.9060
            Rates: 0.0500
            EndTimes: 4
        StartTimes: 0
            EndDates: 735965
        StartDates: 735235
    ValuationDate: 735235
            Basis: 0
    EndMonthRule: 1

Define the StockSpec for the asset.
```

AssetPrice = 100;

```
```

Sigma = 0.1;
DivType = 'continuous';
DivAmounts = 0.04;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.1000
AssetPrice: 100
DividendType: {'continuous'}
DividendAmounts: 0.0400
ExDividendDates: []

```

Define the vanilla option.
```

OptSpec = 'call';

```
Settle = 'jan-1-2013';
ExerciseDates = 'jan-1-2015';
Strike = 105;

Compute the Delta sensitivity for the vanilla option using the Longstaff-Schwartz model.

Antithetic = true;
OutSpec = \{'Delta'\};
PriceSens = optstocksensbyls(RateSpec, StockSpec, OptSpec, Strike, ...
Settle, ExerciseDates,'Antithetic', Antithetic, 'OutSpec', OutSpec)

\section*{PriceSens =}
0.3945

To display the output for Price, Delta, Path, and Times, use the following:
OutSpec = \{'Price','Delta'\};
[Price, Delta, Path, Times] = optstocksensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates,'Antithetic', Antithetic, 'OutSpec', OutSpec);
- "Pricing Asian Options"

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{StockSpec - Stock specification for underlying asset structure}

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, stocks, stock indices, and commodities.

\section*{Data Types: struct}

\section*{OptSpec - Definition of option}
character vector values 'call' or 'put'
Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

\section*{Strike - Option strike price value}
nonnegative scalar integer
Option strike price value, specified with a nonnegative scalar integer:
- For a European option, use a scalar of strike price.
- For a Bermuda option, use a 1-by-NSTRIKES vector of strike price.
- For an American option, use a scalar of strike price.

Data Types: single | double

\section*{Settle - Settlement date or trade date}
date character vector | nonnegative scalar integer

Settlement date or trade date for the vanilla option, specified as a date character vector or a nonnegative integer.

\section*{Data Types: double | char}

\section*{ExerciseDates - Option exercise date}
date character vector | nonnegative scalar integer
Option exercise date, specified as a date character vector or nonnegative scalar integer:
- For a European option, use a 1 -by- 1 vector of dates. For a European option, there is only one ExerciseDates on the option expiry date.
- For a Bermuda option, use a 1-by-NSTRIKES vector of dates.
- For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1 -by- 1 vector of serial date numbers or cell array of character vectors, the option can be exercised between Settle and the single listed ExerciseDates.

\section*{Data Types: double | char}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: Price = optstocksensbyls(RateSpec,StockSpec, OptSpec, Strike, Settle, ExerciseDates, 'American0pt' , '1', 'NumTrials', '2000', 'Outs \{'Price','Delta','Gamma'\})
'American0pt ' - Option type
0 European or Bermuda (default) | scalar with values [0,1]
Option type, specified as a positive integer scalar flag with values:
- 0 - European or Bermuda
- 1 -American

Data Types: single | double

\section*{' NumTrials' - Simulation trials \\ 1000 (default) | scalar}

Simulation trials, specified as a scalar number of independent sample paths.
Data Types: double

\section*{' NumPeriods ' - Simulation periods per trial 100 (default) | scalar}

Simulation periods per trial, specified as a scalar number. NumPeriods is considered only when pricing European vanilla options. For American and Bermuda vanilla options, NumPeriod is equal to the number of Exercise days during the life of the option.
Data Types: double

\section*{' Z' - Dependent random variates}
scalar | nonnegative integer
Dependent random variates used to generate the Brownian motion vector (that is, Wiener processes) that drive the simulation, specified as a NumPeriods-by-1-by-NumTrials 3-D time series array.
Data Types: single | double

\section*{'Antithetic ' - Indicator for antithetic sampling}
false (default) | logical flag with value of true or false
Indicator for antithetic sampling, specified with a value of true or false.
Data Types: logical
'OutSpec ' - Define outputs
\{'Price'\} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs specifying NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:

Example: OutSpec =
\{'delta', 'gamma', 'vega','lambda','rho','theta','price'\}
Data Types: char | cell

\section*{Output Arguments}

PriceSens - Expected price or sensitivities of vanilla option scalar

Expected price or sensitivities (defined by OutSpec) of the vanilla option, returned as a 1-by-1 array.

\section*{Path - Simulated paths of correlated state variables \\ vector}

Simulated paths of correlated state variables, returned as a (NumPeriods +1 )-by- 1 -by-NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector \(X(t)\) at time \(t\) for a given trial.

\section*{Times - Observation times associated with simulated paths}
vector
Observation times associated with simulated paths, returned as a (NumPeriods +1 )-by- 1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.

\section*{Z - Dependent random variates}
vector
Dependent random variates, if \(Z\) is specified as an optional input argument, the same value is returned. Otherwise, \(Z\) contains the random variates generated internally.

\section*{More About}
- "Vanilla Option" on page 3-42
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ optstockbyls
}

11 Functions - Alphabetical List

Introduced in R2013b

\section*{optstockbyrgw}

Determine American call option prices using Roll-Geske-Whaley option pricing model

\section*{Syntax}

Price \(=\) optstockbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline
\end{tabular}

\section*{Description}

Price = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike) computes the American call option prices using the Roll-GeskeWhaley option pricing model.

Price is a NINST-by-1 vector of expected call option prices.

Note: optstockbyrgw computes prices of American calls with a single cash dividend using the Roll-Geske-Whaley option pricing model.

\section*{Examples}

\section*{Determine American Call Option Prices Using Roll-Geske-Whaley Option Pricing Model}

This example shows how to determine American call option prices using Roll-GeskeWhaley option pricing model. Consider an American call option with an exercise price of \(\$ 22\) that expires on February 1, 2009. The underlying stock is trading at \(\$ 20\) on June 1, 2008 and has a volatility of \(20 \%\) per annum. The annualized continuously compounded risk-free rate is \(6.77 \%\) per annum. The stock pays a single dividend of \(\$ 2\) on September 1, 2008. Using this data, compute price of the American call option using the Roll-GeskeWhaley option pricing model.
```

Settle = 'Jun-01-2008';
Maturity = 'Feb-01-2009';
AssetPrice = 20;
Strike = 22;
Sigma = 0.2;
Rate = 0.0677;
DivAmount = 2;
DivDate = 'Sep-01-2008';
% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 0);
StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);
Price = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity,Strike)
Price =
0.3359

```
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Roll-Geske-Whaley Model" on page 3-145

\section*{More About}
- "Roll-Geske-Whaley Model" on page 3-141
- "Supported Equity Derivatives" on page 3-24
See Alsoimpvbyrgw | intenvset | optstocksensbyrgw | stockspec
Introduced in R2008b

\section*{optstocksensbybjs}

Determine American option prices or sensitivities using Bjerksund-Stensland 2002 option pricing model

\section*{Syntax}

PriceSens = optstocksensbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & NINST-by-1 cell array of character vectors 'call' or 'put '. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline OutSpec & \begin{tabular}{l} 
(Optional) All optional inputs are specified as matching \\
parameter name/value pairs. The parameter name is specified \\
as a character vector, followed by the corresponding parameter \\
value. Parameter name/value pairs may be specified in any \\
order; names are case-insensitive and partial matches are \\
allowed provided no ambiguities exist. Valid parameter names \\
are: \\
- NOUT-by-1 or 1-by-NOUT cell array of character vectors \\
indicating the nature and order of the outputs for the \\
function. Possible values are: 'Price ', 'Delta ', 'Gamma ', '
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
For example, OutSpec = \{'Price'; 'Lambda'; \\
'Rho'\} specifies that the output should be Price, Lambda, and Rho, in that order. \\
To invoke from a function: [Price, Lambda, Rho] = optstocksensbybjs(..., 'OutSpec', \{'Price', 'Lambda', 'Rho'\}) \\
OutSpec \(=\{\) 'All' \(\}\) specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};. \\
- Default is OutSpec = \{'Price' \(\}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

PriceSens = optstocksensbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...) computes American option prices or sensitivities using the Bjerksund-Stensland 2002 option pricing model.
optstocksensbybjs can be used to compute six sensitivities for the BjerksundStensland 2002 model: delta, gamma, vega, lambda, rho, and theta. This function is also capable of returning the price of the option. The selection of output parameters and their order is determined by the optional input parameter OutSpec. This parameter is a cell array of character vectors, each one specifying a desired output parameter. The order in which these output parameters are returned by the function is the same as the order of the character vectors contained in OutSpec.

PriceSens is a NINST-by-1 vector of expected prices or sensitivities values.

Note: optstocksensbybjs computes prices of American options with continuous dividend yield using the Bjerksund-Stensland option pricing model. All sensitivities are evaluated by computing a discrete approximation of the partial derivative. This means that the option is revalued with a fractional change for each relevant parameter, and the change in the option value divided by the increment, is the approximated sensitivity value.

\section*{Examples}

\section*{Compute American Option Prices and Sensitivities Using the Bjerksund-Stensland 2002 Option Pricing Model}

This example shows how to compute American option prices and sensitivities using the Bjerksund-Stensland 2002 option pricing model. Consider four American put options with an exercise price of \(\$ 100\). The options expire on October 1, 2008. Assume the underlying stock pays a continuous dividend yield of \(4 \%\) and has a volatility of \(40 \%\) per annum. The annualized continuously compounded risk-free rate is \(8 \%\) per annum. Using this data, calculate the delta, gamma, and price of the American put options, assuming the following current prices of the stock on July 1, 2008: \(\$ 90, \$ 100, \$ 110\) and \(\$ 120\).
```

Settle = 'July-1-2008';
Maturity = 'October-1-2008';
Strike = 100;
AssetPrice = [90;100;110;120];
Rate = 0.08;
Sigma = 0.40;
DivYield = 0.04;
% define the RateSpec and StockSpec
StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);
% define the option type
OptSpec = {'put'};
OutSpec = {'Delta', 'Gamma', 'Price'};
[Delta, Gamma, Price] = optstocksensbybjs(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, 'OutSpec', OutSpec)

```

Delta =
\(-0.6572\)
\(-0.4434\)
\(-0.2660\)
-0.1442

Gamma =
0.0217
0.0202
0.0150
0.0095

Price =
12.9467
7.4571
3.9539
1.9495
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Bjerksund-Stensland Model" on page 3-146

\section*{More About}
- "Bjerksund-Stensland 2002 Model" on page 3-142
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Bjerksund, P. and G. Stensland. "Closed-Form Approximation of American Options." Scandinavian Journal of Management. Vol. 9, 1993, Suppl., pp. S88-S99.

Bjerksund, P. and G. Stensland. "Closed Form Valuation of American Options."
Discussion paper 2002 (http://www.scribd.com/doc/215619796/Closed-form-Valuation-of-American-Options-by-Bjerksund-and-Stensland\#scribd)

\author{
See Also \\ impvbybjs | intenvset | optstockbybjs | stockspec \\ Introduced in R2008b
}

\section*{optstocksensbyblk}

Determine option prices or sensitivities on futures and forwards using Black pricing model

\section*{Syntax}

PriceSens = optstocksensbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l} 
The annualized continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & NINST-by-1 cell array of character vectors ' call' 'or 'put '. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline \begin{tabular}{l} 
Note: Specify optional comma-separated pairs of Name, Value arguments. Name is the \\
argument name and Value is the corresponding value. Name must appear inside single \\
quotes (' '). You can specify several name and value pair arguments in any order as \\
Name1, Value1, ..., NameN, ValueN.
\end{tabular} \\
\hline ForwardMaturity & \begin{tabular}{l} 
(Optional) NINST-by-1 maturity date or delivery date of the \\
forward contract. The default is equal to the Maturity of the \\
option.
\end{tabular} \\
\hline OutSpec & \begin{tabular}{l} 
(Optional) NOUT-by-1 or 1-by-NOUT cell array of character \\
vectors indicating the nature and order of the outputs for the \\
function. Possible values are:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
For example, OutSpec = \{'Price'; 'Lambda'; \\
'Rho'\} specifies that the output should be Price, Lambda, and Rho, in that order. \\
To invoke from a function: [Price, Lambda, Rho] = optstocksensbyblk(..., 'OutSpec', \{'Price', 'Lambda', 'Rho'\}) \\
OutSpec \(=\{\) 'All' \(\}\) specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};. \\
- Default is OutSpec = \{'Price' \(\}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

PriceSens = optstocksensbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...) computes option prices or sensitivities on futures and forwards using the Black pricing model.

PriceSens is a NINST-by-1 vector of expected future prices or sensitivities values.

Note: optstocksensbyblk calculates option prices or sensitivities on futures and forwards. If ForwardMaturity is not passed, the function calculates prices or sensitivities of future options. If ForwardMaturity is passed, the function computes prices or sensitivities of forward options. This function handles several types of underlying assets, for example, stocks and commodities. For more information on the underlying asset specification, see stockspec.

\section*{Examples}

\section*{Compute Option Prices and Sensitivities on Futures Using the Black Pricing Model}

This example shows how to compute option prices and sensitivities on futures using the Black pricing model. Consider a European put option on a futures contract with an
exercise price of \(\$ 60\) that expires on June 30, 2008. On April 1, 2008 the underlying stock is trading at \(\$ 58\) and has a volatility of \(9.5 \%\) per annum. The annualized continuously compounded risk-free rate is \(5 \%\) per annum. Using this data, compute delta, gamma, and the price of the put option.
```

AssetPrice = 58;

```
Strike = 60;
Sigma = . 095;
Rates \(=0.05\);
Settle = 'April-01-08';
Maturity = 'June-30-08';
\% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);
StockSpec = stockspec(Sigma, AssetPrice);
\% define the options
OptSpec = \{'put'\};
OutSpec = \{'Delta','Gamma','Price'\};
[Delta, Gamma, Price] = optstocksensbyblk(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike,'OutSpec', OutSpec)
Delta =
    \(-0.7469\)
Gamma =
    0.1130
Price =
    2.3569

\section*{Compute Forward Option Prices and Delta Sensitivities}

This example shows how to compute option prices and sensitivities on forwards using the Black pricing model. Consider two European call options on the Brent Blend forward contract that expires on January 1, 2015. The options expire on October 1, 2014 and Dec 1,2014 with an exercise price \(\%\) of \(\$ 120\) and \(\$ 150\) respectively. Assume that on January 1,2014 the forward price is at \(\$ 107\), the annualized continuously compounded risk-free rate is \(3 \%\) per annum and volatility is \(28 \%\) per annum. Using this data, compute the price and delta of the options.

Define the RateSpec.
```

ValuationDate = 'Jan-1-2014';
EndDates = 'Jan-1-2015';
Rates = 0.03;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ...
ValuationDate, 'EndDates', EndDates, 'Rates', Rates, ...
'Compounding', Compounding, 'Basis', Basis');

```

Define the StockSpec.
```

AssetPrice = 107;
Sigma = 0.28;
StockSpec = stockspec(Sigma, AssetPrice);

```

Define the options.
```

Settle = 'Jan-1-2014';
Maturity = {'Oct-1-2014'; 'Dec-1-2014'}; %Options maturity
Strike = [120;150];
OptSpec = {'call'; 'call'};

```

Price the forward call options and return the Delta sensitivities.
```

ForwardMaturity = 'Jan-1-2015'; % Forward contract maturity
OutSpec = {'Delta'; 'Price'};
[Delta, Price] = optstocksensbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, ...
Strike, 'ForwardMaturity', ForwardMaturity, 'OutSpec', OutSpec)

```
Delta =
0.3518
0.1262

\section*{Price =}
5.4808
1.6224
- "Pricing Asian Options"

\section*{More About}
- "Forwards Option" on page 3-46
- "Futures Option" on page 3-47
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

\author{
See Also \\ impvbyblk | intenvset | optstockbyblk | stockspec \\ Introduced in R2008b
}

\section*{optstocksensbybls}

Determine option prices or sensitivities using Black-Scholes option pricing model

\section*{Syntax}

PriceSens = optstocksensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline RateSpec & The annualized continuously compounded rate term structure. For information on the interest rate specification, see intenvset. \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & NINST-by-1 cell array of character vectors 'call' or 'put '. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline OutSpec & \begin{tabular}{l}
(Optional) All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case-insensitive and partial matches are allowed provided no ambiguities exist. Valid parameter names are: \\
- NOUT-by-1 or 1-by-NOUT cell array of character vectors indicating the nature and order of the outputs for the function. Possible values are: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'. \\
For example, OutSpec = \{'Price'; 'Lambda'; 'Rho'\} specifies that the output should be Price, Lambda, and Rho, in that order.
\end{tabular} \\
\hline
\end{tabular}
\(|\)\begin{tabular}{l} 
To invoke from a function: [Price, Lambda, Rho] = \\
optstocksensbybls(..., 'OutSpec', \{'Price', \\
'Lambda', 'Rho'\}) \\
OutSpec = \{'All'\} specifies that the output should be \\
Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, \\
in that order. This is the same as specifying OutSpec as \\
OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', \\
'Rho', 'Theta', 'Price'\};. \\
Default is OutSpec = \{'Price' \(\}.\)
\end{tabular}

\section*{Description}

PriceSens = optstocksensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...) computes option prices or sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by- 1 vector of expected prices or sensitivities values.

Note: When using StockSpec with optstocksensbybls, you can modify StockSpec to handle other types of underliers when pricing instruments that use the Black-Scholes model.

When pricing Futures (Black model), enter the following in StockSpec:
```

DivType = 'Continuous';
DivAmount = RateSpec.Rates;

```

When pricing Foreign Currencies (Garman-Kohlhagen model), enter the following in StockSpec:

DivType = 'Continuous';
DivAmount = ForeignRate;
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country.

\section*{Examples}

\section*{Compute Option Prices and Sensitivities Using the Black-Scholes Option Pricing Model}

This example shows how to compute option prices and sensitivities using the BlackScholes option pricing model. Consider a European call and put options with an exercise price of \(\$ 30\) that expires on June 1, 2008. The underlying stock is trading at \(\$ 30\) on January 1, 2008 and has a volatility of \(30 \%\) per annum. The annualized continuously compounded risk-free rate is \(5 \%\) per annum. Using this data, compute the delta, gamma, and price of the options using the Black-Scholes model.
```

AssetPrice = 30;
Strike = 30;
Sigma = .30;
Rates = 0.05;
Settle = 'January-01-2008';
Maturity = 'June -01-2008';
% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding',-1, 'Basis', 1);
StockSpec = stockspec(Sigma, AssetPrice);
% define the options
OptSpec = {'call', 'put'};
OutSpec = {'Delta','Gamma','Price'};
[Delta, Gamma, Price] = optstocksensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike,'OutSpec', OutSpec)
Delta =
0.5810
-0.4190
Gamma =
0.0673
0.0673

```

\section*{Price =}
2.6126
1.9941
- "Pricing Asian Options"

\section*{More About}
- "Forwards Option" on page 3-46
- "Futures Option" on page 3-47
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

\author{
See Also \\ impvbybls | intenvset | optstockbybls | stockspec \\ Introduced in R2008b
}

\section*{optstocksensbylr}

Determine option prices or sensitivities using Leisen-Reimer binomial tree model

\section*{Syntax}
```

PriceSens = optstocksensbylr(LRTree, OptSpec, Strike, Settle,
ExerciseDates)
PriceSens = optstocksensbylr(LRTree, OptSpec, Strike, Settle,
ExerciseDates, Name,Value)

```

\section*{Description}

PriceSens = optstocksensbylr(LRTree, OptSpec, Strike, Settle, ExerciseDates) calculates option prices or sensitivities using a Leisen-Reimer binomial tree model.

PriceSens = optstocksensbylr(LRTree, OptSpec, Strike, Settle, ExerciseDates, Name, Value) calculates option prices or sensitivities using a LeisenReimer binomial tree with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{LRTree}

Stock tree structure created by lrtree.

\section*{OptSpec}

NINST-by-1 cell array of character vectors 'call' or 'put'.

\section*{Strike}

NINST-by-1 (European/American) or NINST-by-NSTRIKES (Bermuda) matrix of strike price values. Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

\section*{Settle}

NINST-by-1 matrix of settlement or trade dates.

\section*{ExerciseDates}

NINST-by-1(European/American) or NINST-by-NSTRIKEDATES (Bermuda) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one ExerciseDate on the option expiry date. For the American type, the option can be exercised on any tree data between the ValuationDate and tree maturity. The last element of each row must be the same as the maturity of the tree.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

\section*{'AmericanOpt'}

NINST-by- 1 flags with values of 0 (European/Bermuda) or 1 (American).
Default: 0

\section*{'OutSpec'}

NOUT-by-1 or 1-by-NOUT cell array of character vectors indicating the nature and order of the outputs for the function. Possible values are Price, Delta, Gamma, Vega, Lambda, Rho, and All.

Default: Price

\section*{Output Arguments}

\section*{PriceSens}

NINST-by-1 expected prices or sensitivities values.

\section*{Examples}

\section*{Compute Option Prices and Sensitivities Using a Leisen-Reimer Binomial Tree Model}

This example shows how to compute option prices and sensitivities using a LeisenReimer binomial tree model. Consider European call and put options with an exercise price of \(\$ 100\) that expire on December 1, 2010. The underlying stock is trading at \(\$ 100\) on June 1, 2010 and has a volatility of \(30 \%\) per annum. The annualized continuously compounded risk-free rate is \(7 \%\) per annum. Using this data, compute the price, delta and gamma of the options using the Leisen-Reimer model with a tree of 25 time steps and the PP2 method.
```

AssetPrice = 100;
Strike = 100;
ValuationDate = 'June-1-2010';
Maturity = 'December-1-2010';
% define StockSpec
Sigma = 0.3;
StockSpec = stockspec(Sigma, AssetPrice);
% define RateSpec
Rates = 0.07;
Settle = ValuationDate;
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);
% build the Leisen-Reimer (LR) tree with 25 time steps
LRTimeSpec = lrtimespec(ValuationDate, Maturity, 25);
% use the PP2 method
LRMethod = 'PP2';
TreeLR = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike, 'method', LRMethod);
% compute prices and sensitivities using the LR model:
OptSpec = {'call'; 'put'};
OutSpec = {'Price', 'Delta', 'Gamma'};

```
```

[Price, Delta, Gamma] = optstocksensbylr(TreeLR, OptSpec, Strike, Settle, ...
Maturity, 'OutSpec', OutSpec)
Price =
10.1332
6.6937
Delta =
0.6056
-0.3944
Gamma =
0.0185
0.0185

```
- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Pricing European Call Options Using Different Equity Models"

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\section*{References}

Leisen D.P., M. Reimer. "Binomial Models for Option Valuation - Examining and Improving Convergence." Applied Mathematical Finance. Number 3, 1996, pp. 319-346.

\author{
See Also \\ lrtree | optstockbylr \\ Introduced in R2010b
}

\section*{optstocksensbyrgw}

Determine American call option prices or sensitivities using Roll-Geske-Whaley option pricing model

\section*{Syntax}

PriceSens = optstocksensbyrgw(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline RateSpec & The annualized continuously compounded rate term structure. For information on the interest rate specification, see intenvset. \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & NINST-by-1 cell array of character vectors 'call' or 'put'. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline OutSpec & \begin{tabular}{l}
(Optional) All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case-insensitive and partial matches are allowed provided no ambiguities exist. Valid parameter names are: \\
- NOUT-by-1 or 1-by-NOUT cell array of character vectors indicating the nature and order of the outputs for the function. Possible values are: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
For example, OutSpec = \{'Price'; 'Lambda'; \\
'Rho' \(\}\) specifies that the output should be Price, Lambda, and Rho, in that order. \\
To invoke from a function: [Price, Lambda, Rho] = optstocksensbyrgw(..., 'OutSpec', \{'Price', 'Lambda', 'Rho'\}) \\
OutSpec = \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};. \\
- Default is OutSpec \(=\{\) 'Price' \(\}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

PriceSens = optstocksensbyrgw(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...) computes American call option prices or sensitivities using the Roll-Geske-Whaley option pricing model.

PriceSens is a NINST-by- 1 vector of expected prices or sensitivities values.

Note: optstocksensbyrgw computes prices of American calls with a single cash dividend using the Roll-Geske-Whaley option pricing model. All sensitivities are evaluated by computing a discrete approximation of the partial derivative. This means that the option is revalued with a fractional change for each relevant parameter, and the change in the option value divided by the increment, is the approximated sensitivity value.

\section*{Examples}

\section*{Compute American Call Option Prices and Sensitivities Using the Roll-Geske-Whaley Option Pricing Model}

This example shows how to compute American call option prices and sensitivities using the Roll-Geske-Whaley option pricing model. Consider an American stock option with
an exercise price of \(\$ 82\) on January 1, 2008 that expires on May 1, 2008. Assume the underlying stock pays dividends of \(\$ 4\) on April 1, 2008. The stock is trading at \(\$ 80\) and has a volatility of \(30 \%\) per annum. The risk-free rate is \(6 \%\) per annum. Using this data, calculate the price and the value of delta and gamma of the American call using the Roll-Geske-Whaley option pricing model.
```

AssetPrice = 80;
Settle = 'Jan-01-2008';
Maturity = 'May-01-2008';
Strike = 82;
Rate = 0.06;
Sigma = 0.3;
DivAmount = 4;
DivDate = 'Apr-01-2008';
% define the RateSpec and StockSpec
StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1);
% define the OutSpec
OutSpec = {'Price', 'Delta', 'Gamma'};
[Price, Delta, Gamma] = optstocksensbyrgw(RateSpec, StockSpec, Settle,...
Maturity, Strike,'OutSpec', OutSpec)
Price =
4.3860
Delta =
0.5022
Gamma =
0.0336

```
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing Using the Roll-Geske-Whaley Model" on page 3-145

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
impvbyrgw | intenvset | optstockbyrgw | stockspec

Introduced in R2008b

\section*{optstockbystt}

Price vanilla options on stocks using standard trinomial tree

\section*{Syntax}
[Price,PriceTree] = optstockbystt(STTTree,OptSpec,Strike,Settle, ExerciseDates)
[Price,PriceTree] = optstockbystt( \(\qquad\) ,Name, Value)

\section*{Description}
[Price,PriceTree] = optstockbystt(STTTree,OptSpec,Strike,Settle, ExerciseDates) returns vanilla option (American, European, or Bermudan) prices on stocks using a standard trinomial (STT) tree.
[Price,PriceTree] = optstockbystt( \(\qquad\) , Name, Value) returns vanilla option (American, European, or Bermudan) prices on stocks using a standard trinomial (STT) tree with optional name-value pair arguments.

\section*{Examples}

\section*{Price Call and Put Stock Options Using the Standard Trinomial Tree Model}

Create a RateSpec.
```

StartDates = 'Jan-1-2009';
EndDates = 'Jan-1-2013';
Rates = 0.035;
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

```

RateSpec =
```

 FinObj: 'RateSpec'
 Compounding: -1
 Disc: 0.8694
 Rates: 0.0350
 EndTimes: 4
 StartTimes: 0
 EndDates: 735235
 StartDates: 733774
 ValuationDate: 733774
Basis: 1
EndMonthRule: 1

```

\section*{Create a StockSpec.}
```

AssetPrice = 85;

```
Sigma = 0.15;
StockSpec = stockspec(Sigma, AssetPrice)
StockSpec =
    struct with fields:
            FinObj: 'StockSpec'
            Sigma: 0.1500
        AssetPrice: 85
        DividendType: []
        DividendAmounts: 0
        ExDividendDates: []
Create an STTTree.
NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)
STTTree =
    struct with fields:
    FinObj: 'STStockTree'
```

StockSpec: [1\times1 struct]
TimeSpec: [1×1 struct]
RateSpec: [1×1 struct]
tObs: [$$
\begin{array}{lllll}{0}&{1}&{2}&{3}&{4}\end{array}
$$]
dObs: [733774 734139 734504 734869 735235]
STree: {1\times5 cell}
Probs: {[3\times1 double] [3\times3 double] [}3\times5\mathrm{ double] [}3\times7\mathrm{ double]}

```

Define the call and put options and compute the price.
```

Settle = '1/1/09';
ExerciseDates = [datenum('1/1/11'); datenum('1/1/12')];
OptSpec = {'call';'put'};
Strike =[100;80];
Price = optstockbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates)

```
Price =
    4.5025
    3.0603

\section*{Input Arguments}

\section*{STTTree - Stock tree structure for standard trinomial tree}
structure
Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

\section*{OptSpec - Definition of option}
character vector with value 'call' or 'put'
Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

\section*{Strike - Option strike price values}
nonnegative scalar integer

Option strike price value, specified with nonnegative scalar integer:
- For a European option, use a scalar of strike price.
- For a Bermuda option, use a 1-by-NSTRIKES vector of strike prices.
- For an American option, use a scalar of strike price.

\section*{Data Types: single | double}

\section*{Settle - Settlement date or trade date}
date character vector | nonnegative scalar integer
Settlement date or trade date for the vanilla option, specified as a date character vector or nonnegative scalar integer.

Note: The Settle date for every vanilla option is set to the ValuationDate of the stock tree. The vanilla argument, Settle, is ignored.

\section*{Data Types: char | double}

\section*{ExerciseDates - Option exercise dates}
date character vector | nonnegative integer
Option exercise dates, specified as a date character vector or nonnegative scalar integer:
- For a European option, use a 1-by-1 vector of dates. For a European option, there is only one ExerciseDates on the option expiry date.
- For a Bermuda option, use a 1-by-NSTRIKES vector of dates.
- For an American option, use a 1-by-2 vector of exercise date boundaries. The option can be exercised on any date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a 1 -by- 1 vector of serial date numbers or cell array of character vectors, the option can be exercised between ValuationDate of the stock tree and the single listed ExerciseDates.

\section*{Data Types: double | char}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Example: Price =
optstockbystt(RateSpec,StockSpec, OptSpec,Strike, Settle, ExerciseDates, 'Americar
'AmericanOpt ' - Option type
0 European or Bermuda (default) | scalar with values [0,1]
Option type, specified as positive integer scalar flags with values:
- 0 - European or Bermuda
- 1-American

Data Types: single | double

\section*{Output Arguments}

\section*{Price - Expected price of vanilla option at time 0 \\ scalar}

Expected price of the vanilla option at time 0, returned as a 1-by-1 scalar.

\section*{PriceTree - Structure containing trees of vectors of instrument prices and accrued interest for each node}
structure
Structure containing trees of vectors of instrument prices and accrued interest, and a vector of observation times for each node. Values are:
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{More About}
- "Vanilla Option" on page 3-42
- "Supported Equity Derivatives" on page 3-24
```

See Also
instoptstock | sttprice | sttsens | stttimespec | stttree
Introduced in R2015b

```

\section*{optpricebysim}

Price option given simulated underlying values

\section*{Syntax}

Price = optpricebysim(RateSpec,SimulatedPrices,Times,OptSpec, Strike,ExerciseTimes)
Price = optpricebysim( \(\qquad\) , Name, Value)

\section*{Description}

Price = optpricebysim(RateSpec,SimulatedPrices,Times,OptSpec, Strike, ExerciseTimes) calculates the price of European, American, and Berumdan call/put options based on risk-neutral simulation of the underlying asset. For American and Bermudan options, the Longstaff-Schwartz least squares method calculates the early exercise premium.

Price = optpricebysim( \(\qquad\) , Name, Value) calculates the price of European, American, and Berumdan call/put options based on risk-neutral simulation of the underlying asset using optional name-value pair arguments. For American options, the Longstaff-Schwartz least squares method calculates the early exercise premium.

\section*{Examples}

\section*{Compute the Price of an American Option Using Monte Carlo Simulation Based on Geometric Brownian Motion}

Define the option.
```

SO = 100; % Initial price of underlying asset
Sigma = .2; % Volatility of underlying asset
Strike = 110; % Strike
OptSpec = 'call'; % Call option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)

```
```

Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

```

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian Motion (GBM) using the simBySolution method from Financial Toolbox \({ }^{\mathrm{TM}}\).
```

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', SO);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

```

Create the interest-rate term structure to define RateSpec.
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9512
Rates: 0.0500
EndTimes: 1
StartTimes: 0
EndDates: 735600
StartDates: 735235
ValuationDate: 735235
Basis: 0
EndMonthRule: 1
Price an American option.

```
```

SimulatedPrices = squeeze(Paths);

```
SimulatedPrices = squeeze(Paths);
OptPrice = optpricebysim(RateSpec, SimulatedPrices, Times, OptSpec, ...
OptPrice = optpricebysim(RateSpec, SimulatedPrices, Times, OptSpec, ...
    Strike, T, 'AmericanOpt', 1)
```

 Strike, T, 'AmericanOpt', 1)
    ```

\section*{Compute the Price of an American Asian Option Using Monte Carlo Simulation Based on Geometric Brownian Motion}

Define the option
```

SO = 100; % Initial price of underlying asset
Sigma = .2; % Volatility of underlying asset
Strike = 110; % Strike
OptSpec = 'call'; % Call option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

```

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian Motion (GBM) using the simBySolution method from Financial Toolbox \({ }^{\text {TM }}\).
```

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', SO);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

```

Create the interest-rate term structure to define RateSpec.
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9512

```
```

 Rates: 0.0500
 EndTimes: 1
 StartTimes: 0
 EndDates: 735600
 StartDates: 735235
 ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Price an American Asian option (arithmetic mean) by finding the average price over periods.
```

AvgPrices = zeros(NPERIODS+1, NTRIALS);
for i = 1:NPERIODS+1
AvgPrices(i,:) = mean(squeeze(Paths(1:i,:,:)));
end
AsianPrice = optpricebysim(RateSpec, AvgPrices, Times, OptSpec, ...
Strike, T, 'AmericanOpt', 1)

```
AsianPrice =
    1.8540

\section*{Compute the Price of an American Lookback Option Using Monte Carlo Simulation Based on Geometric Brownian Motion}

Define the option.
```

SO = 100; % Initial price of underlying asset
Sigma = .2; % Volatility of underlying asset
Strike = 110; % Strike
OptSpec = 'call'; % Call option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

```

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian Motion (GBM) using the simBySolution method from Financial Toolbox \({ }^{\mathrm{TM}}\).
```

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', SO);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

```

Create the interest-rate term structure to define RateSpec.
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9512
Rates: 0.0500
EndTimes: 1
StartTimes: 0
EndDates: 735600
StartDates: 735235
ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Price an American lookback option by finding the maximum price over periods.
```

MaxPrices = zeros(NPERIODS+1, NTRIALS);
LastPrice = squeeze(Paths(1,:,:))';
for i = 1:NPERIODS+1;
MaxPrices(i,:) = max([LastPrice; Paths(i,:)]);
LastPrice = MaxPrices(i,:);
end
LookbackPrice = optpricebysim(RateSpec, MaxPrices, Times, OptSpec, ...
Strike, T, 'AmericanOpt', 1)
LookbackPrice =

```

\section*{Compute the Price of a Bermudan Option Using Monte Carlo Simulation Based on Geometric Brownian Motion}

Define the option.
```

SO = 80; % Initial price of underlying asset
Sigma = .3; % Volatility of underlying asset
Strike = 75; % Strike
OptSpec = 'put'; % Put option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
ExerciseDates = {'1-Jun-2013', '1-Jan-2014'}; % Exercise dates of option
r=.05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years
ExerciseTimes = yearfrac(Settle, ExerciseDates, Basis)'; % Exercise times

```

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian Motion (GBM) using the simBySolution method from Financial Toolbox \({ }^{\mathrm{TM}}\).
```

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', SO);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

```

Create the interest-rate term structure to define RateSpec.
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1

```
```

 Disc: 0.9512
 Rates: 0.0500
 EndTimes: 1
 StartTimes: 0
 EndDates: 735600
 StartDates: 735235
 ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Price the Bermudan option.
SimulatedPrices = squeeze(Paths);
BermudanPrice = optpricebysim(RateSpec, SimulatedPrices, Times, ... OptSpec, Strike, ExerciseTimes)

BermudanPrice =
5.3950

\section*{Compute the Price of an American Spread Option Using Monte Carlo Simulation Based on Geometric Brownian Motion}

Define the option.
```

S1 = 110; % Price of first underlying asset
S2 = 100; % Price of second underlying asset
Sigma1 = .1; % Volatility of first underlying asset
Sigma2 = .15; % Volatility of second underlying asset
Strike = 15; % Strike
Rho = .3; % Correlation between underlyings
OptSpec = 'put'; % Put option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

```

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian Motion (GBM) using the simBySolution method from Financial Toolbox \({ }^{\mathrm{TM}}\).
```

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
SpreadGBM = gbm(r*eye(2), diag([Sigma1;Sigma2]),'Correlation',...
[1 Rho;Rho 1],'StartState',[S1;S2]);
[Paths, Times, Z] = simBySolution(SpreadGBM, NPERIODS,'NTRIALS',NTRIALS,...
'DeltaTime',dt,'Antithetic',true);

```

Create the interest-rate term structure to define RateSpec.
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9512
Rates: 0.0500
EndTimes: 1
StartTimes: 0
EndDates: 735600
StartDates: 735235
ValuationDate: 735235
Basis: 0
EndMonthRule: 1

```

Price the American spread option.
```

Spread = squeeze(Paths(:,1,:) - Paths(:,2,:));
SpreadPrice = optpricebysim(RateSpec, Spread, Times, OptSpec, Strike, ...
T, 'AmericanOpt', 1)
SpreadPrice =
9.0007

```
- "Pricing Asian Options"

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure of risk-free rates}
structure
Interest-rate term structure of risk-free rates (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. The valuation date must be at the settlement date of the option, and the day-count basis and end-of-month rule must be the same as those used to calculate the Times input. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{SimulatedPrices - Simulated prices}
matrix
Simulated prices, specified using a (NumPeriods + 1)-by-NumTrials matrix of riskneutral simulated prices. The first element of SimulatedPrices is the initial value at time 0 .

Data Types: single | double

\section*{Times - Annual time factors associated with simulated prices vector}

Annual time factors associated with simulated prices, specified using a (NumPeriods + 1)-by- 1 column vector. Each element of Times is associated with the corresponding row of SimulatedPrices. The first element of Times must be 0 (current time).

\section*{Data Types: single | double}

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put'
Definition of option as 'call' or 'put', specified as a character vector.
Data Types: char

\section*{Strike - Option strike price values \\ scalar | function handle}

Option strike price values, specified as a scalar value Strike price. Strike for Bermudan options can be specified as a 1-by-NSTRIKES vector or a function handle that returns the value of the strike given the time of the strike.

Data Types: single | double | function_handle

\section*{ExerciseTimes - Exercise time for option}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Exercise time for the option, specified as a date character vector or a nonnegative integer as follows:
- For a European or Bermudan option, ExerciseTimes is a 1-by-1 (European) or 1 -by-NSTRIKES (Bermudan) vector of exercise times. For a European option, there is only one ExerciseTimes on the option expiry date.
- For an American option, ExerciseTimes is a 1-by-2 vector of exercise time boundaries. The option exercises on any date between, or including, the pair of times on that row. If ExerciseTimes is 1-by-1, the option exercises between time 0 and the single listed ExerciseTimes.

Data Types: double | char | cell

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

Example: Price = optpricebysim(RateSpec, Prices, Times,OptSpec, Settle, Strike, ExerciseTimes, 'Ameri

\section*{'AmericanOpt ' - Option type}

0 European or Bermudan (default) | scalar flag with value [0, 1]
Option type, specified as an integer scalar flag with these values:
- 0 - European or Bermudan
- 1-American

For American options, the Longstaff-Schwartz least squares method calculates the early exercise premium.

Data Types: single | double

\section*{Output Arguments}

\section*{Price - Price of option}
scalar
Price of the option, returned as a scalar value.

\section*{More About}
- "Creating Geometric Brownian Motion (GBM) Models"
- Supported Equity Derivatives on page 3-24

\author{
See Also \\ gbm | intenvset | simBySolution \\ Introduced in R2014a
}

\section*{rangefloatbybdt}

Price range floating note using Black-Derman-Toy tree

\section*{Syntax}

Price = rangefloatbybdt(BDTTree, Spread, Settle, Maturity, RateSched)
[Price,PriceTree] = rangefloatbybdt(BDTTree,Spread,Settle, Maturity, RateSched, Name, Value)

\section*{Description}

Price = rangefloatbybdt(BDTTree,Spread,Settle,Maturity, RateSched) calculates the price of the range note instrument at the valuation date using a BDT model.
[Price,PriceTree] = rangefloatbybdt(BDTTree,Spread,Settle, Maturity, RateSched, Name, Value) calculates the price of the range note instrument at the valuation date and the price evolution for one or more range instruments using a BDT model with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{BDTTree}

Interest-rate tree structure created by bdttree.

\section*{Spread}

NINST-by- 1 vector of the number of basis points over the reference rate.

\section*{Settle}

NINST-by- 1 vector of dates representing the settle date of the range floating note.

Note: The Settle date for every range floating instrument is set to the ValuationDate of the BDT tree. The range floating note argument Settle is ignored.

\section*{Maturity}

NINST-by- 1 vector of dates representing the maturity date of the floating-rate note.

\section*{RateSched}

NINST-by-1 vector of structures representing the range of rates within which cash flows are nonzero. Each element of the structure array contains two fields:
- RateSched. Dates - NDates-by-1 cell array of dates corresponding to the range schedule.
- RateSched.Rates - NDates-by-2 array with the first column containing the lower bound of the range and the second column containing the upper bound of the range. Cash flow for date RateSched. Dates \((n)\) is nonzero for rates in the range RateSched.Rates \((n, 1)<\) Rate \(<\) RateSched. Rate \((n, 2)\).

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

\section*{'Basis'}

NINST-by-1 vector representing the day-count basis used when annualizing the input forward rate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{'EndMonthRule'}

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and 0 (not in effect).
Default: 1 (in effect)

\section*{'Options'}

Structure created with derivset containing derivatives pricing options.

\section*{Default: None}

\section*{'Principal'}

NINST-by-1 vector of the notional principal amount.
Default: 100

\section*{'Reset'}

NINST-by-1 vector representing the frequency of payments per year.

\section*{Default: 1}

\section*{Output Arguments}

\section*{Price}

NINST-by-1 vector for expected prices at time 0 .

\section*{PriceTree}

Structure containing trees of vectors of instrument prices and accrued interest, and a vector of observation times for each node. Values are:
- PriceTree.PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{Examples}

\section*{Compute the Price of a Range Note Using a Black-Derman-Toy Tree}

This example shows how to compute the price of a range note using a Black-Derman-Toy tree with the following interest-rate term structure data.
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;
% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525 0.0675; 0.06 0.08];
% data to build the tree is as follows:
% assume the volatility is 10%.
Sigma = 0.1;
BDTTS = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVS, RS, BDTTS);
% price the instrument
Price = rangefloatbybdt(BDTT, Spread, Settle, Maturity, RateSched)

```

\section*{Price =}
97.5267
- "Computing Instrument Prices" on page 2-84
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11

\section*{More About}

\section*{Range Note Instrument}

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate as long as the reference rate is within a certain range. If the reference rate is outside of the range, the coupon rate is 0 for that period. This type of instrument entitles the holder to cash flows that depend on the level of some reference interest rate and are floored to be positive. The note holder gets direct exposure to the reference rate. In return for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates than comparable standard products, like vanilla floating notes.
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Jarrow, Robert. "Modelling Fixed Income Securities and Interest Rate Options." Stanford Economics and Finance. 2nd Edition. 2002.

\section*{See Also}
bdttree | bondbybdt | cfbybdt | fixedbybdt | floatbybdt | floorbybdt | instrangefloat | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw | swapbybdt

Introduced in R2012a

\section*{rangefloatbybk}

Price range floating note using Black-Karasinski tree

\section*{Syntax}

Price = rangefloatbybk(BKTree,Spread,Settle, Maturity, RateSched)
[Price,PriceTree] = rangefloatbybk(BKTree,Spread,Settle, Maturity, RateSched, Name,Value)

\section*{Description}

Price = rangefloatbybk(BKTree,Spread,Settle, Maturity, RateSched) calculates the price of the range note instrument at the valuation date using a BK model.
[Price,PriceTree] = rangefloatbybk(BKTree,Spread,Settle, Maturity, RateSched, Name, Value) calculates the price of the range note instrument at the valuation date and the price evolution for one or more range instruments using a BK model with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{BKTree}

Interest-rate tree structure created by bktree.

\section*{Spread}

NINST-by- 1 vector of the number of basis points over the reference rate.

\section*{Settle}

NINST-by-1 vector of dates representing the settle date of the range floating note.

Note: The Settle date for every range floating instrument is set to the ValuationDate of the BK tree. The range floating note argument Settle is ignored.

\section*{Maturity}

NINST-by- 1 vector of dates representing the maturity date of the floating-rate note.

\section*{RateSched}

NINST-by-1 vector of structures representing the range of rates within which cash flows are nonzero. Each element of the structure array contains two fields:
- RateSched. Dates - NDates-by- 1 cell array of dates corresponding to the range schedule.
- RateSched.Rates - NDates-by-2 array with the first column containing the lower bound of the range and the second column containing the upper bound of the range. Cash flow for date RateSched. Dates \((n)\) is nonzero for rates in the range RateSched.Rates \((n, 1)<\) Rate \(<\) RateSched.Rate \((n, 2)\).

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

\section*{'Basis'}

NINST-by-1 vector representing the day-count basis used when annualizing the input forward rate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual/360
- \(3=\) actual/ 365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{'EndMonthRule'}

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and 0 (not in effect).
Default: 1 (in effect)
'Options'
Structure created with derivset containing derivatives pricing options.
Default: None

\section*{'Principal'}

NINST-by- 1 vector of the notional principal amount.
Default: 100
'Reset'
NINST-by-1 vector representing the frequency of payments per year.

\section*{Default: 1}

\section*{Output Arguments}

\section*{Price}

NINST-by-1 vector for expected prices at time 0.

\section*{PriceTree}

Structure containing trees of vectors of instrument prices and accrued interest, and a vector of observation times for each node. Values are:
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{Examples}

\section*{Compute the Price of a Range Note Using a Black-Karasinski Tree}

This example shows how to compute the price of a range note using a Black-Karasinski tree with the following interest-rate term structure data.
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;
% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525 0.0675; 0.06 0.08];
% data to build the tree is as follows:
VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;
BKVS = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTS = bktimespec(RS.ValuationDate, VolDates, Compounding);

```
```

BKT = bktree(BKVS, RS, BKTS);
% price the instrument
Price = rangefloatbybk(BKT, Spread, Settle, Maturity, RateSched)
Price =

```
    102.7574
- "Pricing Using Interest-Rate Tree Models" on page 2-84

\section*{More About}

\section*{Range Note Instrument}

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate as long as the reference rate is within a certain range. If the reference rate is outside of the range, the coupon rate is 0 for that period. This type of instrument entitles the holder to cash flows that depend on the level of some reference interest rate and are floored to be positive. The note holder gets direct exposure to the reference rate. In return for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates than comparable standard products, like vanilla floating notes.
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Jarrow, Robert. "Modelling Fixed Income Securities and Interest Rate Options." Stanford Economics and Finance. 2nd Edition. 2002.

\section*{See Also}
bktree | bondbybk | capbybk | cfbybk | fixedbybk | floorbybk | instrangefloat | rangefloatbybdt | rangefloatbyhjm | rangefloatbyhw | swapbybk

11 Functions - Alphabetical List

\section*{Introduced in R2012a}

\section*{rangefloatbyhim}

Price range floating note using Heath-Jarrow-Morton tree

\section*{Syntax}

Price = rangefloatbyhjm(HJMTree,Spread,Settle,Maturity, RateSched)
[Price,PriceTree] = rangefloatbyhjm(HJMTree,Spread,Settle, Maturity, RateSched, Name,Value)

\section*{Description}

Price = rangefloatbyhjm(HJMTree,Spread,Settle, Maturity, RateSched) calculates the price of the range note instrument at the valuation date using an HJM model.
[Price,PriceTree] = rangefloatbyhjm(HJMTree,Spread,Settle, Maturity, RateSched, Name, Value) calculates the price of the range note instrument at the valuation date and the price evolution for one or more range instruments using an HJM model with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{HJMTree}

Interest-rate tree structure created by hjmtree.

\section*{Spread}

NINST-by- 1 vector of the number of basis points over the reference rate.

\section*{Settle}

NINST-by-1 vector of dates representing the settle date of the range floating note.

Note: The Settle date for every range floating instrument is set to the ValuationDate of the HJM tree. The range floating note argument Settle is ignored.

\section*{Maturity}

NINST-by- 1 vector of dates representing the maturity date of the floating-rate note.

\section*{RateSched}

NINST-by-1 vector of structures representing the range of rates within which cash flows are nonzero. Each element of the structure array contains two fields:
- RateSched. Dates - NDates-by- 1 cell array of dates corresponding to the range schedule.
- RateSched. Rates - NDates-by-2 array with the first column containing the lower bound of the range and the second column containing the upper bound of the range. Cash flow for date RateSched. Dates \((n)\) is nonzero for rates in the range RateSched.Rates \((n, 1)<\) Rate \(<\) RateSched.Rate \((n, 2)\).

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.

\section*{'Basis'}

NINST-by-1 vector representing the day-count basis used when annualizing the input forward rate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual/360
- \(3=\) actual/ 365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{'EndMonthRule'}

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and 0 (not in effect).
Default: 1 (in effect)

\section*{'Options'}

Structure created with derivset containing derivatives pricing options.

\section*{Default: None}

\section*{'Principal'}

NINST-by- 1 vector of the notional principal amount.

\section*{Default: 100}

\section*{'Reset'}

NINST-by-1 vector representing the frequency of payments per year.

\section*{Default: 1}

\section*{Output Arguments}

\section*{Price}

NINST-by-1 vector for expected prices at time 0 .

\section*{PriceTree}

Structure containing trees of vectors of instrument prices and accrued interest, and a vector of observation times for each node. Values are:
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{Examples}

\section*{Compute the Price of a Range Note Using a Heath-Jarrow-Morton Tree}

This example shows how to compute the price of a range note using a Heath-JarrowMorton tree with the following interest-rate term structure data.
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;
% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525 0.0675; 0.06 0.08];
% data to build the tree is as follows:
Volatility = [.2; .19; .18; .17];
CurveTerm = [1; 2; 3; 4];
MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
HJMTS = hjmtimespec(ValuationDate, MaTree);
HJMVS = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVS, RS, HJMTS);
% price the instrument

```
```

Price = rangefloatbyhjm(HJMT, Spread, Settle, Maturity, RateSched)

```
Price =
90.2348
- "Computing Instrument Prices" on page 2-84

\section*{More About}

\section*{Range Note Instrument}

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate as long as the reference rate is within a certain range. If the reference rate is outside of the range, the coupon rate is 0 for that period. This type of instrument entitles the holder to cash flows that depend on the level of some reference interest rate and are floored to be positive. The note holder gets direct exposure to the reference rate. In return for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates than comparable standard products, like vanilla floating notes.
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Jarrow, Robert. "Modelling Fixed Income Securities and Interest Rate Options." Stanford Economics and Finance. 2nd Edition. 2002.
```

See Also
bondbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm | floorbyhjm | hjmtree | instrangefloat | rangefloatbybdt | rangefloatbybk | rangefloatbyhw | swapbyhjm

```

\section*{Introduced in R2012a}

\section*{rangefloatbyhw}

Price range floating note using Hull-White tree

\section*{Syntax}

Price = rangefloatbyhw(HWTree,Spread,Settle, Maturity, RateSched)
[Price,PriceTree] = rangefloatbyhw(HWTree,Spread,Settle, Maturity, RateSched, Name, Value)

\section*{Description}

Price = rangefloatbyhw(HWTree,Spread,Settle, Maturity, RateSched) calculates the price of the range note instrument at the valuation date using an HW model.
[Price,PriceTree] = rangefloatbyhw(HWTree,Spread,Settle, Maturity, RateSched, Name, Value) calculates the price of the range note instrument at the valuation date and the price evolution for one or more range instruments using an HW model with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{HWTree}

Interest-rate tree structure created by hwtree.

\section*{Spread}

NINST-by- 1 vector of the number of basis points over the reference rate.

\section*{Settle}

NINST-by- 1 vector of dates representing the settle date of the range floating note.

Note: The Settle date for every range floating instrument is set to the ValuationDate of the HW tree. The range floating note argument Settle is ignored.

\section*{Maturity}

NINST-by- 1 vector of dates representing the maturity date of the floating-rate note.

\section*{RateSched}

NINST-by-1 vector of structures representing the range of rates within which cash flows are nonzero. Each element of the structure array contains two fields:
- RateSched. Dates - NDates-by-1 cell array of dates corresponding to the range schedule.
- RateSched.Rates - NDates-by-2 array with the first column containing the lower bound of the range and the second column containing the upper bound of the range. Cash flow for date RateSched. Dates \((n)\) is nonzero for rates in the range RateSched.Rates \((n, 1)<\) Rate \(<\) RateSched. Rate \((n, 2)\).

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

\section*{'Basis'}

NINST-by-1 vector representing the day-count basis used when annualizing the input forward rate tree.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{'EndMonthRule'}

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and 0 (not in effect).
Default: 1 (in effect)

\section*{'Options'}

Structure created with derivset containing derivatives pricing options.

\section*{Default: None}

\section*{'Principal'}

NINST-by-1 vector of the notional principal amount.
Default: 100

\section*{'Reset'}

NINST-by-1 vector representing the frequency of payments per year.

\section*{Default: 1}

\section*{Output Arguments}

\section*{Price}

NINST-by-1 vector for expected prices at time 0.

\section*{PriceTree}

Structure containing trees of vectors of instrument prices and accrued interest, and a vector of observation times for each node. Values are:
- PriceTree.PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{Examples}

\section*{Compute the Price of a Range Note Using a Hull-White Tree}

This example shows how to compute the price of a range note using a Hull-White tree with the following interest-rate term structure data.
```

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;
% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];
% data to build the tree is as follows:
VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;
HWVS = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTS = hwtimespec(RS.ValuationDate, VolDates, Compounding);

```
```

HWT = hwtree(HWVS, RS, HWTS);
% price the instrument
Price = rangefloatbyhw(HWT, Spread, Settle, Maturity, RateSched)
Price =

```
    96.6107
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}

\section*{Range Note Instrument}

A range note is a structured (market-linked) security whose coupon rate is equal to the reference rate as long as the reference rate is within a certain range. If the reference rate is outside of the range, the coupon rate is 0 for that period. This type of instrument entitles the holder to cash flows that depend on the level of some reference interest rate and are floored to be positive. The note holder gets direct exposure to the reference rate. In return for the drawback that no interest is paid for the time the range is left, they offer higher coupon rates than comparable standard products, like vanilla floating notes.
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Jarrow, Robert. "Modelling Fixed Income Securities and Interest Rate Options." Stanford Economics and Finance. 2nd Edition. 2002.

\section*{See Also}
bondbyhw | capbyhw | cfbyhw | fixedbyhw | floorbyhw | hwtree | instrangefloat | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | swapbyhw

Introduced in R2012a

\section*{rate2disc}

Discount factors from interest rates

\section*{Syntax}

Usage 1: Interval points are input as times in periodic units.
```

Disc = rate2disc(Compounding, Rates, EndTimes)
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

```

Usage 2: ValuationDate is passed and interval points are input as dates.
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates, EndDates, StartDates, ValuationDate)
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates, EndDates, StartDates, ValuationDate, Basis, EndMonthRule)

\section*{Arguments}

Compounding

Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors (Disc):
- Compounding \(=0\) for simple interest
- Disc \(=1 /(1+Z * T)\), where \(T\) is time in years and simple interest assumes annual times \(F=1\).
- Compounding \(=1,2,3,4,6,12\)
- Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units, for example, \(T=F\) is one year.
- Compounding \(=365\)
- Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- Compounding = - 1 \\
- Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
\end{tabular} \\
\hline Rates & Number of points (NPOINTS) by number of curves (NCURVES) matrix of rates in decimal form. For example, \(5 \%\) is 0.05 in Rates. Rates are the yields over investment intervals from StartTimes, when the cash flow is valued, to EndTimes, when the cash flow is received. \\
\hline \multirow[t]{2}{*}{EndTimes} & NPOINTS-by-1 vector or scalar of times in periodic units ending the interval to discount over. \\
\hline & Note: When ValuationDate is not passed, the third and fourth arguments (EndTimes and StartTimes) are interpreted as times. \\
\hline StartTimes & (Optional) NPOINTS-by-1 vector or scalar of times in periodic units starting the interval to discount over. Default \(=0\). \\
\hline \multirow[t]{2}{*}{EndDates} & NPOINTS-by- 1 vector or scalar of serial maturity dates ending the interval to discount over. \\
\hline & Note: : When ValuationDate is passed, the third and fourth arguments (EndDates and StartDates) are interpreted as dates. The date ValuationDate is used as the zero point for computing the times. \\
\hline StartDates & \begin{tabular}{l}
(Optional) NPOINTS-by-1 vector or scalar of serial dates starting the interval to discount over. StartDates must be earlier than EndDates. \\
Default = ValuationDate.
\end{tabular} \\
\hline ValuationDate & Scalar value in serial date number form representing the observation date of the investment horizons entered in StartDates and EndDates. Required in Usage 2. Omitted or passed as an empty matrix to invoke Usage 1. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument when using Usage 2. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- 10 = actual/365 (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule when using Usage 2. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline
\end{tabular}

\section*{Description}

Usage 1: Disc = rate2disc(Compounding, Rates, EndTimes) or Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes) where interval points are input as times in periodic units.

Usage 2: [Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates, EndDates, StartDates, ValuationDate) or [Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates, EndDates, StartDates, ValuationDate, Basis, EndMonthRule) where ValuationDate is passed and interval points are input as dates.
rate2disc computes the discounts over a series of NPOINTS time intervals given the annualized yield over those intervals. NCURVES different rate curves can be translated at once if they have the same time structure. The time intervals can represent a zero curve or a forward curve.

The output Disc is an NPOINTS-by-NCURVES column vector of discount factors in decimal form representing the value at time StartTime of a unit cash flow received at time EndTime.

You can specify the investment intervals either with input times (Usage 1) or with input dates (Usage 2). Entering ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time interpretations.

\section*{For Usage 1:}
- StartTimes is an NPOINTS-by-1 column vector of times starting the interval to discount over, measured in periodic units.
- EndTimes is an NPOINTS-by- 1 column vector of times ending the interval to discount over, measured in periodic units.

\section*{For Usage 2:}
- StartDates is an NPOINTS-by-1 column vector of serial dates starting the interval to discount over, measured in days.
- EndDates is an NPOINTS-by-1 column vector of serial dates ending the interval to discount over, measured in days.

If Compounding = 365 (daily), StartDates and EndDates are measured in days as in Usage 2. Otherwise, in Usage 1, the arguments contain values, T, computed from SIA semiannual time factors, Tsemi, by the formula \(T=T\) semi/2*F, where \(F\) is the compounding frequency.

\section*{Examples}

Example 1 demonstrates Usage 1. Compute discounts from a zero curve at 6 months, 12 months, and 24 months. The times to the cash flows are 1,2 , and 4 . You are computing the present value (at time 0 ) of the cash flows.
```

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndTimes = [1; 2; 4];
Disc = rate2disc(Compounding, Rates, EndTimes)
Disc =
0.9756
0.9426
0.8799

```

Example 2 demonstrates Usage 2. Compute discounts from a zero curve at 6 months, 12 months, and 24 months. Use dates to specify the ending time horizon.
```

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndDates = ['10/15/97'; '04/15/98'; '04/15/99'];
ValuationDate = '4/15/97';
Disc = rate2disc(Compounding, Rates, EndDates, [], ValuationDate)
Disc =
0.9756
0.9426
0.8799

```

Example 3 demonstrates Usage 1. Compute discounts from the 1-year forward rates beginning now, in six months, and in 12 months. Use monthly compounding. The times to the cash flows are \(12,18,24\), and the forward times are \(0,6,12\).
```

Compounding = 12;
Rates = [0.05; 0.04; 0.06];
EndTimes = [12; 18; 24];
StartTimes = [0; 6; 12];
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
Disc =
0.9513
0.9609
0.9419

```

\section*{More About}
- "Understanding the Interest-Rate Term Structure" on page 2-40

\author{
See Also \\ disc2rate | ratetimes \\ Introduced before R2006a
}

\section*{ratetimes}

Change time intervals defining interest-rate environment

\section*{Syntax}

Usage 1: ValuationDate not passed; third through sixth arguments are interpreted as times.
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes)

Usage 2: ValuationDate passed and interval points input as dates.
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Compounding & \begin{tabular}{l}
Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors (Disc): \\
- Compounding \(=0\) for simple interest \\
- Disc \(=1 /(1+Z * T)\), where \(T\) is time in years and simple interest assumes annual times \(F=1\). \\
Compounding \(=1,2,3,4,6,12\) \\
- Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units, for example, \(\mathrm{T}=\mathrm{F}\) is one year. \\
- Compounding \(=365\) \\
- Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- Compounding \(=-1\) \\
- Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
\end{tabular} \\
\hline RefRates & NREFPTS-by-NCURVES matrix of reference rates in decimal form. RefRates are the yields over investment intervals from RefStartTimes, when the cash flow is valued, to RefEndTimes, when the cash flow is received. \\
\hline RefEndTimes & NREFPTS-by- 1 vector or scalar of times in periodic units ending the intervals corresponding to RefRates. \\
\hline RefStartTimes & (Optional) NREFPTS-by- 1 vector or scalar of times in periodic units starting the intervals corresponding to RefRates. Default \(=0\). \\
\hline EndTimes & NPOINTS-by-1 vector or scalar of times in periodic units ending the interval to discount over. \\
\hline StartTimes & (Optional) NPOINTS-by- 1 vector or scalar of times in periodic units starting the interval to discount over. Default \(=0\). \\
\hline RefEndDates & NREFPTS-by- 1 vector or scalar of serial dates ending the intervals corresponding to RefRates. \\
\hline RefStartDates & (Optional) NREFPTS-by- 1 vector or scalar of serial dates starting the intervals corresponding to RefRates. Default = ValuationDate. \\
\hline EndDates & NPOINTS-by-1 vector or scalar of serial maturity dates ending the interval to discount over. \\
\hline StartDates & \begin{tabular}{l}
(Optional) NPOINTS-by-1 vector or scalar of serial dates starting the interval to discount over. StartDates must be earlier than EndDates. \\
Default = ValuationDate.
\end{tabular} \\
\hline ValuationDate & Scalar value in serial date number form representing the observation date of the investment horizons entered in StartDates and EndDates. Required in Usage 2. Omitted or passed as an empty matrix to invoke Usage 1. \\
\hline
\end{tabular}

\section*{Description}
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes) and [Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate) change time intervals defining an interest-rate environment.
ratetimes takes an interest-rate environment defined by yields over one collection of time intervals and computes the yields over another set of time intervals. The zero rate is assumed to be piecewise linear in time.

Rates is an NPOINTS-by-NCURVES matrix of rates implied by the reference interest-rate structure and sampled at new intervals.

StartTimes is an NPOINTS-by-1 column vector of times starting the new intervals where rates are desired, measured in periodic units.

EndTimes is an NPOINTS-by- 1 column vector of times ending the new intervals, measured in periodic units.

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days. The arguments otherwise contain values, T, computed from SIA semiannual time factors, Tsemi, by the formula \(T=T s e m i / 2 * F\), where \(F\) is the compounding frequency.

You can specify the investment intervals either with input times (Usage 1) or with input dates (Usage 2). Entering the argument ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time interpretations.

\section*{Examples}

Example 1. The reference environment is a collection of zero rates at 6, 12, and 24 months. Create a collection of 1 -year forward rates beginning at 0,6 , and 12 months.
```

RefRates = [0.05; 0.06; 0.065];
RefEndTimes = [1; 2; 4];
StartTimes = [0; 1; 2];
EndTimes = [2; 3; 4];
Rates = ratetimes(2, RefRates, RefEndTimes, 0, EndTimes,...
StartTimes)
Rates =

```
0.0600
0.0688
0.0700

Example 2. Interpolate a zero yield curve to different dates. Zero curves start at the default date of ValuationDate.

RefRates \(=\) [0.04; 0.05; 0.052];
RefDates = [729756; 729907; 730121];
Dates \(=\) [730241; 730486];
ValuationDate = 729391;
Rates = ratetimes(2, RefRates, RefDates, [], Dates, [],...
ValuationDate)
Rates =
0.0520
0.0520

\section*{More About}
- "Understanding the Interest-Rate Term Structure" on page 2-40

\author{
See Also \\ disc2rate | rate2disc
}

Introduced before R2006a

\section*{spreadbykirk}

Price European spread options using Kirk pricing model

\section*{Syntax}

Price = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity, OptSpec,Strike, Corr)

\section*{Description}

Price = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle, Maturity, OptSpec, Strike, Corr) returns the price for a European spread option using the Kirk pricing model.

\section*{Examples}

\section*{Compute the Price of a Spread Option Using the Kirk Model}

Define the spread option dates.
```

Settle = '01-Jan-2012';
Maturity = '01-April-2012';

```

Define asset 1. Price and volatility of RBOB gasoline
```

Price1gallon = 2.85; % \$/gallon
Price1 = Price1gallon * 42; % \$/barrel
Vol1 = 0.29;

```

Define asset 2. Price and volatility of WTI crude oil
```

Price2 = 93.20; % \$/barrel
Vol2 = 0.36;

```

Define the correlation between the underlying asset prices of asset 1 and asset 2.
```

Corr = 0.42;

```

Define the spread option.
```

OptSpec = 'call';
Strike = 20;
Define the RateSpec.
rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9876
Rates: 0.0500
EndTimes: 0.2500
StartTimes: 0
EndDates: 734960
StartDates: 734869
ValuationDate: 734869
Basis: 1
EndMonthRule: 1

```

Define the StockSpec for the two assets.
```

StockSpec1 = stockspec(Vol1, Price1)

```
StockSpec2 = stockspec(Vol2, Price2)
StockSpec1 =
    struct with fields:
            FinObj: 'StockSpec'
                        Sigma: 0.2900
            AssetPrice: 119.7000
            DividendType: []
```

 DividendAmounts: 0
 ExDividendDates: []
 StockSpec2 =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3600
AssetPrice: 93.2000
DividendType: []
DividendAmounts: 0
ExDividendDates: []
Compute the European spread option price based on the Kirk model.
Price = spreadbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr)
Price =
11.1904

- "Pricing European and American Spread Options"
- "Pricing Asian Options"

```

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
```

structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

```

\section*{StockSpec1 - Stock specification for underlying asset 1}
```

structure

```

Stock specification for underlying asset 1. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

\section*{StockSpec2 - Stock specification for underlying asset 2}
structure
Stock specification for underlying asset 2. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

\section*{Settle - Settlement dates for spread option}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement dates for the spread option, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.

Data Types: double | char | cell

\section*{Maturity - Maturity date for spread option}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of date character vectors

Maturity date for spread option, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.

Data Types: double | char | cell

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.

\section*{Data Types: cell | char}

\section*{Strike - Option strike price values}
integer | vector of integers
Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.

If Strike is equal to 0 , the function computes the price of an exchange option.
Data Types: single | double

\section*{Corr - Correlation between underlying asset prices}
integer | vector of integers
Correlation between underlying asset prices, specified as an integer using a NINST-by-1 vector.
Data Types: single | double

\section*{Output Arguments}

Price - Expected prices of spread option
vector
Expected prices of the spread option, returned as a NINST-by-1 vector.

\section*{More About}
- "Spread Option" on page 3-43
- "Supported Energy Derivatives" on page 3-41
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec )

\section*{References}

Carmona, R., Durrleman, V. "Pricing and Hedging Spread Options." SIAM Review. Vol. 45, No. 4, pp. 627-685, Society for Industrial and Applied Mathematics, 2003.
See Alsospreadbybjs | spreadbyfd | spreadbyls | spreadsensbykirk
Introduced in R2013b

\section*{spreadbybjs}

Price European spread options using Bjerksund-Stensland pricing model

\section*{Syntax}

Price = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle, Maturity, OptSpec,Strike,Corr)

\section*{Description}

Price = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle,Maturity, OptSpec, Strike, Corr) returns the price for a European spread option using the Bjerksund-Stensland pricing model.

\section*{Examples}

\section*{Compute the Price of a Spread Option Using the Bjerksund-Stensland Model}

Define the spread option dates.
```

Settle = '01-Jan-2012';
Maturity = '01-April-2012';

```

Define asset 1. Price and volatility of RBOB gasoline
```

Price1gallon = 2.85; % \$/gallon
Price1 = Price1gallon * 42; % \$/barrel
Vol1 = 0.29;

```

Define asset 2 . Price and volatility of WTI crude oil
```

Price2 = 93.20; % \$/barrel
Vol2 = 0.36;

```

Define the correlation between the underlying asset prices of asset 1 and asset 2.
```

Corr = 0.42;

```

Define the spread option.
```

OptSpec = 'call';
Strike = 20;
Define the RateSpec.
rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9876
Rates: 0.0500
EndTimes: 0.2500
StartTimes: 0
EndDates: 734960
StartDates: 734869
ValuationDate: 734869
Basis: 1
EndMonthRule: 1

```

Define the StockSpec for the two assets.
```

StockSpec1 = stockspec(Vol1, Price1)

```
StockSpec2 = stockspec(Vol2, Price2)
StockSpec1 =
    struct with fields:
            FinObj: 'StockSpec'
                        Sigma: 0.2900
            AssetPrice: 119.7000
            DividendType: []
```

 DividendAmounts: 0
 ExDividendDates: []
 StockSpec2 =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3600
AssetPrice: 93.2000
DividendType: []
DividendAmounts: 0
ExDividendDates: []
Compute the European spread option price based on the Bjerksund-Stensland model.

```
```

Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...

```
Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr)
Price =
    11.2000
- "Pricing European and American Spread Options"
- "Pricing Asian Options"
```


Input Arguments

RateSpec - Interest-rate term structure

```
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct
```


StockSpec1 - Stock specification for underlying asset 1

```
structure
```

Stock specification for underlying asset 1. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

StockSpec2 - Stock specification for underlying asset 2

structure
Stock specification for underlying asset 2. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec. Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

Settle - Settlement dates for spread option

nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement dates for the spread option, specified as a date character vector or as nonnegative integers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Maturity - Maturity date for spread option

nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Maturity date for spread option, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.

Data Types: double | char | cell

OptSpec - Definition of option

character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.

Data Types: char | cell

Strike - Option strike price values

integer | vector of integers
Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.

If Strike is equal to zero, the function computes the price of an exchange option.
Data Types: single | double

Corr - Correlation between underlying asset prices

integer | vector of integers
Correlation between underlying asset prices, specified as an integer using a NINST-by-1 vector.
Data Types: single | double

Output Arguments

Price - Expected prices of spread option
vector
Expected prices of the spread option, returned as a NINST-by-1 vector.

More About

- "Spread Option" on page 3-43
- "Supported Energy Derivatives" on page 3-41
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec)

References

Carmona, R., Durrleman, V. "Pricing and Hedging Spread Options." SIAM Review. Vol. 45, No. 4, pp. 627-685, Society for Industrial and Applied Mathematics, 2003.

Bjerksund, Petter, Stensland, Gunnar. "Closed form spread option valuation." Department of Finance, NHH, 2006.

See Also spreadbybjs | spreadbyfd | spreadbyls | spreadsensbykirk
Introduced in R2013b

spreadbyfd

Price European or American spread options using finite difference method

Syntax

Price = spreadbyfd(RateSpec,StockSpec1,StockSpec2,Settle, Maturity, OptSpec,Strike,Corr) Price = spreadbyfd(__ , Name, Value)
[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd(RateSpec,StockSpec1,StockSpec2,Settle, Maturity, OptSpec,Strike, Corr) [Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd(__, Name, Value)

Description

Price = spreadbyfd(RateSpec,StockSpec1,StockSpec2,Settle, Maturity, OptSpec, Strike, Corr) returns the price of European or American call or put spread options using the Alternate Direction Implicit (ADI) finite difference method. The spread is between the asset defined in StockSpec1 minus the asset defined in StockSpec2.

Price = spreadbyfd(\qquad , Name, Value) returns the price of European or American call or put spread options using the Alternate Direction Implicit (ADI) finite difference method using optional name-value pair arguments. The spread is between the asset defined in StockSpec1 minus the asset defined in StockSpec2.
[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec,Strike, Corr) returns the Price, PriceGrid, AssetPrice1, AssetPrice2, and Times for a European or American call or put spread options using the Alternate Direction Implicit (ADI) finite difference method. The spread is between the asset defined in StockSpec1 minus the asset defined in StockSpec2.
[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd(\qquad , Name,

Value) returns the Price, PriceGrid, AssetPrice1, AssetPrice2, and Times for a European or American call or put spread options using the Alternate Direction Implicit (ADI) finite difference method using optional name-value pair arguments. The spread is between the asset defined in StockSpec1 minus the asset defined in StockSpec2.

Examples

Compute the Price of a Spread Option Using the Alternate Direction Implicit (ADI) Finite Difference Method

Define the spread option dates.

```
Settle = '01-Jan-2012';
Maturity = '01-April-2012';
```

Define asset 1. Price and volatility of RBOB gasoline

```
Price1gallon = 2.85; % $/gallon
Price1 = Price1gallon * 42; % $/barrel
Vol1 = 0.29;
```

Define asset 2. Price and volatility of WTI crude oil

```
Price2 = 93.20; % $/barrel
Vol2 = 0.36;
```

Define the correlation between the underlying asset prices of asset 1 and asset 2.

```
Corr = 0.42;
```

Define the spread option.

```
OptSpec = 'call';
Strike = 20;
```

Define the RateSpec.

```
rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
```

```
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)
RateSpec =
    struct with fields:
            FinObj: 'RateSpec'
            Compounding: -1
                        Disc: 0.9876
                    Rates: 0.0500
            EndTimes: 0.2500
            StartTimes: 0
            EndDates: 734960
            StartDates: 734869
        ValuationDate: 734869
            Basis: 1
            EndMonthRule: 1
```

Define the StockSpec for the two assets.

```
StockSpec1 = stockspec(Vol1, Price1)
StockSpec2 = stockspec(Vol2, Price2)
StockSpec1 =
    struct with fields:
                        FinObj: 'StockSpec'
                        Sigma: 0.2900
                AssetPrice: 119.7000
            DividendType: []
        DividendAmounts: 0
        ExDividendDates: []
StockSpec2 =
        struct with fields:
            FinObj: 'StockSpec'
            Sigma: 0.3600
```

Compute the spread option price based on the Alternate Direction Implicit (ADI) finite difference method.

```
[Price, PriceGrid, AssetPrice1, AssetPrice2, Times] = ...
    spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr);
```

Display the price.
Price

Price =
11.1998

Plot the finite difference grid.

```
mesh(AssetPrice1, AssetPrice2, PriceGrid(:, :, 1)');
    title('Spread Option Prices for Range of Underlying Prices');
    xlabel('Price of underlying asset 1');
    ylabel('Price of underlying asset 2');
    zlabel('Price of spread option');
```


Spread Option Prices for Range of Underlying Prices

Price of underlying asset 2

- "Pricing European and American Spread Options"
- "Pricing Asian Options"

Input Arguments

RateSpec - Interest-rate term structure

structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

StockSpec 1 - Stock specification for underlying asset 1

structure
Stock specification for underlying asset 1. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

StockSpec2 - Stock specification for underlying asset 2

structure
Stock specification for underlying asset 2. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

Settle - Settlement dates for spread option

nonnegative integer \| vector of nonnegative integers | date character vector | cell array of character vectors

Settlement dates for the spread option, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.
Data Types: double | char | cell

Maturity - Maturity date for spread option

nonnegative integer | vector of nonnegative integers | date character vector | cell array
of character vectors
Maturity date for spread option, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.

```
Data Types: double | char | cell
```


OptSpec - Definition of option

character vector with values 'call' or 'put ' | cell array of character vectors
Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.

Data Types: char | cell

Strike - Option strike price values

integer | vector of integers
Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.
Data Types: single | double

Corr - Correlation between underlying asset prices

integer | vector of integers
Correlation between underlying asset prices, specified as an integer using a NINST-by-1 vector.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: [Price, PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr,
'AssetPriceMin' - Minimum price for price grid boundary
if unspecified, StockSpec values are calculated based on asset distributions at maturity (default) | array

Minimum price for price grid boundary, specified by a 1 -by- 2 array. The first entry in the array corresponds to the first asset defined by StockSpec1 and the second entry corresponds to the second asset defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the execution time. It is highly recommended to use the optional arguments AssetPriceMin, AssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of the output and a reasonable execution time.

Data Types: single | double

'AssetPriceMax ' - Maximum price for price grid boundary

if unspecified, StockSpec values are calculated based on asset distributions at maturity (default) | array

Maximum price for price grid boundary, specified by a 1-by-2 array. The first entry in the array corresponds to the first asset defined by StockSpec1 and the second entry corresponds to the second asset defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the execution time. It is highly recommended to use the optional arguments AssetPriceMin, AssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of the output and a reasonable execution time.
Data Types: single | double

'PriceGridSize' - Size for finite difference grid [300,300] (default) | array

Size for finite difference grid, specified by a 1-by-2 array. The first entry corresponds to the first asset defined by StockSpec1 and the second entry corresponds to the second asset defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the execution time. It is highly recommended to use the optional argumentsAssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of the output and a reasonable execution time.

Data Types: single | double

'TimeGridSize ' - Size of the time grid for finite difference grid
 100 (default) | scalar | nonnegative integer

Size of the time grid for finite difference grid, specified as a nonnegative integer.

For the finite difference method, the composition of the grid affects the quality of the output and the execution time. It is highly recommended to use the optional argumentsAssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of the output and a reasonable execution time.

Data Types: single | double

'AmericanOpt ' - Option type

0 European (default) | scalar | vector of positive integers [0, 1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:

- 0 - European
- 1-American

Data Types: single | double

Output Arguments

Price - Expected prices of spread option
 vector

Expected prices of the spread option, returned as a NINST-by-1 vector.
PriceGrid - Grid containing prices calculated by finite difference method array

Grid containing prices calculated by finite difference method, returned as a 3-D grid with a size of PriceGridSize(1) * PriceGridSize(2) * TimeGridSize. The price for $t=$ 0 is contained in PriceGrid(:, :, 1).

AssetPrice1 - Prices for first asset defined by StockSpec1

vector
Prices for first asset defined by StockSpec1, corresponding to the first dimension of PriceGrid, returned as a vector.

AssetPrice2 - Prices for second asset defined by StockSpec2
vector

Prices for second asset defined by StockSpec2, corresponding to the second dimension of PriceGrid, returned as a vector.

Times - Times corresponding to third dimension of PriceGrid vector

Times corresponding to third dimension of PriceGrid, returned as a vector.

More About

- "Spread Option" on page 3-43
- "Supported Energy Derivatives" on page 3-41
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec)

References

Carmona, R., Durrleman, V. "Pricing and Hedging Spread Options." SIAM Review. Vol. 45, No. 4, pp. 627-685, Society for Industrial and Applied Mathematics, 2003.

Villeneuve, S., Zanette, A. "Parabolic ADI Methods for Pricing American Options on Two Stocks." Mathematics of Operations Research. Vol. 27, No. 1, pp. 121-149, INFORMS, 2002.

Ikonen, S., Toivanen, J. Efficient Numerical Methods for Pricing American Options Under Stochastic Volatility. Wiley InterScience, 2007.

See Also

spreadbybjs | spreadbykirk | spreadbyls | spreadsensbyfd

Introduced in R2013b

spreadbyls

Price European or American spread options using Monte Carlo simulations

Syntax

```
Price = spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)
Price = spreadbyls( __ ,Name,Value)
[Price,Paths,Times,Z] = spreadbyls(RateSpec,StockSpec1,StockSpec2,
Settle,Maturity,
OptSpec,Strike,Corr)
[Price,Paths,Times,Z] = spreadbyls(___ ,Name,Value)
```


Description

Price $=$ spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle, Maturity, OptSpec, Strike, Corr) returns the price of a European or American call or put spread option using Monte Carlo simulations.

Price = spreadbyls(\qquad , Name, Value) returns the price of a European or American call or put spread option using Monte Carlo simulations using optional namevalue pair arguments.
[Price,Paths,Times,Z] = spreadbyls(RateSpec,StockSpec1,StockSpec2, Settle, Maturity, OptSpec, Strike, Corr) returns the Price, Paths, Times, and Z of a European or American call or put spread option using Monte Carlo simulations.
[Price,Paths,Times,Z] = spreadbyls(__ , Name, Value) returns the Price, Paths, Times, and Z of a European or American call or put spread option using Monte Carlo simulations using optional name-value pair arguments.

Examples

Compute the Price of a Spread Option Using Monte Carlo Simulation

Define the spread option dates.

```
Settle = '01-Jan-2012';
Maturity = '01-April-2012';
```

Define asset 1. Price and volatility of RBOB gasoline

```
Price1gallon = 2.85; % $/gallon
Price1 = Price1gallon * 42; % $/barrel
Vol1 = 0.29;
```

Define asset 2. Price and volatility of WTI crude oil

```
Price2 = 93.20; % $/barrel
Vol2 = 0.36;
```

Define the correlation between the underlying asset prices of asset 1 and asset 2.

```
Corr = 0.42;
```

Define the spread option.

```
OptSpec = 'call';
Strike = 20;
```

Define the RateSpec.

```
rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)
RateSpec =
    struct with fields:
            FinObj: 'RateSpec'
            Compounding: -1
            Disc: 0.9876
```

```
            Rates: 0.0500
            EndTimes: 0.2500
        StartTimes: 0
        EndDates: 734960
    StartDates: 734869
ValuationDate: 734869
    Basis: 1
    EndMonthRule: 1
```

Define the StockSpec for the two assets.

```
StockSpec1 = stockspec(Vol1, Price1)
StockSpec2 = stockspec(Vol2, Price2)
```

StockSpec1 =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2900
AssetPrice: 119.7000
DividendType: []
DividendAmounts: 0
ExDividendDates: []
StockSpec2 =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.3600
AssetPrice: 93.2000
DividendType: []
DividendAmounts: 0
ExDividendDates: []

Compute the spread option price using Monte Carlo simulation based on the LongstaffSchwartz model.

Price = spreadbyls(RateSpec, StockSpec1, StockSpec2, Settle, ... Maturity, OptSpec, Strike, Corr)

Price =
11.0799

- "Pricing European and American Spread Options"
- "Pricing Asian Options"

Input Arguments

RateSpec - Interest-rate term structure

structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

StockSpec 1 - Stock specification for underlying asset 1
 structure

Stock specification for underlying asset 1. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

StockSpec2 - Stock specification for underlying asset 2

structure
Stock specification for underlying asset 2. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is
represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

Settle - Settlement date for spread option
 date character vector | nonnegative scalar integer

Settlement date for the spread option specified, as a date character vector or nonnegative scalar integer.

Data Types: char | double

Maturity - Maturity date for spread option

date character vector | nonnegative scalar integer
Maturity date for spread option, specified as a date character vector or a nonnegative scalar integer.

Data Types: char | double

OptSpec - Definition of option

character vector with values 'call' or 'put'
Definition of option as 'call' or 'put', specified as a character vector.
Data Types: char

Strike - Option strike price value
 nonnegative scalar integer

Option strike price value, specified, as a nonnegative scalar integer.
Data Types: single | double

Corr - Correlation between underlying asset prices

scalar integer
Correlation between underlying asset prices, specified as a scalar integer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: Price = spreadbyls(RateSpec,StockSpec1,StockSpec2, Settle, Maturity, OptSpec, Strike, Corr,

'AmericanOpt ' - Option type

0 European (default) | scalar with value [0,1]
Option type, specified as an integer scalar flag with value:

- 0 - European
- 1 -American

For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.
Data Types: single | double

' NumTrials ' - Scalar number of independent sample paths 1000 (default) | nonnegative scalar integer

Scalar number of independent sample paths (simulation trials), specified as a nonnegative integer.

Data Types: single | double

' NumPeriods ' - Scalar number of simulation periods per trial 100 (default) | nonnegative scalar integer

Scalar number of simulation periods per trial, specified as a nonnegative integer. NumPeriods is considered only when pricing European basket options. For American spread options, NumPeriod is equal to the number of exercise days during the life of the option.
Data Types: single | double

' Z' - Time series array of dependent random variates
 vector

Time series array of dependent random variates specified as a NumPeriods-by-2-by-NumTrials 3-D array. The Z value generates the Brownian motion vector (that is, Wiener processes) that drives the simulation.

Data Types: single | double

'Antithetic' - Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false

Indicator for antithetic sampling, specified with a value of true or false.
Data Types: logical

Output Arguments

Price - Expected price of spread option
 scalar

Expected price of the spread option, returned as a 1-by-1 scalar.

Paths - Simulated paths of correlated state variables

vector
Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-2-by-NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector $X(t)$ at time t for a given trial.

Times - Observation times associated with simulated paths vector

Observation times associated with simulated paths, returned as a NumPeriods +1 -by- 1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.

Z - Time series array of dependent random variates
 vector

Time series array of dependent random variates, returned as a NumPeriods-by-2-by-NumTrials 3-D array when Z is specified as an input argument. If the Z input argument is not specified, then the Z output argument contains the random variates generated internally.

More About

- "Spread Option" on page 3-43
- "Supported Energy Derivatives" on page 3-41
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec)

References

Carmona, R., Durrleman, V. "Pricing and Hedging Spread Options." SIAM Review. Vol. 45, No. 4, pp. 627-685, Society for Industrial and Applied Mathematics, 2003.

See Also

spreadbybjs | spreadbyfd | spreadbykirk | spreadsensbyls

Introduced in R2013b

spreadsensbykirk

Calculate European spread option prices or sensitivities using Kirk pricing model

Syntax

```
PriceSens = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,
OptSpec,Strike,Corr)
PriceSens = spreadsensbykirk(
```

\qquad

``` , Name, Value)
```


Description

PriceSens = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle, Maturity,
OptSpec, Strike, Corr) returns the European spread option prices or sensitivities using the Kirk pricing model.

PriceSens = spreadsensbykirk(\qquad , Name, Value) returns the European spread option prices or sensitivities using the Kirk pricing model with optional name-value pair arguments.

Examples

Compute the Price and Sensitivities of a Spread Option Using the Kirk Model

Define the spread option dates.

```
Settle = '01-Jun-2012';
Maturity = '01-Sep-2012';
```

Define asset 1. Price and volatility of RBOB gasoline

```
Price1gallon = 2.85; % $/gallon
Price1 = Price1gallon * 42; % $/barrel
Vol1 = 0.29;
```

Define asset 2. Price and volatility of WTI crude oil

```
Price2 = 93.20; % $/barrel
Vol2 = 0.36;
```

Define the correlation between the underlying asset prices of asset 1 and asset 2 .

```
Corr = 0.42;
```

Define the spread option.

```
OptSpec = 'call';
Strike = 20;
```

Define the RateSpec.

```
rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)
RateSpec =
    struct with fields:
                    FinObj: 'RateSpec'
            Compounding: -1
                        Disc: 0.9876
                        Rates: 0.0500
            EndTimes: 0.2500
            StartTimes: 0
                EndDates: 735113
            StartDates: 735021
        ValuationDate: 735021
            Basis: 1
            EndMonthRule: 1
```

Define the StockSpec for the two assets.
StockSpec1 = stockspec(Vol1, Price1)
StockSpec2 = stockspec(Vol2, Price2)

```
StockSpec1 =
    struct with fields:
            FinObj: 'StockSpec'
                        Sigma: 0.2900
            AssetPrice: 119.7000
        DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
StockSpec2 =
struct with fields:
            FinObj: 'StockSpec'
                    Sigma: 0.3600
            AssetPrice: 93.2000
        DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
```

Compute the spread option price and sensitivities based on the Kirk model.

```
OutSpec = {'Price', 'Delta', 'Gamma'};
```

[Price, Delta, Gamma] = spreadsensbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)
Price =
11.1904
Delta =
$0.6722-0.6067$
Gamma =
$0.0191 \quad 0.0217$

- "Pricing European and American Spread Options"
- "Pricing Asian Options"

Input Arguments

RateSpec - Interest-rate term structure

structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

StockSpec 1 - Stock specification for underlying asset 1

structure
Stock specification for underlying asset 1. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

StockSpec2 - Stock specification for underlying asset 2

structure
Stock specification for underlying asset 2. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

Settle - Settlement dates for spread option
 nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement dates for the spread option, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.
Data Types: char | cell | double

Maturity - Maturity date for spread option

Abstract

nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Maturity date for spread option, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.

Data Types: char | cell | double

OptSpec - Definition of option

character vector with values 'call' or 'put ' | cell array of character vectors
Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike - Option strike price values

integer | vector of integers
Option strike price values, specified as an integer using as NINST-by-1 vector of strike price values.

If Strike is equal to zero, this function computes the price and sensitivities of an exchange option.
Data Types: single | double

Corr - Correlation between underlying asset prices

integer | vector of integers
Correlation between underlying asset prices, specified as an integer using as NINST-by-1 vector.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: PriceSens = spreadsensbykirk(RateSpec,StockSpec1,StockSpec2,Settle, Maturity, OptSpec, Strike \{'All'\})

```
'OutSpec' - Define outputs
{'Price'} (default)| character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda','Rho','Theta', and 'All' | cell array of character vectors with
values 'Price','Delta','Gamma','Vega','Lambda','Rho','Theta', and 'All'
```

Define outputs specifying NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec $=$ \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:

Example: OutSpec = \{'delta', 'gamma', 'vega','lambda','rho','theta','price'\}

Data Types: char | cell

Output Arguments

PriceSens - Expected price or sensitivities values of spread option vector

Expected price or sensitivities values (defined by OutSpec) of the spread option, returned as a NINST-by- 1 or NINST-by- 2 vector.

More About

- "Spread Option" on page 3-43
- "Supported Energy Derivatives" on page 3-41
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec)

References

Carmona, R., Durrleman, V. "Pricing and Hedging Spread Options." SIAM Review. Vol. 45, No. 4, pp. 627-685, Society for Industrial and Applied Mathematics, 2003.

See Also

spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls

Introduced in R2013b

spreadsensbybjs

Calculate European spread option prices or sensitivities using Bjerksund-Stensland pricing model

Syntax

```
PriceSens = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,
OptSpec,Strike,Corr)
PriceSens = spreadsensbybjs(
```

\qquad

``` ,Name, Value)
```


Description

PriceSens = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle, Maturity,
OptSpec, Strike, Corr) returns the European spread option prices or sensitivities using the Bjerksund-Stensland pricing model.

PriceSens = spreadsensbybjs(\qquad , Name, Value) returns the European spread option prices or sensitivities using the Bjerksund-Stensland pricing model with optional name-value pair arguments.

Examples

Compute the Price and Sensitivities of a Spread Option Using the Bjerksund-Stensland Model

Define the spread option dates.

```
Settle = '01-Jun-2012';
Maturity = '01-Sep-2012';
```

Define asset 1. Price and volatility of RBOB gasoline

```
Price1gallon = 2.85; % $/gallon
Price1 = Price1gallon * 42; % $/barrel
Vol1 = 0.29;
```

Define asset 2. Price and volatility of WTI crude oil

```
Price2 = 93.20; % $/barrel
Vol2 = 0.36;
```

Define the correlation between the underlying asset prices of asset 1 and asset 2 .

```
Corr = 0.42;
```

Define the spread option.

```
OptSpec = 'call';
Strike = 20;
```

Define the RateSpec.

```
rates = 0.05;
Compounding = -1;
Basis = 1;
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)
RateSpec =
    struct with fields:
                    FinObj: 'RateSpec'
            Compounding: -1
                        Disc: 0.9876
                        Rates: 0.0500
                EndTimes: 0.2500
            StartTimes: 0
                EndDates: 735113
            StartDates: 735021
        ValuationDate: 735021
            Basis: 1
            EndMonthRule: 1
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...

Define the StockSpec for the two assets.

```
StockSpec1 = stockspec(Vol1, Price1)
```

StockSpec2 = stockspec(Vol2, Price2)

```
StockSpec1 =
    struct with fields:
                FinObj: 'StockSpec'
                        Sigma: 0.2900
            AssetPrice: 119.7000
        DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
StockSpec2 =
struct with fields:
            FinObj: 'StockSpec'
                    Sigma: 0.3600
            AssetPrice: 93.2000
        DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
```

Compute the spread option price and sensitivities based on the Kirk model.
OutSpec = \{'Price', 'Delta', 'Gamma'\};
[Price, Delta, Gamma] = spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ... Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

Price =
11.2000

Delta =
$0.6737-0.6082$

Gamma =
$0.0190 \quad 0.0216$

- "Pricing European and American Spread Options"
- "Pricing Asian Options"

Input Arguments

RateSpec - Interest-rate term structure

structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

StockSpec 1 - Stock specification for underlying asset 1

structure
Stock specification for underlying asset 1. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

StockSpec2 - Stock specification for underlying asset 2

structure
Stock specification for underlying asset 2. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

Settle - Settlement dates for spread option

nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement dates for the spread option, specified as a date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.

Data Types: char | cell | double

Maturity - Maturity date for spread option

nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Maturity date for spread option, specified as a date character vector or as nonnegative integers using a NINST-by-1 vector or cell array of character vector dates.

Data Types: char | cell | double

OptSpec - Definition of option

character vector with values 'call' or 'put ' | cell array of character vectors
Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.

```
Data Types: char | cell
```


Strike - Option strike price values

integer | vector of integers
Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.

If Strike is equal to zero the function computes the price and sensitivities of an exchange option.

Data Types: single | double

Corr - Correlation between underlying asset prices

integer | vector of integers
Correlation between underlying asset prices, specified as an integer using a NINST-by-1 vector.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: PriceSens = spreadsensbykirk(RateSpec,StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike \{'All'\})

```
'OutSpec' - Define outputs
```

\{'Price'\} (default) | character vector with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs specifying NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec $=$ \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:
Example: OutSpec = \{'delta', 'gamma', 'vega', 'lambda','rho','theta','price'\}
Data Types: char | cell

Output Arguments

PriceSens - Expected prices or sensitivities values of spread option vector

Expected prices or sensitivities values (defined by OutSpec) of the spread option, returned as a NINST-by-1 or NINST-by-2 vector.

More About

- "Spread Option" on page 3-43
- "Supported Energy Derivatives" on page 3-41
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec)

References

Carmona, R., Durrleman, V. "Pricing and Hedging Spread Options," SIAM Review. Vol. 45, No. 4, pp. 627-685, Society for Industrial and Applied Mathematics, 2003.

Bjerksund, Petter, Stensland, Gunnar. "Closed form spread option valuation." Department of Finance, NHH, 2006.

See Also

spreadbybjs | spreadbyfd | spreadbykirk \| spreadbyls

Introduced in R2013b

spreadsensbyls

Calculate price and sensitivities for European or American spread options using Monte Carlo simulations

Syntax

```
PriceSens = spreadsensbyls(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,
OptSpec,Strike,Corr)
PriceSens = spreadsensbyls( ___ ,Name,Value)
[PriceSens,Paths,Times,Z] = spreadsensbyls(RateSpec,StockSpec1,
StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)
[PriceSens,Paths,Times,Z] = spreadsensbyls(___ ,Name,Value)
```


Description

PriceSens = spreadsensbyls(RateSpec,StockSpec1,StockSpec2,Settle, Maturity, OptSpec, Strike, Corr) returns the price of a European or American call or put spread option using Monte Carlo simulations.

PriceSens = spreadsensbyls(__ , Name, Value) returns the price of a European or American call or put spread option using Monte Carlo simulations with optional namevalue pair arguments.
[PriceSens,Paths,Times, Z] = spreadsensbyls(RateSpec, StockSpec1, StockSpec2,Settle, Maturity, OptSpec, Strike, Corr) returns the PriceSens, Paths, Times, and Z of a European or American call or put spread option using Monte Carlo simulations.
[PriceSens,Paths,Times, Z] = spreadsensbyls(__ , Name, Value) returns the PriceSens, Paths, Times, and Z of a European or American call or put spread option using Monte Carlo simulations with optional name-value pair arguments.

Examples

Compute the Price and Sensitivities of a Spread Option Using Monte Carlo Simulation

Define the spread option dates.

```
Settle = '01-Jun-2012';
Maturity = '01-Sep-2012';
```

Define asset 1. Price and volatility of RBOB gasoline

```
Price1gallon = 2.85; % $/gallon
Price1 = Price1gallon * 42; % $/barrel
Vol1 = 0.29;
```

Define asset 2. Price and volatility of WTI crude oil

```
Price2 = 93.20; % $/barrel
Vol2 = 0.36;
```

Define the correlation between the underlying asset prices of asset 1 and asset 2.

```
Corr = 0.42;
```

Define the spread option.

```
OptSpec = 'call';
Strike = 20;
```

Define the RateSpec.

```
rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)
RateSpec =
    struct with fields:
            FinObj: 'RateSpec'
            Compounding: -1
            Disc: 0.9876
```

```
            Rates: 0.0500
            EndTimes: 0.2500
        StartTimes: 0
        EndDates: 735113
    StartDates: 735021
ValuationDate: 735021
    Basis: 1
    EndMonthRule: 1
```

Define the StockSpec for the two assets.

```
StockSpec1 = stockspec(Vol1, Price1)
StockSpec2 = stockspec(Vol2, Price2)
StockSpec1 =
    struct with fields:
                            FinObj: 'StockSpec'
                        Sigma: 0.2900
            AssetPrice: 119.7000
            DividendType: []
        DividendAmounts: 0
        ExDividendDates: []
StockSpec2 =
    struct with fields:
            FinObj: 'StockSpec'
            Sigma: 0.3600
            AssetPrice: 93.2000
            DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
```

Compute the spread option price and sensitivities using Monte Carlo simulation based on the Longstaff-Schwartz model.

OutSpec = \{'Price', 'Delta', 'Gamma'\};
[Price, Delta, Gamma] = spreadsensbyls(RateSpec, StockSpec1, StockSpec2, ...

```
Settle, Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)
Price =
    11.0799
Delta =
    0.6626 -0.5972
Gamma =
    0.0209 0.0240
```

- "Pricing European and American Spread Options"
- "Pricing Asian Options"

Input Arguments

RateSpec - Interest-rate term structure

structure

Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

StockSpec 1 - Stock specification for underlying asset 1

structure
Stock specification for underlying asset 1. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

StockSpec2 - Stock specification for underlying asset 2

structure
Stock specification for underlying asset 2. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

Settle - Settlement date for spread option

date character vector | nonnegative scalar integer
Settlement date for the spread option, specified as a date character vector or as a nonnegative scalar integer.
Data Types: char | double

Maturity - Maturity date for spread option

date character vector | nonnegative scalar integer
Maturity date for spread option, specified as a date character vector or as a nonnegative scalar integer.
Data Types: char | double

OptSpec - Definition of option

character vector with values 'call' or 'put'
Definition of option as 'call' or 'put', specified as a character vector.
Data Types: char

Strike - Option strike price value

nonnegative scalar integer
Option strike price value, specified as a scalar integer.
Data Types: single | double

Corr - Correlation between underlying asset prices

scalar integer
Correlation between underlying asset prices, specified as a scalar integer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: PriceSens = spreadbyls(RateSpec, StockSpec1,StockSpec2, Settle, Maturity, OptSpec, Strike, Corr,
'American0pt' - Option type
0 European (default) | scalar with values [0,1]
Option type, specified as a scalar integer flag with values:

- 0 - European
- 1 -American

For American options, the Longstaff-Schwartz least squares method is used to calculate the early exercise premium.

Data Types: single | double

' NumTrials ' - Number of independent sample paths
1000 (default) | nonnegative scalar integer

Number of independent sample paths (simulation trials) specified as a nonnegative scalar integer.

Data Types: single | double

' NumPeriods ' - Number of simulation periods per trial
 100 (default) | nonnegative scalar integer

Number of simulation periods per trial, specified as a nonnegative scalar integer. NumPeriods is considered only when pricing European basket options. For American
spread options, NumPeriods is equal to the number of exercise days during the life of the option.
Data Types: single | double

' Z' - Time series array of dependent random variates vector

Time series array of dependent random variates, specified as a NumPeriods-by-2-by-NumTrials 3-D array. The Z value generates the Brownian motion vector (that is, Wiener processes) that drives the simulation.

Data Types: single | double

'Antithetic' - Indicator for antithetic sampling
 false (default) | logical flag with value of true or false

Indicator for antithetic sampling, specified with value of true or false.
Data Types: logical

```
'OutSpec' - Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega','Lambda','Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price','Delta','Gamma', 'Vega','Lambda','Rho','Theta', and 'All'
```

Define outputs specifying NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec $=$ \{'All' $\}$ specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:

Example: OutSpec =

\{'delta', 'gamma', 'vega','lambda','rho','theta','price'\}
Data Types: char | cell

Output Arguments

PriceSens - Expected price or sensitivities of spread option
scalar

Expected price or sensitivities of the spread option, returned as a 1-by-1 array as defined by OutSpec.

Paths - Simulated paths of correlated state variables

vector
Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-2-by-NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector $X(t)$ at time t for a given trial.

Times - Observation times associated with simulated paths vector

Observation times associated with simulated paths, returned as a NumPeriods +1 -by- 1 column vector of observation times associated with the simulated paths. Each element of Times is associated with the corresponding row of Paths.

Z - Time series array of dependent random variates vector

Time series array of dependent random variates, returned as a NumPeriods-by-2-by-NumTrials 3-D array when Z is specified as an input argument. If the Z input argument is not specified, then the Z output argument contains the random variates generated internally.

More About

- "Spread Option" on page 3-43
- "Supported Energy Derivatives" on page 3-41
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec)

References

Carmona, R., Durrleman, V. "Pricing and Hedging Spread Options." SIAM Review. Vol. 45, No. 4, pp. 627-685, Society for Industrial and Applied Mathematics, 2003.

```
See Also
spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls
```

11 Functions - Alphabetical List

Introduced in R2013b

spreadsensbyfd

Calculate price and sensitivities of European or American spread options using finite difference method

Syntax

```
PriceSens = spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,
OptSpec,Strike,Corr)
PriceSens = spreadsensbyfd( ___ ,Name,Value)
[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] =
spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)
[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] =
spreadsensbyfd(
```

\qquad

``` , Name, Value)
```


Description

PriceSens = spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle, Maturity,
OptSpec, Strike, Corr) returns the price and sensitivities of European or American call or put spread options using the Alternate Direction Implicit (ADI) finite difference method. The spread is between the asset defined in StockSpec1 minus the asset defined in StockSpec2.

PriceSens = spreadsensbyfd(\qquad , Name, Value) returns the price and sensitivities of European or American call or put spread options using the Alternate Direction Implicit (ADI) finite difference method using optional name-value pair arguments. The spread is between the asset defined in StockSpec1 minus the asset defined in StockSpec2.
[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadsensbyfd(RateSpec,StockSpec1,StockSpec2, Settle, Maturity, OptSpec, Strike, Corr) returns the PriceSens, PriceGrid, AssetPrice1, AssetPrice2, and Times for European or American call or put spread options using the

Alternate Direction Implicit (ADI) finite difference method. The spread is between the asset defined in StockSpec1 minus the asset defined in StockSpec2.
[PriceSens, PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadsensbyfd(\qquad , Name, Value) returns the PriceSens, PriceGrid, AssetPrice1, AssetPrice2, and Times for European or American call or put spread options using the Alternate Direction Implicit (ADI) finite difference method using optional name-value pair arguments. The spread is between the asset defined in StockSpec1 minus the asset defined in StockSpec2.

Examples

Compute the Price of a Spread Option Using the Alternate Direction Implicit (ADI) Finite Difference Method

Define the spread option dates.

```
Settle = '01-Jun-2012';
Maturity = '01-Sep-2012';
```

Define asset 1. Price and volatility of RBOB gasoline

```
Price1gallon = 2.85; % $/gallon
Price1 = Price1gallon * 42; % $/barrel
Vol1 = 0.29;
```

Define asset 2. Price and volatility of WTI crude oil

```
Price2 = 93.20; % $/barrel
Vol2 = 0.36;
```

Define the correlation between the underlying asset prices of asset 1 and asset 2 .

```
Corr = 0.42;
```

Define the spread option.

```
OptSpec = 'call';
Strike = 20;
```

Define the RateSpec.
rates $=0.05$;
Compounding = -1;

```
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)
RateSpec =
    struct with fields:
            FinObj: 'RateSpec'
        Compounding: -1
            Disc: 0.9876
            Rates: 0.0500
            EndTimes: 0.2500
        StartTimes: 0
            EndDates: 735113
        StartDates: 735021
    ValuationDate: 735021
            Basis: 1
    EndMonthRule: 1
Define the StockSpec for the two assets.
```

```
StockSpec1 = stockspec(Vol1, Price1)
```

StockSpec1 = stockspec(Vol1, Price1)
StockSpec2 = stockspec(Vol2, Price2)
StockSpec2 = stockspec(Vol2, Price2)
StockSpec1 =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2900
AssetPrice: 119.7000
DividendType: []
DividendAmounts: 0
ExDividendDates: []
StockSpec2 =
struct with fields:

```
```

 FinObj: 'StockSpec'
 Sigma: 0.3600
 AssetPrice: 93.2000
 DividendType: []
 DividendAmounts: 0
ExDividendDates: []

```

Compute the spread option price and sensitivities based on the Alternate Direction Implicit (ADI) finite difference method.
```

OutSpec = {'Price', 'Delta', 'Gamma'};
[Price, Delta, Gamma, PriceGrid, AssetPrice1, AssetPrice2, Times] = ...
spreadsensbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);

```

Display the price and sensitivities.
Price
Delta
Gamma

\section*{Price =}
11.1998

Delta =
\(0.6736-0.6082\)

Gamma =
\[
0.0190 \quad 0.0214
\]

Plot the finite difference grid.
```

mesh(AssetPrice1, AssetPrice2, PriceGrid(:, :, 1)');
title('Spread Option Prices for Range of Underlying Prices');
xlabel('Price of underlying asset 1');
ylabel('Price of underlying asset 2');
zlabel('Price of spread option');

```

\section*{Spread Option Prices for Range of Underlying Prices}


Price of underlying asset 2
- "Pricing European and American Spread Options"
- "Pricing Asian Options"

\section*{Input Arguments}

\section*{RateSpec - Interest-rate term structure}
structure
Interest-rate term structure (annualized and continuously compounded), specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

\section*{Data Types: struct}

\section*{StockSpec 1 - Stock specification for underlying asset 1}
structure
Stock specification for underlying asset 1. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.

Data Types: struct

\section*{StockSpec2 - Stock specification for underlying asset 2}
structure
Stock specification for underlying asset 2. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, for physical commodities the price is represented by StockSpec.Asset, the volatility is represented by StockSpec.Sigma, and the convenience yield is represented by StockSpec.DividendAmounts.
Data Types: struct

\section*{Settle - Settlement dates for spread option}
nonnegative integer | vector of nonnegative integers | date character vector | cell array of character vectors

Settlement dates for the spread option, specified as date character vectors or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.
Data Types: char | cell | double

\section*{Maturity - Maturity date for spread option}
nonnegative integer | vector of nonnegative integers | date character vector | cell array
of character vectors
Maturity date for spread option, specified as date character vector or as nonnegative integers using a NINST-by- 1 vector or cell array of character vector dates.

Data Types: char | cell | double

\section*{OptSpec - Definition of option}
character vector with values 'call' or 'put ' | cell array of character vectors
Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors.

Data Types: char | cell

\section*{Strike - Option strike price values}
integer | vector of integers
Option strike price values, specified as an integer using a NINST-by-1 vector of strike price values.
Data Types: single | double

\section*{Corr - Correlation between underlying asset prices}
integer | vector of integers
Correlation between underlying asset prices, specified as an integer using aNINST-by-1 vector.

Data Types: single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: [PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadsensbyfd(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, 0 'AssetPriceMin', 'AssetPriceMax', 'PriceGridSize', 'TimeGridSize', 'AmericanOpt', 0 \{'All'\})
'OutSpec ' - Define outputs
\{'Price'\} (default)| character vector with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs specifying NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec \(=\) \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include each sensitivity:

Example: OutSpec =
\{'delta', 'gamma','vega','lambda','rho','theta','price'\}
Data Types: char | cell

\section*{'AssetPriceMin' - Minimum price for price grid boundary}
if unspecified, StockSpec values are calculated based on asset distributions at maturity (default) | array

Minimum price for price grid boundary, specified by a 1-by-2 array. The first entry in the array corresponds to the first asset defined by StockSpec1 and the second entry corresponds to the second asset defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the execution time. It is highly recommended to use the optional arguments AssetPriceMin, AssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of the output and a reasonable execution time.

Data Types: single | double

\section*{'AssetPriceMax ' - Maximum price for price grid boundary}
if unspecified, StockSpec values are calculated based on asset distributions at maturity (default) | array

Maximum price for price grid boundary, specified by a 1 -by- 2 array. The first entry in the array corresponds to the first asset defined by StockSpec1 and the second entry corresponds to the second asset defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the execution time. It is highly recommended to use the optional arguments AssetPriceMin, AssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of the output and a reasonable execution time.

Data Types: single | double

\section*{'PriceGridSize' - Size for finite difference grid \\ [300,300] (default) | array}

Size for finite difference grid, specified by a 1-by-2 array. The first entry corresponds to the first asset defined by StockSpec1 and the second entry corresponds to the second asset defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the output and the execution time. It is highly recommended to use the optional argumentsAssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of the output and a reasonable execution time.

Data Types: single | double

\section*{'TimeGridSize ' - Size of time grid for finite difference grid \\ 100 (default) | scalar | nonnegative integer}

Size of time grid for finite difference grid, specified as a nonnegative integer.
For the finite difference method, the composition of the grid affects the quality of the output and the execution time. It is highly recommended to use the optional argumentsAssetPriceMax, PriceGridSize, and TimeGridSize to control the composition of the grid to ensure the quality of the output and a reasonable execution time.

Data Types: single | double
'American0pt ' - Option type
0 European (default) | scalar | vector of positive integers [0, 1]
Option type, specified as NINST-by-1 positive integer scalar flags with values:
- 0 - European
- 1 -American

Data Types: single | double

\section*{Output Arguments}

PriceSens - Expected prices or sensitivities of spread option
scalar

Expected price or sensitivities of the spread option, returned as a 1-by-1 array as defined by OutSpec.

\section*{PriceGrid - Grid containing prices calculated by finite difference method array}

Grid containing prices calculated by finite difference method, returned as a 3-D grid with a size of PriceGridSize(1) * PriceGridSize(2) * TimeGridSize. The price for \(t=\) 0 is contained in PriceGrid (:, :, 1).

\section*{AssetPrice1 - Prices for first asset defined by StockSpec1}
vector
Prices for first asset defined by StockSpec1, corresponding to the first dimension of PriceGrid, returned as a vector.

\section*{AssetPrice2 - Prices for second asset defined by StockSpec2}
vector
Prices for second asset defined by StockSpec2, corresponding to the second dimension of PriceGrid, returned as a vector.

\section*{Times - Times corresponding to third dimension of PriceGrid vector}

Times corresponding to third dimension of PriceGrid, returned as a vector.

\section*{More About}
- "Spread Option" on page 3-43
- "Supported Energy Derivatives" on page 3-41
- Energy Trading \& Risk Management with MATLAB (47 min 31 sec )

\section*{References}

Carmona, R., Durrleman, V. "Pricing and Hedging Spread Options." SIAM Review. Vol. 45, No. 4, pp. 627-685, Society for Industrial and Applied Mathematics, 2003.

Villeneuve, S., Zanette, A. "Parabolic ADI Methods for Pricing American Options on Two Stocks." Mathematics of Operations Research. Vol. 27, No. 1, pp. 121-149, INFORMS, 2002.

Ikonen, S., Toivanen, J. Efficient Numerical Methods for Pricing American Options Under Stochastic Volatility. Wiley InterScience, 2007.

\author{
See Also spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls \\ Introduced in R2013b
}

\section*{stockoptspec}

Specify European stock option structure

\section*{Syntax}
[StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec, InterpMethod)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline OptPrice & NINST-by-1 vector of European option prices. \\
\hline Strike & NINST-by-1 vector of strike prices. \\
\hline Settle & Scalar date marking the settlement date. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & NINST-by-1 cell array of character vectors 'call' or 'put '. \\
\hline InterpMethod & \begin{tabular}{l} 
(Optional) Method of interpolation to use for option prices. \\
InterpMethod is [ \{ 'price ' \} I 'vol' ]. The default is 'price '. \\
By specifying 'vol' 'implied volatilities are used for interpolation \\
purposes. The interpolated values are then used to calculate the \\
implicit interpolated prices.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
[StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec, InterpMethod) creates a structure encapsulating the properties of a stock option structure.

\section*{Examples}

\section*{Specify a European Stock Option Structure}

This example shows how to specify a European stock option structure using the following data quoted from liquid options in the market with varying strikes and maturity.
```

Settle = '01/01/06';
Maturity = ['07/01/06';
'07/01/06';
'07/01/06';
'07/01/06';
'01/01/07';
'01/01/07';
'01/01/07';
'01/01/07';
'07/01/07';
'07/01/07';
'07/01/07';
'07/01/07';
'01/01/08';
'01/01/08';
'01/01/08';
'01/01/08'];
Strike = [113;
101;
100;
88;
128;
112;
100;
78;
144;
112;
100;
69;
162;
112;
100;
61];
OptPrice =[
0;
4.807905472659144;
1.306321897011867;
0.048039195057173;
0;
2.310953054191461;
1.421950392866235;
0.020414826276740;

```
```

 0;
 5.091986935627730;
 1.346534812295291;
 0.005101325584140;
 0;
 8.047628153217246;
 1.219653432150932;
 0.001041436654748];
 OptSpec = { 'call';
'call';
'put';
'put';
'call';
'call';
'put';
'put';
'call';
'call';
'put';
'put';
'call';
'call';
'put';
'put'};
StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)
StockOptSpec =
struct with fields:
FinObj: 'StockOptSpec'
OptPrice: [16\times1 double]
Strike: [16\times1 double]
Settle: 732678
Maturity: [16\times1 double]
OptSpec: {16\times1 cell}
InterpMethod: 'price'

```
- "Building Implied Trinomial Trees" on page 3-8
- "Examining Equity Trees" on page 3-18

\section*{More About}
- "Understanding Equity Trees" on page 3-2
- "Supported Equity Derivatives" on page 3-24

\author{
See Also \\ ittprice | itttree | stockspec \\ Introduced in R2007a
}

\section*{stockspec}

Create stock structure

\section*{Syntax}

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts, ExDividendDates)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Sigma & \begin{tabular}{l} 
NINST-by-1 decimal annual price volatility of underlying \\
security.
\end{tabular} \\
\hline AssetPrice & \begin{tabular}{l} 
NINST-by-1 vector of underlying asset price values at \\
time 0.
\end{tabular} \\
\hline DividendType & \begin{tabular}{l} 
(Optional) NINST-by-1 cell array of character vectors \\
specifying each stock's dividend type. Dividend type must \\
be either cash for actual dollar dividends, constant for \\
constant dividend yield, or continuous for continuous \\
dividend yield. This function does not handle stock option \\
dividends.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Note Dividends are assumed to be paid in cash. Noncash \\
dividends (stock) are not allowed. When combining two or \\
more types of dividends, shorter rows should be padded \\
with the value NaN.
\end{tabular} \\
\hline DividendAmounts & \begin{tabular}{l} 
(Optional) NINST-by-NDIV matrix of cash dividends or \\
NINST-by-1 vector representing a constant or continuous \\
annualized dividend yield.
\end{tabular} \\
\hline ExDividendDates & \begin{tabular}{l} 
(Optional) NINST-by-NDIV matrix of ex-dividend dates for \\
cash type or NINST-by-1 vector of ex-dividend dates for \\
constant dividend type. For continuous dividend type, \\
this argument should be ignored.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts, ExDividendDates) creates a MATLAB structure containing the properties of a stock.

Note: StockSpec handles other types of underliers when pricing instruments other than equities.

\section*{Examples}

\section*{Create a StockSpec for Stocks With Cash Dividends}

Consider a stock that provides four cash dividends of \(\$ 0.50\) on January 3, 2008, April 1, 2008, July 5, 2008 and October 1, 2008. The stock is trading at \(\$ 50\), and has a volatility of \(20 \%\) per annum. Using this data, create the structure StockSpec:
```

AssetPrice = 50;
Sigma = 0.20;
DividendType = {'cash'};
DividendAmounts = [0.50, 0.50, 0.50, 0.50];
ExDividendDates = {'03-Jan-2008', '01-Apr-2008', '05-July-2008', '01-0ct-2008'};
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2000
AssetPrice: 50
DividendType: {'cash'}
DividendAmounts: [0.5000 0.5000 0.5000 0.5000]
ExDividendDates: [733410 733499 733594 733682]

```
StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts, ExDividendDate

Examine the StockSpec structure.
```

datedisp(StockSpec.ExDividendDates)
StockSpec.DividendType
03-Jan-2008 01-Apr-2008 05-Jul-2008 01-0ct-2008
ans =
cell
'cash'

```

The StockSpec structure encapsulates the information of the stock and its four cash dividends.

\section*{Create a StockSpec for Stocks With Cash and Continuous Dividends}

Consider two stocks that are trading at \(\$ 40\) and \(\$ 35\). The first one provides two cash dividends of \(\$ 0.25\) on March 1, 2008 and June 1, 2008. The second stock provides a continuous dividend yield of \(3 \%\). The stocks have a volatility of \(30 \%\) per annum. Using this data, create the structure StockSpec:
```

AssetPrice = [40; 35];

```
Sigma = . 30 ;
DividendType = \{'cash'; 'continuous'\};
DividendAmount \(=[0.25,0.25 ; 0.03 \mathrm{NaN}]\);
DividendDate1 = 'March-01-2008';
DividendDate2 = 'Jun-01-2008';
StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmount,...
\{ DividendDate1, DividendDate2 ; NaN NaN\})
StockSpec =
    struct with fields:
            FinObj: 'StockSpec'
                    Sigma: [2×1 double]
            AssetPrice: [ \(2 \times 1\) double]
            DividendType: \(\{2 \times 1\) cell \(\}\)
    DividendAmounts: [ \(2 \times 2\) double]
    ExDividendDates: [2×2 double]
```

Examine the StockSpec structure.
datedisp(StockSpec.ExDividendDates)
StockSpec.DividendType
01-Mar-2008 01-Jun-2008
NaN NaN
ans =
2\times1 cell array
cash'
continuous'

```

The StockSpec structure encapsulates the information of the two stocks and their dividends.
- "Portfolio Creation" on page 1-7

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
crrprice | crrtree | intenvset | optstockbybjs | optstockbyblk | optstockbybls | optstockbyls | optstockbyrgw | spreadbybjs | spreadbyfd | spreadbykirk| spreadbyls

Introduced before R2006a

\section*{sttprice}

Price instruments using standard trinomial tree

\section*{Syntax}
[Price,PriceTree] = sttprice(STTTree,InstSet) [Price, PriceTree] = sttprice( __ , Name, Value)

\section*{Description}
[Price,PriceTree] = sttprice(STTTree, InstSet) prices instruments using a standard trinomial (STT) tree.
[Price,PriceTree] = sttprice( \(\qquad\) , Name, Value) prices instruments using a standard trinomial (STT) tree with an optional name-value pair argument for Options.

\section*{Examples}

\section*{Price a stttree Instrument Set}

Load the data into the MATLAB® workspace.
```

load deriv.mat

```

STTTree and STTInstSet are the input arguments required to call the function sttprice. Use the command instdisp to examine the set of instruments contained in the variable STTInstSet.
```

instdisp(STTInstSet)

```
\begin{tabular}{lllclllll} 
Index & Type & OptSpec & Strike & Settle & ExerciseDates & AmericanOpt Name & Quantity \\
1 & OptStock & call & 100 & \(01-\) Jan-2009 & \(01-\) Jan-2011 & 1 & Call1 & 10 \\
2 & OptStock & put & 80 & \(01-\) Jan-2009 & \(01-\) Jan-2012 & 0 & Put1 & 5
\end{tabular}
\begin{tabular}{lllll} 
Index & Type & OptSpec & Strike & Settle \\
3 & Barrier call & 105 & 01 -Jan-2009
\end{tabular}


The instrument set contains eight instruments:
- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options (Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Use sttprice to calculate the price of each instrument in the instrument set.
Price = sttprice(STTTree, STTInstSet)

Price =
4.5025
3.0603
3.7977
1.7090
11.7296
12.9120
1.6905
2.6203

\section*{Input Arguments}

STTTree - Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.

\section*{Data Types: struct}

\section*{InstSet - Variable containing a collection instruments \\ structure}

Variable containing a collection of NINST instruments, specified as a structure. Instruments are broken down by type and each type can have different data fields.

Data Types: struct

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: [Price,PriceTree] = sttprice(STTTree,InstSet,'Options',deriv)
'Options' - Derivatives pricing options
structure
Derivatives pricing options, specified as structure that is created with derivset.
Data Types: struct

\section*{Output Arguments}

\section*{Price - Expected prices for each instrument at time 0}
matrix
Expected prices for each instrument at time 0, returned as a NINST-by-1 vector. The prices are computed by backward dynamic programming on the standard trinomial (STT) stock tree. If an instrument cannot be priced, a NaN is returned in that entry.

PriceTree - Structure with vector of instrument prices at each node
tree structure
Structure with a vector of instrument prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of observation times for each node.

PriceTree. PTree contains the prices.
PriceTree.tObs contains the observation times.
PriceTree.dObs contains the observation dates.

\section*{More About}
- "Convertible Bond" on page 2-3

\author{
See Also \\ sttsens | stttimespec | stttree \\ Introduced in R2015b
}

\section*{sttsens}

Instrument sensitivities and prices using standard trinomial tree

\section*{Syntax}
```

[Delta,Gamma,Vega,Price] = sttsens(STTTree,InstSet)
[Delta,Gamma,Vega,Price] = sttsens(

```
\(\qquad\)
``` , Name, Value)
```


## Description

[Delta,Gamma, Vega,Price] = sttsens(STTTree,InstSet) to generate instrument sensitivities and prices using a standard trinomial (STT) tree.
[Delta, Gamma, Vega, Price] = sttsens(__ , Name, Value) to generate instrument sensitivities and prices using a standard trinomial (STT) tree with an optional name-value pair argument for Options.

## Examples

## Determine the Price and Sensitivities for a stttree Instrument Set

Load the data into the MATLAB® workspace.

```
load deriv.mat
```

STTTree and STTInstSet are the input arguments required to call the function sttprice. Use the command instdisp to examine the set of instruments contained in the variable STTInstSet.

```
instdisp(STTInstSet)
```

Index	Type	OptSpec	Strike Settle	ExerciseDates	AmericanOpt	Name	Quantity
1	OptStock	call	100	$01-$ Jan-2009	$01-$ Jan-2011	1	Call1
2	OptStock	put	80	$01-$ Jan-2009	$01-$ Jan-2012	0	Put1

[^3]

The instrument set contains eight instruments:

- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options (Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Use sttsens to calculate the price and sensitivities for each instrument in the instrument set.

```
[Delta,Gamma,Vega,Price] = sttsens(STTTree, STTInstSet)
```

Delta =
0.5267
$-0.0943$
0.4726
$-0.0624$
0.2313
0.3266
0.5706
0.6646

Gamma =
$1.0 \mathrm{e}+05$ *

```
 0.0000
 0.0000
 0.0000
 0.0000
 -1.8650
 -1.9119
 1.8650
 1.9119
Vega =
 52.8980
 42.4369
 25.9792
 -9.5266
 70.3758
 92.9226
 25.8122
 37.8757
Price =
 4.5025
 3.0603
 3.7977
 1.7090
 11.7296
 12.9120
 1.6905
 2.6203
```

Determine Price and Sensitivities for Convertible Bond Instruments Using a stttree
Create a RateSpec.
StartDates = 'Jan-1-2015';
EndDates = 'Jan-1-2020';
Rates $=0.025$;
Basis = 1;
RateSpec $=$ intenvset('ValuationDate',StartDates,'StartDates',StartDates,...

```
'EndDates',EndDates,'Rates',Rates, 'Compounding',-1, 'Basis',Basis)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: -1
 Disc: 0.8825
 Rates: 0.0250
 EndTimes: 5
 StartTimes: 0
 EndDates: 737791
 StartDates: 735965
 ValuationDate: 735965
 Basis: 1
 EndMonthRule: 1
Create a StockSpec.
AssetPrice = 80;
Sigma = 0.12;
StockSpec = stockspec(Sigma,AssetPrice)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.1200
AssetPrice: 80
DividendType: []
DividendAmounts: 0
ExDividendDates: []
Create a STTTree.
TimeSpec = stttimespec(StartDates, EndDates, 20);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)
```

```
STTTree =
 struct with fields:
 FinObj: 'STStockTree'
 StockSpec: [1×1 struct]
 TimeSpec: [1×1 struct]
 RateSpec: [1×1 struct]
 tObs: [1\times21 double]
 dObs: [1\times21 double]
 STree: {1\times21 cell}
 Probs: {1\times20 cell}
```

Define the convertible bond. The convertible bond can be called starting on Jan 1, 2016 with a strike price of 95 .

```
CouponRate = 0.03;
```

Settle = 'Jan-1-2015';
Maturity = 'April-1-2018';
Period = 1;
CallStrike = 95;
CallExDates = [datenum('Jan-1-2016') datenum('April-1-2018')];
ConvRatio = 1;
Spread = 0.025;

Price the convertible bond using the standard trinomial tree model.

```
[Price,PriceTree,EqtTre,DbtTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvR
'Period',Period,'Spread ',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'Ame।
Price =
 90.2511
PriceTree =
 struct with fields:
 FinObj: 'TrinPriceTree'
 PTree: {1\times21 cell}
 tObs: [1\times21 double]
 dObs: [1\times21 double]
```

```
EqtTre =
 struct with fields:
 FinObj: 'TrinPriceTree'
 PTree: {1\times21 cell}
 tObs: [1\times21 double]
 dObs: [1\times21 double]
DbtTree =
 struct with fields:
 FinObj: 'TrinPriceTree'
 PTree: {1\times21 cell}
 tObs: [1\times21 double]
 dObs: [1\times21 double]
Compute the delta and gamma of the convertible bond.
InstSet= instcbond(CouponRate,Settle,Maturity, ConvRatio, 'Spread',Spread,... 'CallExDates',CallExDates, 'CallStrike',CallStrike, 'AmericanCall',1); [Delta,Gamma] = sttsens(STTTree,InstSet)
Delta =
0.3945
Gamma =
0.0324
```


## Input Arguments

STTTree - Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

## InstSet - Variable containing a collection instruments structure

Variable containing a collection of NINST instruments, specified as a structure. Instruments are broken down by type and each type can have different data fields.

## Data Types: struct

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: [Delta,Gamma, Vega,Price] = sttsens(STTTree, InstSet,'Options', deriv)

## 'Options' - Derivatives pricing options

structure
Derivatives pricing options, specified as structure that is created with derivset.
Data Types: struct

## Output Arguments

Delta - Rate of change of instruments prices with respect to changes in the stock price vector of deltas

Rate of change of instrument prices with respect to changes in the stock price, returned as a NINST-by- 1 vector of deltas. For more information on the stock tree, see stttree.

Gamma - Rate of change of instrument deltas with respect to changes in the stock price vector of gammas

Rate of change of instrument deltas with respect to changes in the stock price, returned as a NINST-by- 1 vector of gammas.

## Vega - Rate of change of instrument prices with respect to changes in the volatility of the stock price

vector of vegas
Rate of change of instrument prices with respect to changes in the volatility of the stock price, returned as a NINST-by- 1 vector of vegas. For more information on the stock tree, see stttree.

## Price - Expected prices for each instrument at time 0

matrix
Expected prices for each instrument at time 0, returned as a NINST-by-1 vector. The prices are computed by backward dynamic programming on the standard trinomial (STT) stock tree. If an instrument cannot be priced, a NaN is returned in that entry.

## More About

- "Convertible Bond" on page 2-3

See Also<br>derivset | sttsens | stttimespec | stttree

Introduced in R2015b

## stttimespec

Specify time structure for standard trinomial tree

## Syntax

TimeSpec = stttimespec(ValuationDate, Maturity, NumPeriods)

## Description

TimeSpec = stttimespec(ValuationDate, Maturity, NumPeriods) creates a time spec for a standard trinomial (STT) tree.

## Examples

## Create a stttimespec to Build a STTTree

Create a RateSpec.

```
StartDates = 'Jan-1-2014';
EndDates = 'Jan-1-2018';
Rates = 0.025;
Basis = 1;
Compounding = -1;
```

RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,'EndDates',
EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

## RateSpec =

struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9048
Rates: 0.0250

```
 EndTimes: 4
 StartTimes: 0
 EndDates: 737061
 StartDates: 735600
ValuationDate: 735600
 Basis: 1
 EndMonthRule: 1
Create a StockSpec.
```

```
AssetPrice = 110;
```

AssetPrice = 110;
Sigma = 0.22;
Div = 0.02;
StockSpec = stockspec(Sigma, AssetPrice, 'continuous', Div)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2200
AssetPrice: 110
DividendType: {'continuous'}
DividendAmounts: 0.0200
ExDividendDates: []
Create a STTTimespec and STTTree.
NumPeriods = length(cfdates(StartDates,EndDates,12)); TimeSpec = stttimespec(StartDates, EndDates, NumPeriods) STTT = stttree(StockSpec, RateSpec, TimeSpec)

```
```

TimeSpec =

```
TimeSpec =
 struct with fields:
 struct with fields:
 FinObj: 'STTTimeSpec'
 FinObj: 'STTTimeSpec'
 ValuationDate: 735600
 ValuationDate: 735600
 Maturity: 737061
 Maturity: 737061
 NumPeriods: 48
 NumPeriods: 48
 Basis: 0
```

            Basis: 0
    ```
```

EndMonthRule: 1
tObs: [1\times49 double]
dObs: [1\times49 double]
STTT =
struct with fields:
FinObj: 'STStockTree'
StockSpec: [1×1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [ 1 1 1 struct]
tObs: [1\times49 double]
dObs: [1\times49 double]
STree: {1\times49 cell}
Probs: {1\times48 cell}

```

\section*{Input Arguments}

\section*{ValuationDate - Date marking the pricing date and first observation tree}

\author{
serial date number | date character vector
}

Date marking the pricing date and first observation in the tree, specified as a scalar using a serial date number or date character vector.

Example:
Data Types: double | char

\section*{Maturity - Date marking the depth of tree \\ serial date number | date character vector}

Date marking the depth of the tree, specified as a scalar using a serial date number or date character vector.

Example:
Data Types: double | char

\section*{NumPeriods - Determines how many time steps are in tree}
nonnegative integer

Determines how many time steps are in tree, specified as a scalar using a nonnegative integer value.

\section*{Example:}

Data Types: double

\section*{Output Arguments}

\section*{TimeSpec - Time layout for standard trinomial (STT) tree \\ structure}

Time layout for standard trinomial (STT) tree, returned as a structure.

\section*{See Also}
stttree

Introduced in R2015b

\section*{stttree}

Build standard trinomial tree

\section*{Syntax}

STTTree = stttree(StockSpec,RateSpec,TimeSpec)

\section*{Description}

STTTree = stttree(StockSpec, RateSpec, TimeSpec) builds a standard trinomial (STT) tree.

\section*{Examples}

\section*{Build a STTTree}

Create a RateSpec.
StartDates = 'Jan-1-2014';
EndDates = 'Jan-1-2018';
Rates \(=0.025\);
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: 0.9048
Rates: 0.0250
EndTimes: 4
StartTimes: 0
```

        EndDates: 737061
    StartDates: 735600
    ValuationDate: 735600
Basis: 1
EndMonthRule: 1
Create a StockSpec.
AssetPrice = 55;
Sigma = 0.22;
Div = 0.02;
StockSpec = stockspec(Sigma, AssetPrice, 'continuous', Div)
StockSpec =
struct with fields:
FinObj: 'StockSpec'
Sigma: 0.2200
AssetPrice: 55
DividendType: {'continuous'}
DividendAmounts: 0.0200
ExDividendDates: []
Create a Standard Trinomial Tree (STTTree).

```
```

NumSteps = 8;

```
NumSteps = 8;
TimeSpec = stttimespec(StartDates, EndDates, NumSteps);
TimeSpec = stttimespec(StartDates, EndDates, NumSteps);
STTT = stttree(StockSpec, RateSpec, TimeSpec)
STTT = stttree(StockSpec, RateSpec, TimeSpec)
STTT =
STTT =
 struct with fields:
 struct with fields:
 FinObj: 'STStockTree'
 FinObj: 'STStockTree'
 StockSpec: [1×1 struct]
 StockSpec: [1×1 struct]
 TimeSpec: [1\times1 struct]
 TimeSpec: [1\times1 struct]
 RateSpec: [1\times1 struct]
 RateSpec: [1\times1 struct]
 tObs: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]
 tObs: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]
 dObs: [1\times9 double]
 dObs: [1\times9 double]
 STree: {1×9 cell}
```

            STree: {1×9 cell}
    ```

\section*{Input Arguments}

\section*{StockSpec - Stock specification for underlying asset structure}

Stock specification for underlying asset, specified using StockSpec obtained from stockspec. For information on the stock specification, see stockspec.
stockspec can handle other types of underlying assets. For example, stocks, stock indices, and commodities. If dividends are not specified in StockSpec, dividends are assumed to be 0 .

Data Types: struct

\section*{RateSpec - Interest-rate term specification of initial risk-free rate curve structure}

Interest-rate term specification of initial risk-free rate curve, specified by the RateSpec obtained from intenvset. For information on the interest-rate specification, see intenvset.

Data Types: struct

\section*{TimeSpec - Tree time layout specification \\ structure}

Tree time layout specification, specified using stttimespec to define the observation dates of the standard trinomial (STT) tree.
Example:
Data Types: struct

\section*{Output Arguments}

STTTree - Tree specifying stock and time information for a standard trinomial (STT) tree tree structure

Tree specifying stock and time information for a standard trinomial (STT) tree, returned as a tree structure.

\author{
See Also \\ stttimespec
}

Introduced in R2015b

\section*{supersharebybls}

Calculate price of supershare digital options using Black-Scholes model

\section*{Syntax}

Price = supersharebybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, StrikeLow, StrikeHigh)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l}
The annualized, continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline StrikeLow & NINST-by-1 vector of low strike price values. \\
\hline StrikeHigh & NINST-by-1 vector of high strike price values. \\
\hline
\end{tabular}

\section*{Description}

Price = supersharebybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, StrikeLow, StrikeHigh) computes supershare digital option prices using the Black-Scholes model.

Price is a NINST-by-1 vector of expected option prices.

\section*{Examples}

\section*{Compute the Price of Supershare Digital Options Using Black-Scholes Model}

This example shows how to compute the price of supershare digital options using BlackScholes model. Consider a supershare based on a portfolio of nondividend paying stocks
with a lower strike of 350 and an upper strike of 450 . The value of the portfolio on November 1, 2008 is 400 . The risk-free rate is \(4.5 \%\) and the volatility is \(18 \%\). Using this data, calculate the price of the supershare option on February 1, 2009.
```

Settle = 'Nov-1-2008';
Maturity = 'Feb-1-2009';
Rates = 0.045;
Basis = 1;
Compounding = -1;
% create the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);
% define the StockSpec
AssetPrice = 400;
Sigma = .18;
StockSpec = stockspec(Sigma, AssetPrice);
% define the high and low strike points
StrikeLow = 350;
StrikeHigh = 450;
% calculate the price
Pssh = supersharebybls(RateSpec, StockSpec, Settle, Maturity,...
StrikeLow, StrikeHigh)
Pssh =
0.9411

```
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing European Call Options Using Different Equity Models"
- "Pricing Using the Black-Scholes Model" on page 3-142

\section*{More About}
- "Supported Equity Derivatives" on page 3-24
See Alsoassetbybls | cashbybls | gapbybls | supersharesensbybls
Introduced in R2009a

\section*{supersharesensbybls}

Calculate price or sensitivities of supershare digital options using Black-Scholes model

\section*{Syntax}

PriceSens = supersharesensbybls(RateSpec, StockSpec, Settle, Maturity, StrikeLow, StrikeHigh) PriceSens = supersharesensbybls(RateSpec, StockSpec, Settle, Maturity, StrikeLow, StrikeHigh, OutSpec)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RateSpec & \begin{tabular}{l}
The annualized, continuously compounded rate term structure. \\
For information on the interest rate specification, see \\
intenvset.
\end{tabular} \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline StrikeLow & NINST-by-1 vector of low strike price values. \\
\hline StrikeHigh & NINST-by-1 vector of high strike price values. \\
\hline OutSpec & \begin{tabular}{l}
(Optional) All optional inputs are specified as matching \\
parameter name/value pairs. The parameter name is specified \\
as a character vector, followed by the corresponding parameter \\
value. You can specify parameter name/value pairs in any \\
order. Names are case-insensitive and partial matches are \\
allowed provided no ambiguities exist. Valid parameter names \\
are: \\
- NOUT-by-1 or 1-by-NOUT cell array of character vectors \\
indicating the nature and order of the outputs for the \\
function. Possible values are 'Price', 'Delta', 'Gamma' ', \\
'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
For example, OutSpec = \{'Price'; 'Lambda'; \\
'Rho' \(\}\) specifies that the output should be Price, Lambda, and Rho, in that order. \\
To invoke from a function: [Price, Lambda, Rho] = supersharesensbybls(..., 'OutSpec', \{'Price', 'Lambda', 'Rho'\}) \\
OutSpec = \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};. \\
- Default is OutSpec \(=\{\) 'Price' \(\}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

PriceSens = supersharesensbybls(RateSpec, StockSpec, Settle, Maturity, StrikeLow, StrikeHigh) computes supershare option prices using the Black-Scholes option pricing model.

PriceSens = supersharesensbybls(RateSpec, StockSpec, Settle, Maturity, StrikeLow, StrikeHigh, OutSpec) includes an OutSpec argument defined as parameter/value pairs, and computes supershare option prices or sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and sensitivities.

\section*{Examples}

\section*{Compute Price and Sensitivities of Supershare Digital Options Using Black-Scholes Model}

This example shows how to compute price and sensitivities of supershare digital options using a Black-Scholes model. Consider a supershare based on a portfolio of nondividend paying stocks with a lower strike of 350 and an upper strike of 450 . The value of the portfolio on November 1, 2008 is 400 . The risk-free rate is \(4.5 \%\) and the volatility is \(18 \%\). Using this data, calculate the price and sensitivity of the supershare option on February 1, 2009.
```

Settle = 'Nov-1-2008';
Maturity = 'Feb-1-2009';
Rates = 0.045;
Basis = 1;
Compounding = -1;
% define the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);
% define the StockSpec
AssetPrice = 400;
Sigma = .18;
StockSpec = stockspec(Sigma, AssetPrice);
% define the high and low strike points
StrikeLow = 350;
StrikeHigh = 450;
% calculate the price
Pssh = supersharebybls(RateSpec, StockSpec, Settle, Maturity,...
StrikeLow, StrikeHigh)
% compute the delta and theta of the supershare option
OutSpec = { 'delta';'theta'};
[Delta, Theta]= supersharesensbybls(RateSpec, StockSpec, Settle,...
Maturity, StrikeLow, StrikeHigh, 'OutSpec', OutSpec)
Pssh =
0.9411
Delta =
-0.0010
Theta =
-1.0102

```
- "Equity Derivatives Using Closed-Form Solutions" on page 3-139
- "Pricing European Call Options Using Different Equity Models"
- "Pricing Using the Black-Scholes Model" on page 3-142

\section*{More About}
- "Supported Equity Derivatives" on page 3-24

\section*{See Also}
supersharebybls

Introduced in R2009a

\section*{swapbybdt}

Price swap instrument from Black-Derman-Toy interest-rate tree

\section*{Syntax}
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, Settle, Maturity) [Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule)
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, Settle, Maturity, Name,Value)

\section*{Input Arguments}
\begin{tabular}{|l|l|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline LegRate & \begin{tabular}{l}
Number of instruments (NINST)-by-2 matrix, with each row defined \\
as: \\
[CouponRate Spread] (fixed-float), [Spread CouponRate] \\
(float-fixed), [CouponRate CouponRate] (fixed-fixed) or [Spread \\
Spread] (float-float). \\
CouponRate is the decimal annual rate. Spread is the number of \\
basis points over the reference rate. The first column represents the \\
receiving leg, while the second column represents the paying leg.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
Settlement date. NINST-by-1 vector of serial date numbers or date \\
character vectors representing the settlement date for each swap. \\
Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Maturity date. NINST-by-1 vector of dates representing the maturity \\
date for each swap.
\end{tabular} \\
\hline
\end{tabular}

The Settle date for every swap is set to the ValuationDate of the BDT tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially 0 . To do this, enter CouponRate as NaN.

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{LegReset}

NINST-by-2 matrix representing the reset frequency per year for each swap.
Default: [ll \(\left.1 \begin{array}{ll}1 & 1\end{array}\right]\)

\section*{Basis}

Day-count basis representing the basis for each leg. NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual \(/ 360\)
- \(3=\) actual/ 365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{Principal}

Principal accepts a NINST-by-1 vector or NINST-by-1 (or NINST-by-2 if Principal is different for each leg) cell array of the notional principal amounts or principal value schedules. For schedules, each element of the cell array is a NumDates-by-2 array where the first column is dates and the second column is its associated notional principal value. The date indicates the last day that the principal value is valid.

Default: 100

\section*{LegType}

NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate.

Default: [1 0] for each instrument

\section*{Options}

Derivatives pricing options structure created with derivset.

\section*{Default:}

\section*{EndMonthRule}

End-of-month rule. NINST-by-1 (or NINST-by-2 if EndMonthRule is different for each leg). This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 (or NINST-by-2 if AdjustCashFlowsBasis is different for each leg) of logicals.

Default: false

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by-1 (or NINST-by-2 if BusDayConvention is different for each leg) cell array with the following possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by- 1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{StartDate}

NINST-by-1 vector of dates when the swap actually starts. Use this argument to price forward swaps, that is, swaps that start in a future date

Default: Settle date

\section*{Description}
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,

LegRate, Settle, Maturity) computes the price of a swap instrument from a BDT interest-rate tree.
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule) computes the price of a swap instrument from a BDT interest-rate tree using optional input arguments.
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, Settle, Maturity, Name, Value) computes the price of a swap instrument from a BDT interest-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is number of instruments (NINST)-by- 1 expected prices of the swap at time 0 .
PriceTree is a tree structure with a vector of the swap values at each node.
CFTree is a tree structure with a vector of the swap cash flows at each node. This structure contains only NaNs because with binomial recombining trees, cash flows cannot be computed accurately at each node of a tree.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. SwapRate is padded with NaN for those instruments in which CouponRate is not set to NaN.

\section*{Examples}

\section*{Price an Interest-Rate Swap}

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is \(\$ 100\). The values for the remaining arguments are:
- Coupon rate for fixed leg: 0.15 (15\%)
- Spread for floating leg: 10 basis points
- Swap settlement date: Jan. 01, 2000
- Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices:
```

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

```

Price the swap using the BDTTree included in the MAT-file deriv. mat. BDTTree contains the time and forward-rate information needed to price the instrument.
```

load deriv.mat;

```

Use swapbybdt to compute the price of the swap.
```

Price = swapbybdt(BDTTree, LegRate, Settle, Maturity,...

```
LegReset, Basis, Principal, LegType)

\section*{Price =}
\[
7.4222
\]

Using the previous data, calculate the swap rate, the coupon rate for the fixed leg, such that the swap price at time \(=0\) is zero.
```

LegRate = [NaN 20];
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
-1.4211e-14
PriceTree =
struct with fields:

```
```

    FinObj: 'BDTPriceTree'
    tObs: [00 1 2 3 4
    PTree: {1\times5 cell}
    CFTree =
struct with fields:
FinObj: 'BDTCFTree'
tObs: [00 1 2 3 3 4]
CFTree: {[NaN] [NaN NaN] [NaN NaN NaN] [NaN NaN NaN NaN] [1\times4 double]}
SwapRate =
0.1205

```

\section*{Price an Amortizing Swap}

Price an amortizing swap using the Principal input argument to define the amortization schedule.

Create the RateSpec.
Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: 0.8135
Rates: 0.0350
EndTimes: 6
```

    StartTimes: 0
    EndDates: 736696
    StartDates: 734504
    ValuationDate: 734504
Basis: 0
EndMonthRule: 1

```

Create the swap instrument using the following data:
```

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];

```

Define the swap amortizing schedule.
```

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2

```

Build the BDT tree and assume volatility is \(10 \%\).
```

MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2(
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.10;
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))')
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);
Compute the price of the amortizing swap.

```
```

Price = swapbybdt(BDTT, LegRate, Settle, Maturity, 'Principal' , Principal)

```
Price = swapbybdt(BDTT, LegRate, Settle, Maturity, 'Principal' , Principal)
Price =
 1.4574
```


## Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting date of the swap.

Create the RateSpec.
Rates $=0.0325$;
ValuationDate = '1-Jan-2012';

```
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: 0.8254
 Rates: 0.0325
 EndTimes: 6
 StartTimes: 0
 EndDates: 737061
 StartDates: 734869
 ValuationDate: 734869
 Basis: 0
 EndMonthRule: 1
```

Build the tree with a volatility of $10 \%$.

```
MatDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2(
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.10;
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))')
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);
```

Compute the price of a forward swap that starts in two years (Jan 1, 2014) and matures in three years with a forward swap rate of $3.85 \%$.

```
Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2014';
LegRate = [0.0385 10];
Price = swapbybdt(BDTT, LegRate, Settle, Maturity, 'StartDate', StartDate)
Price =
```

Using the previous data, compute the forward swap rate, the coupon rate for the fixed leg, such that the forward swap price at time $=0$ is zero.

```
LegRate = [NaN 10];
[Price, ~,~, SwapRate] = swapbybdt(BDTT, LegRate, Settle, Maturity, 'StartDate', Startl
Price =
 -4.9738e-12
SwapRate =
 0.0335
```

- "Computing Instrument Prices" on page 2-84
- "Pricing a Portfolio Using the Black-Derman-Toy Model" on page 1-11


## More About

## Amortizing Swap

In an amortizing swap, the notional principal decreases periodically because it is tied to an underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

## Forward Swap

Agreement to enter into an interest-rate swap arrangement on a fixed date in the future.

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2


## See Also

bdttree | capbybdt | cfbybdt | floorbybdt

Introduced before R2006a

## swapbybk

Price swap instrument from Black-Karasinski interest-rate tree

## Syntax

[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate, Settle, Maturity) [Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule)
[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate, Settle, Maturity, Name, Value)

## Input Arguments

BKTree	Interest-rate tree structure created by bktree.
LegRate	Number of instruments (NINST)-by-2 matrix, with each row defined   as:   [CouponRate Spread] (fixed-float), [Spread CouponRate]   (float-fixed), [CouponRate CouponRate] (fixed-fixed) or [Spread   Spread] (float-float).   CouponRate is the decimal annual rate. Spread is the number of   basis points over the reference rate. The first column represents the   receiving leg, while the second column represents the paying leg.
Settle	Settlement date. NINST-by-1 vector of serial date numbers or date   character vectors representing the settlement date for each swap.   Settle must be earlier than Maturity.
Maturity	Maturity date. NINST-by-1 vector of dates representing the maturity   date for each swap.

The Settle date for every swap is set to the ValuationDate of the BK tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially 0. To do this, enter CouponRate as NaN.
swapbybk computes prices of vanilla swaps, amortizing swaps and forward swaps.

## Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

## LegReset

NINST-by-2 matrix representing the reset frequency per year for each swap. NINST-by-1 vector representing the frequency of payments per year.

## Default: [11]

## Basis

Day-count basis representing the basis for each leg. NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- $2=$ actual $/ 360$
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- $9=$ actual/360 (ICMA)
- $10=$ actual/365 (ICMA)
- 11 = 30/360E (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.

Default: 0 (actual/actual)

## Principal

Principal accepts a NINST-by-1 vector or NINST-by-1 (or NINST-by-2 if Principal is different for each leg) cell array of the notional principal amounts or principal value schedules. For schedules, each element of the cell array is a NumDates-by-2 array where the first column is dates and the second column is its associated notional principal value. The date indicates the last day that the principal value is valid.

Default: 100

## LegType

NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate.

Default: [1 0] for each instrument

## Options

Derivatives pricing options structure created with derivset.

## Default:

## EndMonthRule

End-of-month rule. A NINST-by-1 (or NINST-by-2 if EndMonthRule is different for each leg). This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

- $0=$ Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

Default: 1

## StartDate

NINST-by-1 vector of dates when the swap actually starts. Use this argument to price forward swaps, that is, swaps that start in a future date

## Default: Settle date

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1 (or NINST-by-2 if AdjustCashFlowsBasis is different for each leg) of logicals.

Default: false

## BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 (or NINST-by-2 if BusDayConvention is different for each leg) cell array with the following possible choices of business day convention:

- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

## Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

## Description

[Price, PriceTree, SwapRate] = swapbybk(BKTree,

LegRate, Settle, Maturity) computes the price of a swap instrument from a BlackKarasinski interest-rate tree.
[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule) computes the price of a swap instrument from a BlackKarasinski interest-rate tree using optional input arguments.
[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate, Settle, Maturity, Name, Value) computes the price of a swap instrument from a Black-Karasinski interest-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is the number of instruments (NINST)-by- 1 expected prices of the swap at time 0 .
PriceTree is the tree structure with a vector of the swap values at each node:

- PriceTree. PTree contains swap values.
- PriceTree.tObs contains the observation times.
- PriceTree. Connect contains the connectivity vectors. Each element in the cell array describes how nodes in that level connect to the next. For a given tree level, there are NumNodes elements in the vector, and they contain the index of the node at the next level that the middle branch connects to. Subtracting 1 from that value indicates where the up-branch connects to, and adding 1 indicates where the down branch connects to.
- PriceTree. Probs contains the probability arrays. Each element of the cell array contains the up, middle, and down transition probabilities for each node of the level.

SwapRate is a NINST-by- 1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN .

## Examples

## Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is $\$ 100$. The values for the remaining arguments are:

- Coupon rate for fixed leg: 0.06 (6\%)
- Spread for floating leg: 20 basis points
- Swap settlement date: Jan. 01, 2004
- Swap maturity date: Jan. 01, 2006

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices:

```
Settle = '01-Jan-2004';
Maturity = '01-Jan-2006';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year
```

Price the swap using the BKTree included in the MAT-file deriv.mat. BKTree contains the time and forward-rate information needed to price the instrument.

```
load deriv.mat;
```

Use swapbybk to price of the swap.

```
Price = swapbybk(BKTree, LegRate,...
```

Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
5.0425

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg, such that the swap price at time $=0$ is zero.

```
LegRate = [NaN 20];
[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate,...
Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
```

    \(-2.8422 e-14\)
    ```
PriceTree =
 struct with fields:
 FinObj: 'BKPriceTree'
 PTree: {1\times5 cell}
 tObs: [[0 1 1 2 3 4]
 Connect: {[2] [2 3 3 4] [2 2 2 3 4 4 4]}
 Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
SwapRate =
 0.0336
```


## Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization schedule.

Create the RateSpec.
Rates = 0.035;

```
ValuationDate = '1-Jan-2011';
```

StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:

```
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: 0.8135
 Rates: 0.0350
 EndTimes: 6
 StartTimes: 0
```

```
 EndDates: 736696
 StartDates: 734504
ValuationDate: 734504
 Basis: 0
 EndMonthRule: 1
```

Create the swap instrument using the following data:

```
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];
```

Define the swap amortizing schedule.

```
Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2
```

Build the BK tree and assume volatility is $10 \%$.

```
MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-20
BKTimeSpec = bktimespec(ValuationDate, MatDates);
Volatility = 0.10;
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))',..
AlphaDates, AlphaCurve);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);
```

Compute the price of the amortizing swap.

```
Price = swapbybk(BKT, LegRate, Settle, Maturity, 'Principal' , Principal)
```

Price =
1.4574

## Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting date of the swap.

Create the RateSpec.

```
Rates = 0.0374;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: 0.8023
 Rates: 0.0374
 EndTimes: 6
 StartTimes: 0
 EndDates: 737061
 StartDates: 734869
 ValuationDate: 734869
 Basis: 0
 EndMonthRule: 1
Build a BK tree.
```

```
VolDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-20
```

VolDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-20
VolCurve = 0.1;
VolCurve = 0.1;
AlphaDates = '01-01-2018';
AlphaDates = '01-01-2018';
AlphaCurve = 0.1;
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

```
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);
```

Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in four years with a forward swap rate of $4.25 \%$.

```
Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2013';
```

```
LegRate = [0.0425 10];
Price = swapbybk(BKT, LegRate, Settle, Maturity, 'StartDate', StartDate)
Price =
```

    1.4434
    Using the previous data, compute the forward swap rate, the coupon rate for the fixed leg, such that the forward swap price at time $=0$ is zero.

```
LegRate = [NaN 10];
[Price, ~,SwapRate] = swapbybk(BKT, LegRate, Settle, Maturity, 'StartDate', StartDate)
Price =
```

    2.8422e-14
    SwapRate =
0.0384

- "Pricing Using Interest-Rate Tree Models" on page 2-84


## More About

## Amortizing Swap

In an amortizing swap, the notional principal decreases periodically because it is tied to an underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

## Forward Swap

Agreement to enter into an interest-rate swap arrangement on a fixed date in the future.

- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

See Also<br>bktree | bondbybk | capbybk | fixedbybk | floorbybk<br>Introduced before R2006a

## swapbyhjm

Price swap instrument from Heath-Jarrow-Morton interest-rate tree

## Syntax

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, Settle, Maturity) [Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule)
[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, Settle, Maturity, Name,Value)

## Input Arguments

| HJMTree | Forward-rate tree structure created by hjmtree. |
| :--- | :--- |
| LegRate | Number of instruments (NINST-by-2) matrix, with each row defined <br> as: <br> [CouponRate Spread] (fixed-float), [Spread CouponRate] <br> (float-fixed), [CouponRate CouponRate] (fixed-fixed) or [Spread <br> Spread] (float-float). <br> CouponRate is the decimal annual rate. Spread is the number of <br> basis points over the reference rate. The first column represents the <br> receiving leg, while the second column represents the paying leg. |
| Settle | Settlement date. NINST-by-1 vector of serial date numbers or date <br> character vectors representing the settlement date for each swap. <br> Settle must be earlier than Maturity. |
| Maturity | Maturity date. NINST-by-1 vector of dates representing the maturity <br> date for each swap. |

The Settle date for every swap is set to the ValuationDate of the HJM tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially 0 . To do this, enter CouponRate as NaN.

## Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

## LegReset

NINST-by-2 matrix representing the reset frequency per year for each swap. NINST-by-1 vector representing the frequency of payments per year.

Default: [11 1 ]

## Basis

Day-count basis representing the basis for each leg. NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).

- $0=$ actual/actual
- $1=30 / 360$ (SIA)
- 2 = actual $/ 360$
- $3=$ actual $/ 365$
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- $10=\mathrm{actual} / 365$ (ICMA)
- $11=30 / 360 \mathrm{E}$ (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

## Principal

Principal accepts a NINST-by-1 vector or NINST-by-1 (or NINST-by-2 if Principal is different for each leg) cell array of the notional principal amounts or principal value schedules. For schedules, each element of the cell array is a NumDates-by-2 array where the first column is dates and the second column is its associated notional principal value. The date indicates the last day that the principal value is valid.

Default: 100

## LegType

NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate.

Default: [1 0] for each instrument

## Options

Derivatives pricing options structure created with derivset.

## Default:

## EndMonthRule

End-of-month rule. A NINST-by-1 (or NINST-by-2 if EndMonthRule is different for each leg). This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.

- $0=$ Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.


## Default: 1

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1 or NINST-by-2 of logicals.

Default: false

## BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 (or NINST-by-2 if AdjustCashFlowsBasis is different for each leg) cell array with the following possible choices of business day convention:

- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

## Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

## StartDate

NINST-by-1 vector of dates when the swap actually starts. Use this argument to price forward swaps, that is, swaps that start in a future date

Default: Settle date

## Description

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,

LegRate, Settle, Maturity) computes the price of a swap instrument from an HJM interest-rate tree.
[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule) computes the price of a swap instrument from an HJM interest-rate tree with optional input arguments.
[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, Settle, Maturity, Name, Value) computes the price of a swap instrument from an HJM interest-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is the number of instruments (NINST-by-1) expected prices of the swap at time 0.
PriceTree is the tree structure with a vector of the swap values at each node.
CFTree is the tree structure with a vector of the swap cash flows at each node.
SwapRate is a NINST-by- 1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN.

## Examples

## Price an Interest-Rate Swap

This example shows how to price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is $\$ 100$. The values for the remaining arguments are:

- Coupon rate for fixed leg: 0.06 (6\%)
- Spread for floating leg: 20 basis points
- Swap settlement date: Jan. 01, 2000
- Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices:

```
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year
```

Price the swap using the HJMTree included in the MAT-file deriv. mat. The HJMTree structure contains the time and forward-rate information needed to price the instrument.

```
load deriv.mat;
```

Use swapbyhjm to compute the price of the swap.

```
[Price, PriceTree, CFTree] = swapbyhjm(HJMTree, LegRate,...
```

Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
3.6923
PriceTree =
FinObj: 'HJMPriceTree'
tObs: [0 $\left.\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}\right]$
PBush: $\{1 \times 5$ cell\}
CFTree =
FinObj: 'HJMCFTree'
tObs: [ $\left.0 \begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}\right]$
CFBush: \{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]\}

Use treeviewer to examine CFTree graphically and see the cash flows from the swap along both the up and the down branches. A positive cash flow indicates an inflow (income - payments $>0$ ), while a negative cash flow indicates an outflow (income payments $<0$ ).
treeviewer (CFTree)


In this example, you have sold a swap (receive fixed rate and pay floating rate). At time $\mathrm{t}=3$, if interest rates go down, your cash flow is positive (\$2.63), meaning that you receive this amount. But if interest rates go up, your cash flow is negative (-\$1.58), meaning that you owe this amount.
treeviewer price tree diagrams follow the convention that increasing prices appear on the upper branch of a tree and, so, decreasing prices appear on the lower branch. Conversely, for interest-rate displays, decreasing interest rates appear on the upper branch (prices are rising) and increasing interest rates on the lower branch (prices are falling).

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg, such that the swap price at time $=0$ is zero.

```
LegRate = [NaN 20];
[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
```

```
PriceTree =
FinObj: 'HJMPriceTree'
 tObs: [00 1 2 3 3 4]
 PBush:{[0] [1\times1x2 double] [1x2x2 double] ... [1x8 double]}
CFTree =
FinObj: 'HJMCFTree'
 tObs: [lllllll}
CFBush:{[0] [1\times1\times2 double] [1\times2x2 double] ... [1\times8 double]}
SwapRate =
 0.0466
```


## Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization schedule.

Create the RateSpec.

```
Rates = 0.035;
```

ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:

```
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: 0.8135
 Rates: 0.0350
 EndTimes: 6
 StartTimes: 0
 EndDates: 736696
```

```
 StartDates: 734504
ValuationDate: 734504
Basis: 0
EndMonthRule: 1
```

Create the swap instrument using the following data:

```
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];
```

Define the swap amortizing schedule.

```
Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-{
```

Build the HJM tree using the following data:

```
MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2(
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
CurveTerm = [1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);
```

Compute the price of the amortizing swap.

```
Price = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'Principal', Principal)
```

Price =
1.4574

## Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting date of the swap.

Create the RateSpec.
Rates = 0.0374;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;

```
EndDates = '1-Jan-2018';
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: 0.8023
 Rates: 0.0374
 EndTimes: 6
 StartTimes: 0
 EndDates: 737061
 StartDates: 734869
 ValuationDate: 734869
 Basis: 0
 EndMonthRule: 1
Build an HJM tree.
```

```
MatDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2(
```

MatDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2(
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);
Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in four years with a forward swap rate of $4.25 \%$.

```
```

Settle ='1-Jan-2012';

```
Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2013';
StartDate = '1-Jan-2013';
LegRate = [0.0425 10];
LegRate = [0.0425 10];
Price = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'StartDate', StartDate)
Price = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'StartDate', StartDate)
Price =
```

Price =

```

Using the previous data, compute the forward swap rate, the coupon rate for the fixed leg, such that the forward swap price at time \(=0\) is zero.
```

LegRate = [NaN 10];
[Price, ~,~, SwapRate] = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'StartDate', Start[

```
Price =
 0
SwapRate \(=\)
0.0384
- "Computing Instrument Prices" on page 2-84

\section*{More About}

\section*{Amortizing Swap}

In an amortizing swap, the notional principal decreases periodically because it is tied to an underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

\section*{Forward Swap}

Agreement to enter into an interest-rate swap arrangement on a fixed date in the future.
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2
```

See Also
capbyhjm| cfbyhjm| floorbyhjm | hjmtree | treeviewer

```

11 Functions - Alphabetical List

Introduced before R2006a

\section*{swapbyhw}

Price swap instrument from Hull-White interest-rate tree

\section*{Syntax}
[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, Settle, Maturity) [Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, Options, EndMonthRule) [Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, Settle, Maturity, Name, Value)

\section*{Input Arguments}
\begin{tabular}{|l|l|}
\hline HWTree & Forward-rate tree structure created by hwtree. \\
\hline LegRate & \begin{tabular}{l}
Number of instruments (NINST-by-2) matrix, with each row defined \\
as: \\
[CouponRate Spread] (fixed-float), [Spread CouponRate] \\
(float-fixed), [CouponRate CouponRate] (fixed-fixed) or [Spread \\
Spread] (float-float). \\
CouponRate is the decimal annual rate. Spread is the number of \\
basis points over the reference rate. The first column represents the \\
receiving leg, while the second column represents the paying leg.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
Settlement date. NINST-by-1 vector of serial date numbers or date \\
character vectors representing the settlement date for each swap. \\
Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Maturity date. NINST-by-1 vector of dates representing the maturity \\
date for each swap.
\end{tabular} \\
\hline
\end{tabular}

The Settle date for every swap is set to the ValuationDate of the HW tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially 0 . To do this, enter CouponRate as NaN.

\section*{Ordered Input or Name-Value Pair Arguments}

Enter the following optional inputs using an ordered syntax or as name-value pair arguments. You cannot mix ordered syntax with name-value pair arguments.

\section*{LegReset}

NINST-by-2 matrix representing the reset frequency per year for each swap. NINST-by-1 vector representing the frequency of payments per year.

Default: [11 1]

\section*{Basis}

Day-count basis representing the basis for each leg. NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual \(/ 360\)
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- \(12=\) actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{Principal}

Principal accepts a NINST-by-1 vector or NINST-by-1 (or NINST-by-2 if Principal is different for each leg) cell array of the notional principal amounts or principal value schedules. For schedules, each element of the cell array is a NumDates-by-2 array where the first column is dates and the second column is its associated notional principal value. The date indicates the last day that the principal value is valid.

Default: 100

\section*{LegType}

NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate.

Default: [1 0] for each instrument

\section*{Options}

Derivatives pricing options structure created with derivset.

\section*{Default:}

\section*{EndMonthRule}

End-of-month rule. NINST-by-1 (or NINST-by-2 if EndMonthRule is different for each leg). This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days.
- \(0=\) Ignore rule, meaning that a bond coupon payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a bond coupon payment date is always the last actual day of the month.

\section*{Default: 1}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

\section*{AdjustCashFlowsBasis}

Adjust the cash flows based on the actual period day count. NINST-by-1 (or NINST-by-2 if AdjustCashFlowsBasis is different for each leg) of logicals.

Default: false

\section*{BusinessDayConvention}

Require payment dates to be business dates. NINST-by-1 (or NINST-by-2 if BusDayConvention is different for each leg) cell array with the following possible choices of business day convention:
- actual
- follow
- modifiedfollow
- previous
- modifiedprevious

Default: actual

\section*{Holidays}

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.
Default: If no dates are specified, holidays.m is used.

\section*{StartDate}

NINST-by-1 vector of dates when the swap actually starts. Use this argument to price forward swaps, that is, swaps that start in a future date

Default: Settle date

\section*{Description}
[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, Settle, Maturity) computes the price of a swap instrument from a HullWhite interest-rate tree.
[Price, PriceTree, SwapRate] = swapbyhw(HWTree,

LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, Options, EndMonthRule) computes the price of a swap instrument from a Hull-White interest-rate tree with optional input arguments.
[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, Settle, Maturity, Name, Value) computes the price of a swap instrument from a Hull-White interest-rate tree with additional options specified by one or more Name, Value pair arguments.

Price is number of instruments (NINST)-by- 1 expected prices of the swap at time 0 .
PriceTree is the tree structure with a vector of the swap values at each node.
SwapRate is a NINST-by- 1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaNs for those instruments in which CouponRate is not set to NaN.

\section*{Examples}

\section*{Price an Interest-Rate Swap}

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is \(\$ 100\). The values for the remaining arguments are:
- Coupon rate for fixed leg: 0.06 (6\%)
- Spread for floating leg: 20 basis points
- Swap settlement date: Jan. 01, 2005
- Swap maturity date: Jan. 01, 2008

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices:
```

Settle = '01-Jan-2005';
Maturity = '01-Jan-2008';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

```

Price the swap using the HWTree included in the MAT-file deriv. mat. The HWTree structure contains the time and forward-rate information needed to price the instrument.
```

load deriv.mat;

```

Use swapbyhw to compute the price of the swap.
```

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ...

```
Settle, Maturity, LegReset, Basis, Principal, LegType)
Warning: Swaps are valued at Tree ValuationDate rather than Settle
Price =
 5.9109
PriceTree =
 struct with fields:
 FinObj: 'HWPriceTree'
 PTree: \{1×5 cell\}
 tObs: [lllll 0101234\(]\)
 Connect: \(\left\{[2]\right.\) [2 3 3 4] [\(\left.2 \begin{array}{lllll}2 & 2 & 3 & 4 & 4\end{array}\right]\)
 Probs: \(\{[3 \times 1\) double] [\(3 \times 3\) double] [\(3 \times 5\) double]\}
SwapRate =
 NaN

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg, such that the swap price at time \(=0\) is zero.
```

LegRate = [NaN 20];

```
[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ...
Settle, Maturity, LegReset, Basis, Principal, LegType)
Warning: Swaps are valued at Tree ValuationDate rather than Settle
Price =
```

PriceTree =
struct with fields:
FinObj: 'HWPriceTree
PTree: {1×5 cell}
tObs: [llllll}
Connect: {[2] [2 2 3 4] [2 2 2 3 4 4 4]}
Probs: {[3\times1 double] [ }3\times3\mathrm{ double] [3×5 double]}
SwapRate =
0.0438

```

\section*{Price an Amortizing Swap}

Price an amortizing swap using the Principal input argument to define the amortization schedule.

Create the RateSpec.
Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: 0.8135
Rates: 0.0350
EndTimes: 6
```

    StartTimes: 0
    EndDates: 736696
    StartDates: 734504
    ValuationDate: 734504
Basis: 0
EndMonthRule: 1

```

Create the swap instrument using the following data:
```

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];

```

Define the swap amortizing schedule.
```

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-\&

```

Build the HW tree using the following data:
```

VolDates = ['1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-20
VolCurve = 0.1;
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

```

Compute the price of the amortizing swap.
```

Price = swapbyhw(HWT, LegRate, Settle, Maturity, 'Principal', Principal)

```
Price =
 1.4574

\section*{Price a Forward Swap}

Price a forward swap using the StartDate input argument to define the future starting date of the swap.

Create the RateSpec.
```

Rates = 0.0374;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: 0.8023
Rates: 0.0374
EndTimes: 6
StartTimes: 0
EndDates: 737061
StartDates: 734869
ValuationDate: 734869
Basis: 0
EndMonthRule: 1

```

Build an HW tree.
```

VolDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2(
VolCurve = 0.1;
AlphaDates = '01-01-2018';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

```

Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in four years with a forward swap rate of \(4.25 \%\).
```

Settle ='1-Jan-2012';

```
```

Maturity = '1-Jan-2017';
StartDate = '1-Jan-2013';
LegRate = [0.0425 10];
Price = swapbyhw(HWT, LegRate, Settle, Maturity, 'StartDate', StartDate)
Price =
1.4434

```

Using the previous data, compute the forward swap rate, the coupon rate for the fixed leg, such that the forward swap price at time \(=0\) is zero.
```

LegRate = [NaN 10];
[Price, ~,SwapRate] = swapbyhw(HWT, LegRate, Settle, Maturity, 'StartDate', StartDate)
Price =
0
SwapRate =
0.0384

```
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}

\section*{Amortizing Swap}

In an amortizing swap, the notional principal decreases periodically because it is tied to an underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

\section*{Forward Swap}

Agreement to enter into an interest-rate swap arrangement on a fixed date in the future.
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bondbyhw | capbyhw | cfbyhw | fixedbyhw | floorbyhw | hwtree \\ Introduced before R2006a
}

\section*{swapbyzero}

Price swap instrument from set of zero curves and price cross-currency swaps

\section*{Syntax}
[Price,SwapRate, AI,RecCF,RecCFDates, PayCF, PayCFDates] = swapbyzero(RateSpec, LegRate, Settle, Maturity) [Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(RateSpec, LegRate, Settle,Maturity, Name, Value)

\section*{Description}
[Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(RateSpec, LegRate, Settle, Maturity) prices a swap instrument. You can use swapbyzero to compute prices of vanilla swaps, amortizing swaps, and forward swaps. All inputs are either scalars or NINST-by-1 vectors unless otherwise specified. Any date can be a serial date number or date character vector. An optional argument can be passed as an empty matrix [].
[Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(RateSpec, LegRate, Settle, Maturity, Name, Value) prices a swap instrument with additional options specified by one or more Name, Value pair arguments. You can use swapbyzero to compute prices of vanilla swaps, amortizing swaps, forward swaps, and cross-currency swaps. For more information on the namevalue pairs for vanilla swaps, amortizing swaps, and forward swaps, see Vanilla Swaps, Amortizing Swaps, Forward Swaps.

Specifically, you can use name-value pairs for FXRate, ExchangeInitialPrincipal, and ExchangeMaturityPrincipal to compute the price for cross-currency swaps. For more information on the name-value pairs for cross-currency swaps, see Cross-Currency Swaps.

\section*{Examples}

\section*{Price an Interest-Rate Swap}

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is \(\$ 100\). The values for the remaining arguments are:
- Coupon rate for fixed leg: 0.06 (6\%)
- Spread for floating leg: 20 basis points
- Swap settlement date: Jan. 01, 2000
- Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices:
```

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

```

Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the bond.
```

load deriv.mat;

```

Use swapbyzero to compute the price of the swap.
```

Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,...

```
LegReset, Basis, Principal, LegType)
Price =
 3.6923

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg, such that the swap price at time \(=0\) is zero.

LegRate \(=[\) NaN 20];
```

[Price, SwapRate] = swapbyzero(ZeroRateSpec, LegRate, Settle,...
Maturity, LegReset, Basis, Principal, LegType)
Price =
0
SwapRate =
0.0466

```

In swapbyzero, if Settle is not on a reset date (and 'StartDate' is not specified), the effective date is assumed to be the previous reset date before Settle in order to compute the accrued interest and dirty price. In this example, the effective date is (' 15 -Sep-2009'), which is the previous reset date before the ('08-Jun-2010') Settle date.

Use swapbyzero with name-value pair arguments for LegRate, LegType, LatestFloatingRate, AdjustCashFlowsBasis, and BusinessDayConvention to calculate output for Price, SwapRate, AI, RecCF, RecCFDates, PayCF, and PayCFDates:
```

Settle = datenum('08-Jun-2010');
RateSpec = intenvset('Rates', [.005 .0075 .01 .014 .02 .025 .03]',...
'StartDates',Settle, 'EndDates',{'08-Dec-2010','08-Jun-2011',...
'08-Jun-2012', '08-Jun-2013','08-Jun-2015', '08-Jun-2017' ,'08-Jun-2020' }');
Maturity = datenum('15-Sep-2020');
LegRate = [.025 50];
LegType = [1 0]; % fixed/floating
LatestFloatingRate = .005;
[Price, SwapRate, AI, RecCF, RecCFDates, PayCF,PayCFDates] = ...
swapbyzero(RateSpec, LegRate, Settle, Maturity,'LegType',LegType,...
'LatestFloatingRate',LatestFloatingRate, 'AdjustCashFlowsBasis',true,...
'BusinessDayConvention','modifiedfollow')

```
Price =
 \(-6.7259\)
```

SwapRate =
NaN
AI =
1.4575
RecCF =
Columns 1 through 7

| -1.8219 | 2.5000 | 2.5000 | 2.5137 | 2.4932 | 2.4932 | 2.5000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

    Columns 8 through 12
            2.5000 2.5000 2.5137 2.4932 102.4932
    RecCFDates =
Columns 1 through 6
734297 734396
Columns 7 through 12
7 3 6 2 2 2
7 3 7 3 2 0
7 3 7 6 8 4
7 3 8 0 4 9
PayCF =
Columns 1 through 7
lllllll
Columns 8 through 12
4.1733 4.5164 4.4920 4.7950 104.6608

```
```

PayCFDates =
Columns 1 through 6
734297 734396
Columns 7 through 12
736222 736588

```

\section*{Price Swaps By Specifying Multiple Term Structures Using RateSpec}

Price three swaps using two interest-rate curves. First, define the data for the interestrate term structure:
```

StartDates = '01-May-2012';
EndDates = {'01-May-2013'; '01-May-2014';'01-May-2015';'01-May-2016'};
Rates = [[0.0356;0.041185;0.04489;0.047741],[0.0366;0.04218;0.04589;0.04974]];
Create the RateSpec using intenvset.
RateSpec = intenvset('Rates', Rates, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1)
RateSpec =
struct with fields:
FinObj: 'RateSpec'
Compounding: 1
Disc: [4×2 double]
Rates: [4×2 double]
EndTimes: [4×1 double]
StartTimes: [4×1 double]
EndDates: [4\times1 double]
StartDates: 734990
ValuationDate: 734990
Basis: 0
EndMonthRule: 1

```

Look at the Rates for the two interest-rate curves.
RateSpec.Rates
```

ans =
0.0356 0.0366
0.0412 0.0422
0.0449 0.0459
0.0477 0.0497

```

Define the swap instruments.
```

Settle = '01-May-2012';
Maturity = '01-May-2015';
LegRate = [0.06 10];
Principal = [100;50;100]; % Three notional amounts

```

Price three swaps using two curves.
```

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'Principal', Principal)

```
Price =
\begin{tabular}{ll}
3.9688 & 3.6869 \\
1.9844 & 1.8434 \\
3.9688 & 3.6869
\end{tabular}

\section*{Price Swap By Specifying Multiple Term Structures Using a 1-by-2 RateSpec}

Price a swap using two interest-rate curves. First, define data for the two interest-rate term structures:
```

StartDates = '01-May-2012';
EndDates = {'01-May-2013'; '01-May-2014';'01-May-2015';'01-May-2016'};
Rates1 = [0.0356;0.041185;0.04489;0.047741];
Rates2 = [0.0366;0.04218;0.04589;0.04974];

```

Create the RateSpec using intenvset.
RateSpecReceiving = intenvset('Rates', Rates1, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1);
RateSpecPaying= intenvset('Rates', Rates2, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1);
RateSpec=[RateSpecReceiving RateSpecPaying]
```

RateSpec =
1\times2 struct array with fields:
Fin0bj
Compounding
Disc
Rates
EndTimes
StartTimes
EndDates
StartDates
ValuationDate
Basis
EndMonthRule

```

Define the swap instruments.
```

Settle = '01-May-2012';
Maturity = '01-May-2015';
LegRate = [0.06 10];
Principal = [100;50;100];

```

Price three swaps using the two curves.
```

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'Principal', Principal)

```
Price =
 3.9693
 1.9846
 3.9693

\section*{Compute a Forward Par Swap Rate}

To compute a forward par swap rate, set the StartDate parameter to a future date and set the fixed coupon rate in the LegRate input to NaN .

Define the zero curve data and build a zero curve using IRDataCurve.
```

ZeroRates = [ll.09 2.47 2.71 3.12 3.43 3.85 4.57]'/100;
Settle = datenum('1-Jan-2012');
EndDates = datemnth(Settle,12*[[1 2 3 5 7 10 20]');
Compounding = 1;

```
```

ZeroCurve = IRDataCurve('Zero',Settle,EndDates,ZeroRates,'Compounding',Compounding)
ZeroCurve =
Type: Zero
Settle: 734869 (01-Jan-2012)
Compounding: 1
Basis: O (actual/actual)
InterpMethod: linear
Dates: [7x1 double]
Data: [7x1 double]

```

Create a RateSpec structure using the toRateSpec method.
```

RateSpec = ZeroCurve.toRateSpec(EndDates)

```
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: [7×1 double]
 Rates: [7×1 double]
 EndTimes: [7×1 double]
 StartTimes: [7×1 double]
 EndDates: [7×1 double]
 StartDates: 734869
 ValuationDate: 734869
 Basis: 0
 EndMonthRule: 1

Compute the forward swap rate (the coupon rate for the fixed leg), such that the forward swap price at time \(=0\) is zero. The forward swap starts in a month (1-Feb-2012) and matures in 10 years (1-Feb-2022).
```

StartDate = datenum('1-Feb-2012');
Maturity = datenum('1-Feb-2022');
LegRate = [NaN O];
[Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity,...
'StartDate', StartDate)
Price =

```
 0

\section*{SwapRate =}
0.0378

\section*{Compute a Forward Swap Rate Using the Optional Input BusinessDayConvention}

The swapbyzero function generates the cash flow dates based on the Settle and Maturity dates, while using the Maturity date as the "anchor" date from which to count backwards in regular intervals. By default, swapbyzero does not distinguish nonbusiness days from business days. To make swapbyzero move non-business days to the following business days, you can you can set the optional name-value input argument BusinessDayConvention with a value of follow.

Define the zero curve data and build a zero curve using IRDataCurve.
```

ZeroRates = [2.09 2.47 2.71 3.12 3.43 3.85 4.57]'/100;
Settle = datenum('5-Jan-2012');
EndDates = datemnth(Settle,12*[1 2 3 5 7 10 20]');
Compounding = 1;
ZeroCurve = IRDataCurve('Zero',Settle,EndDates,ZeroRates,'Compounding',Compounding);
RateSpec = ZeroCurve.toRateSpec(EndDates);
StartDate = datenum('5-Feb-2012');
Maturity = datenum('5-Feb-2022');
LegRate = [NaN O];

```

To demonstrate the optional input BusinessDayConvention, swapbyzero is first used without and then with the optional name-value input argument BusinessDayConvention. Notice that when using BusinessDayConvention, all days are business days.
```

[Price1,SwapRate1,~,~,RecCFDates1,~,PayCFDates1] = swapbyzero(RateSpec,LegRate,Settle,Maturity,..
'StartDate',StartDate);
datestr(RecCFDates1)
isbusday (RecCFDates1)
[Price2,SwapRate2,~,~,RecCFDates2,~,PayCFDates2] = swapbyzero(RateSpec,LegRate,Settle,Maturity,...
'StartDate',StartDate, 'BusinessDayConvention', ,'follow');
datestr(RecCFDates2)
isbusday (RecCFDates2)
ans =
11\times11 char array
05-Jan-2012
05-Feb-2013
05-Feb-2014
05-Feb-2015
05-Feb-2016
05-Feb-2017

```
```

05-Feb-2018
05-Feb-2019
05-Feb-2020
05-Feb-2021
05-Feb-2022
ans =
11\times1 logical array
1
1
1
1
1
O
1
1
1
1
0
ans =
11\times11 char array
05-Jan-2012
05-Feb-2013
05-Feb-2014
05-Feb-2015
05-Feb-2016
06-Feb-2017
05-Feb-2018
05-Feb-2019
05-Feb-2020
05-Feb-2021
07-Feb-2022
ans =
11\times1 logical array

```

\section*{Price an Amortizing Swap}

Price an amortizing swap using the Principal input argument to define the amortization schedule.

Create the RateSpec.
Rates \(=0.035\);
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
Create the swap instrument using the following data:
```

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];

```

Define the swap amortizing schedule.
```

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2

```

Compute the price of the amortizing swap.
Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'Principal' , Principal)

Price =
1.4574

\section*{Price a Forward Swap}

Price a forward swap using the StartDate input argument to define the future starting date of the swap.

Create the RateSpec.
```

Rates = 0.0325;

```
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
RateSpec =
 struct with fields:
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: 0.8254
 Rates: 0.0325
 EndTimes: 6
 StartTimes: 0
 EndDates: 737061
 StartDates: 734869
 ValuationDate: 734869
 Basis: 0
 EndMonthRule: 1

Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in three years with a forward swap rate of \(4.27 \%\).

Settle ='1-Jan-2012';
StartDate = '1-Jan-2013';
```

Maturity = '1-Jan-2016';
LegRate = [0.0427 10];
Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'StartDate' , StartDate)
Price =

```
 2.5083

Using the previous data, compute the forward swap rate, the coupon rate for the fixed leg, such that the forward swap price at time \(=0\) is zero.
```

LegRate = [NaN 10];
[Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity,...
'StartDate' , StartDate)

```
Price =
 0
SwapRate =
 0.0335

\section*{Specify the Rate at the Instrument's Starting Date When It Cannot Be Obtained from the RateSpec}

If Settle is not on a reset date of a floating-rate note, swapbyzero attempts to obtain the latest floating rate before Settle from RateSpec or the LatestFloatingRate parameter. When the reset date for this rate is out of the range of RateSpec (and LatestFloatingRate is not specified), swapbyzero fails to obtain the rate for that date and generates an error. This example shows how to use the LatestFloatingRate input parameter to avoid the error.

Create the error condition when a swap instrument's StartDate cannot be determined from the RateSpec.
```

Settle = '01-Jan-2000';
Maturity = '01-Dec-2003';

```
```

Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year
load deriv.mat;
Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,...
'LegReset', LegReset, 'Basis', Basis, 'Principal', Principal, ...
'LegType', LegType)
Error using floatbyzero (line 256)
The rate at the instrument starting date cannot be obtained from RateSpec.
Its reset date (01-Dec-1999) is out of the range of dates contained in RateSpec.
This rate is required to calculate cash flows at the instrument starting date.
Consider specifying this rate with the 'LatestFloatingRate' input parameter.

```
Error in swapbyzero (line 289)
[FloatFullPrice, FloatPrice,FloatCF,FloatCFDates] = floatbyzero(FloatRateSpec, Spreads, Settle,...

Here, the reset date for the rate at Settle was 01-Dec-1999, which was earlier than the valuation date of ZeroRateSpec (01-Jan-2000). This error can be avoided by specifying the rate at the swap instrument's starting date using the LatestFloatingRate input parameter.

Define LatestFloatingRate and calculate the floating-rate price.
```

Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,...
'LegReset', LegReset, 'Basis', Basis, 'Principal', Principal, ...
'LegType', LegType, 'LatestFloatingRate', 0.03)
Price =

```

\subsection*{4.7594}

\section*{Price a Swap Using a Different Curve to Generate the Cash Flows of the Floating Leg}

Define the OIS and Libor rates.
```

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006 .011 .017 .021 . 026 .03]';
LiborRates = [.0045 .0047 . 005 . 0055 .0075 .011 .016 . 022 . 026 . 030 .0348]';

```

Plot the dual curves.
```

figure,plot(CurveDates,OISRates,'r');hold on;plot(CurveDates,LiborRates,'b')
datetick
legend({'OIS Curve', 'Libor Curve'})

```


Create an associated RateSpec for the OIS and Libor curves.
OISCurve = intenvset('Rates', OISRates,'StartDate',Settle,'EndDates',CurveDates); LiborCurve = intenvset('Rates',LiborRates,'StartDate', Settle,'EndDates', CurveDates);

Define the swap.
Maturity = datenum('15-Mar-2018'); \% Five year swap
FloatSpread = 0;
FixedRate = .025;
LegRate = [FixedRate FloatSpread];

Compute the price of the swap instrument. The LiborCurve term structure will be used to generate the cash flows of the floating leg. The OISCurve term structure will be used for discounting the cash flows.
```

Price = swapbyzero(OISCurve, LegRate, Settle,...
Maturity,'ProjectionCurve',LiborCurve)

```

\section*{Price =}
\(-0.3697\)

Compare results when the term structure OISCurve is used both for discounting and also generating the cash flows of the floating leg.
```

PriceSwap = swapbyzero(OISCurve, LegRate, Settle, Maturity)

```

\section*{PriceSwap =}
2.0517

\section*{Price a Fixed-Fixed Currency Swap}

Price an existing cross currency swap that receives a fixed rate of JPY and pays a fixed rate of USD at an annual frequency.
```

Settle = datenum('15-Aug-2015');
Maturity = datenum('15-Aug-2018');
Reset = 1;
LegType = [11 1]; % Fixed-Fixed
r_USD = .09;
r_JPY = .04;
FixedRate_USD = .08;
FixedRate_JPY = .05;
Principal_USD = 10000000;
Principal_JPY = 1200000000;
S = 1/110;

```
```

RateSpec_USD = intenvset('StartDate',Settle,'EndDate', Maturity,'Rates',r_USD,'Compound
RateSpec_JPY = intenvset('StartDate',Settle,'EndDate', Maturity,'Rates', r_JPY,'Compour
Price = swapbyzero([RateSpec_JPY RateSpec_USD], [FixedRate_JPY FixedRate_USD],...
Settle, Maturity,'Principal',[Principal_JPY Principal_USD],'FXRate',[S 1], 'LegType',L¢
Price =

```
 \(1.5430 e+06\)

\section*{Price a Float-Float Currency Swap}

Price a new swap where you pay a EUR float and receive a USD float.
```

Settle = datenum('22-Dec-2015');
Maturity = datenum('15-Aug-2018');
LegRate = [0 -50/10000];
LegType = [11 1]; % Float Float
LegReset = [4 4];
FXRate = 1.1;
Notional = [10000000 8000000];
USD_Dates = datemnth(Settle,[11 3 6 12*[[1 2 3 5 5 7 10 20 30]]');
USD_Zero = [lllllllllllllll
Curve_USD = intenvset('StartDate',Settle,'EndDates',USD_Dates,'Rates',USD_Zero);
EUR_Dates = datemnth(Settle,[3 6 12*[14 2 3 5 7 10 20 30]]');
EUR_Zero = [l0.017 0.033 0.088 .27 .512 1.056 1.573 2.183 2.898 2.797]'/100;
Curve_EUR = intenvset('StartDate',Settle,'EndDates',EUR_Dates,'Rates',EUR_Zero);
Price = swapbyzero([Curve_USD Curve_EUR], ...
LegRate, Settle, Maturity,'LegType',LegType,'LegReset',LegReset,'Principal',Notion
'FXRate',[1 FXRate],'ExchangeInitialPrincipal',false)

```
Price \(=\)
 \(1.2569 e+06\)
- "Pricing Using Interest-Rate Term Structure" on page 2-57

\section*{Input Arguments}

\section*{RateSpec - Interest-rate structure}
structure
Interest-rate structure, specified using intenvset to create a RateSpec.
RateSpec can also be a 1-by-2 input variable of RateSpecs, with the second RateSpec structure containing one or more discount curves for the paying leg. If only one RateSpec structure is specified, then this RateSpec is used to discount both legs.

Data Types: struct

\section*{LegRate - Number of instruments matrix}

Number of instruments, specified as a NINST-by-2 matrix, with each row defined as one of the following:
- [CouponRate Spread] (fixed-float)
- [Spread CouponRate] (float-fixed)
- [CouponRate CouponRate] (fixed-fixed)
- [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the reference rate. The first column represents the receiving leg, while the second column represents the paying leg.

Data Types: double

\section*{Settle - Settlement date \\ nonnegative integer | character vector | cell array of character vectors}

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers or date character vectors of the same value which represent the settlement date for each swap. Settle must be earlier than Maturity.

Data Types: char | cell | double

\section*{Maturity - Maturity date}
nonnegative integer | character vector | cell array of character vectors

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character vectors representing the maturity date for each swap.
Data Types: char | cell | double

\section*{Name-Value Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . , NameN, ValueN.
Example: [Price, SwapRate, AI ,RecCF,RecCFDates, PayCF, PayCFDates] = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'LegType', LegType, 'LatestFloatingRate' , LatestFloatingRate, 'AdjustCash 'BusinessDayConvention','modifiedfollow')

\section*{Vanilla Swaps, Amortizing Swaps, Forward Swaps}
'LegReset ' - Reset frequency per year for each swap
[1 1] (default) | vector
Reset frequency per year for each swap, specified as NINST-by-2 vector.
Data Types: double

\section*{'Basis' - Day-count basis of instrument \\ 0 (actual/actual) (default) | integer from 0 to 13}

Day-count basis representing the basis for each leg. NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- 11 = 30/360E (ICMA)
- \(12=\) actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Data Types: double

\section*{'Principal' - Notional principal amounts or principal value schedules 100 (default) | vector or cell array}

Notional principal amounts or principal value schedules, specified as a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if Principal is different for each leg) of the notional principal amounts or principal value schedules. For schedules, each element of the cell array is a NumDates-by-2 array where the first column is dates and the second column is its associated notional principal value. The date indicates the last day that the principal value is valid.

\section*{Data Types: cell | double}
'LegType' - Leg type
\(\left[\begin{array}{ll}1 & 0\end{array}\right]\) for each instrument (default) | matrix with values [11 1] (fixed-fixed), [lll 10 0 (fixed-float), [0 1] (float-fixed), or [0 0] (float-float)

Leg type, specified as a NINST-by-2 matrix with values [11 1] (fixed-fixed), [1 0] (fixedfloat), [0 1] (float-fixed), or [0 0] (float-float). Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate. LegType allows [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0 0] (float-float) swaps

Data Types: double

\footnotetext{
'EndMonthRule ' - End-of-month rule flag for generating dates when Maturity is end-ofmonth date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]
}

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a month having 30 or fewer days, specified as nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if EndMonthRule is different for each leg).
- \(0=\) Ignore rule, meaning that a payment date is always the same numerical day of the month.
- 1 = Set rule on, meaning that a payment date is always the last actual day of the month.

Data Types: logical

\section*{'AdjustCashFlowsBasis ' - Flag to adjust cash flows based on actual period day count false (default) | value of 0 (false) or 1 (true)}

Flag to adjust cash flows based on actual period day count, specified as a NINST-by-1 (or NINST-by-2 if AdjustCashFlowsBasis is different for each leg) of logicals with values of 0 (false) or 1 (true).
Data Types: logical

\section*{'BusDayConvention' - Business day conventions actual (default) | character vector | cell array of character vectors}

Business day conventions, specified by a character vector or a N-by-1 (or NINST-by-2 if BusDayConvention is different for each leg) cell array of character vectors of business day conventions. The selection for business day convention determines how non-business days are treated. Non-business days are defined as weekends plus any other date that businesses are not open (e.g. statutory holidays). Values are:
- actual - Non-business days are effectively ignored. Cash flows that fall on nonbusiness days are assumed to be distributed on the actual date.
- follow - Cash flows that fall on a non-business day are assumed to be distributed on the following business day.
- modifiedfollow - Cash flows that fall on a non-business day are assumed to be distributed on the following business day. However if the following business day is in a different month, the previous business day is adopted instead.
- previous - Cash flows that fall on a non-business day are assumed to be distributed on the previous business day.
- modifiedprevious - Cash flows that fall on a non-business day are assumed to be distributed on the previous business day. However if the previous business day is in a different month, the following business day is adopted instead.

Data Types: char | cell

\section*{'Holidays ' - Holidays used in computing business days \\ if not specified, the default is to use holidays.m (default) | MATLAB date numbers}

Holidays used in computing business days, specified as MATLAB date numbers using a NHolidays-by- 1 vector.

\section*{Data Types: double}

\section*{'LatestFloatingRate' - Rate for the next floating payment}

If not specified, then RateSpec must contain this information (default) | scalar
Rate for the next floating payment, set at the last reset date, specified as a scaler.
LatestFloatingRate accepts a Rate for the next floating payment, set at the last reset date. LatestFloatingRate is a NINST-by-1 (or NINST-by-2 if LatestFloatingRate is different for each leg).

Data Types: double
```

'ProjectionCurve' - Rate curve used in generating cash flows for the floating leg of the
swap
if ProjectionCurve is not specified, then RateSpec is used both for discounting and
generating cash flows for the floating leg (default)| RateSpec or vector

```

Rate curve used in generating cash flows for the floating leg of the swap, specified as a RateSpec.

If specifying a fixed-float or a float-fixed swap, the ProjectionCurve rate curve is used in generating cash flows for the floating leg of the swap. This structure must be created using intenvset.

If specifying a fixed-fixed or a float-float swap, then ProjectionCurve is NINST-by-2 vector because each floating leg could have a different projection curve.
Data Types: struct

\section*{Cross-Currency Swaps}

\section*{' FXRate' - Foreign exchange (FX) rate applied to cash flows}
if not specified, both legs of swapbyzero are in same currency (default) | array

Foreign exchange (FX) rate applied to cash flows, specified as an NINST-by-2 array of doubles. Since the foreign exchange rate could be applied to either the payer or receiver leg, there are 2 columns in the input array and you must specify which leg has the foreign currency.

Data Types: double

\section*{'ExchangeInitialPrincipal' - Flag to indicate if initial Principal is exchanged 0 (false) (default) | array}

Flag to indicate if initial Principal is exchanged, specified as an NINST-by-1 array of logicals.

Data Types: logical

\section*{'ExchangeMaturityPrincipal ' - Flag to indicate if Principal exchanged at Maturity}
```

1 (true) (default) | array

```

Flag to indicate if Principal is exchanged at Maturity, specified as an NINST-by-1 array of logicals. While in practice most single currency swaps do not exchange principal at maturity, the default is true to maintain backward compatibility.

Data Types: logical

\section*{Output Arguments}

\section*{Price - Swap prices}
matrix
Swap prices, returned as the number of instruments (NINST) by number of curves (NUMCURVES) matrix. Each column arises from one of the zero curves. Price output is the dirty price. To compute the clean price, subtract the accrued interest (AI) from the dirty price.

\section*{SwapRate - Rates applicable to fixed leg \\ matrix}

Rates applicable to the fixed leg, returned as a NINST-by-NUMCURVES matrix of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in

LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN .

\section*{AI - Accrued interest}
matrix
Accrued interest, returned as a NINST-by-NUMCURVES matrix.

\section*{RecCF - Cash flows for receiving leg}
matrix
Cash flows for the receiving leg, returned as a NINST-by-NUMCURVES matrix.

Note: If there is more than one curve specified in the RateSpec input, then the first NCURVES row corresponds to the first swap, the second NCURVES row correspond to the second swap, and so on.

\section*{RecCFDates - Payment dates for receiving leg \\ matrix}

Payment dates for the receiving leg, returned as an NINST-by-NUMCURVES matrix.

\section*{PayCF - Cash flows for paying leg \\ matrix}

Cash flows for the paying leg, returned as an NINST-by-NUMCURVES matrix.

\section*{PayCFDates - Payment dates for paying leg \\ matrix}

Payment dates for the paying leg, returned as an NINST-by-NUMCURVES matrix.

\section*{More About}

\section*{Amortizing Swap}

In an amortizing swap, the notional principal decreases periodically because it is tied to an underlying financial instrument with a declining (amortizing) principal balance, such as a mortgage.

\section*{Forward Swap}

Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

\section*{Cross-currency Swap}

Swaps where the payment legs of the swap are denominated in different currencies.
One difference between cross-currency swaps and standard swaps is that an exchange of principal may occur at the beginning and/or end of the swap. The exchange of initial principal will only come into play in pricing a cross-currency swap at inception (in other words, pricing an existing cross-currency swap will occur after this cash flow has happened). Furthermore, these exchanges of principal typically do not affect the value of the swap (since the principal values of the two legs are chosen based on the currency exchange rate) but affect the cash flows for each leg.
- "Understanding the Interest-Rate Term Structure" on page 2-40
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Hull, J. Options, Futures and Other Derivatives Fourth Edition. Prentice Hall, 2000.

\author{
See Also \\ bondbyzero | cfbyzero | fixedbyzero | floatbyzero | intenvset
}

\author{
Introduced before R2006a
}

\section*{swaptionbybdt}

Price swaption from Black-Derman-Toy interest-rate tree

\section*{Syntax}
[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity,
'Name1', Value1, 'Name2', Value2)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline OptSpec & \begin{tabular}{l}
NINST-by-1 cell array of character vectors ' call' or \\
'put '. A ' call' swaption or Payer swaption allows the \\
option buyer to enter into an interest-rate swap in which \\
the buyer of the option pays the fixed rate and receives \\
the floating rate. A 'put ' swaption or Receiver swaption \\
allows the option buyer to enter into an interest-rate \\
swap in which the buyer of the option receives the fixed \\
rate and pays the floating rate.
\end{tabular} \\
\hline Strike & NINST-by-1 vector for strike swap rate values. \\
\hline ExerciseDates & \begin{tabular}{l}
For a European option: NINST-by-1 vector of exercise \\
dates. Each row is the schedule for one option. For a \\
European option, there is only one ExerciseDate on the \\
option expiry date.
\end{tabular} \\
\hline Spread & \begin{tabular}{l}
For an American option: NINST-by-2 vector of exercise \\
date boundaries. For each instrument, the option can \\
be exercised on any coupon date between or including \\
the pair of dates on that row. If only one non-NaN date is \\
listed, or if ExerciseDates is NINST-by-1, the option \\
can be exercised between the ValuationDate of the tree \\
and the single listed ExerciseDate.
\end{tabular} \\
\hline & \begin{tabular}{l}
NINST-by-1 vector representing the number of basis \\
points over the reference rate.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Settle & \begin{tabular}{l}
NINST-by-1 vector of dates representing the settle date \\
for each swap.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
NINST-by-1 vector of dates representing the maturity \\
date for the underlying swap for each swap.
\end{tabular} \\
\hline \begin{tabular}{l}
Note: All optional inputs that follow are specified as matching parameter name/ \\
value pairs. The parameter name is specified as a character vector, followed by the \\
corresponding parameter value. Parameter name/value pairs can be specified in \\
any order; names are case-insensitive and partial matches are allowed provided no \\
ambiguities exist.
\end{tabular} \\
\hline AmericanOpt & \begin{tabular}{l}
(Optional) NINST-by-1 flags options: \\
- \\
0 for European options
\end{tabular} \\
\hline - 1 for American options
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/ 360 \\
- \(3=\) actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 vector of the notional principal amounts. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, 'Name1', Value1, 'Name2', Value2) computes the price of a swaption from a BDT interest-rate tree. The swaption may be a call swaption or a put swaption.

Note: The Settle date for every swaption is set to the ValuationDate of the BDT tree. The swap argument Settle is ignored. The underlying swap starts at the maturity of the swaption.

A call swaption or payer swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.

A put swaption or receiver swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

Price is a NINST-by- 1 vector of expected swaption prices at time 0 .
PriceTree is a MATLAB structure of trees containing vectors of swaption instrument prices and a vector of observation times for each node. Within PriceTree:
- PriceTree. PTree contains the clean prices.
- PriceTree.tObs contains the observation times.

\section*{Examples}

\section*{Price a 5-Year Call Swaption Using a BDT Interest-Rate Tree}

This example shows how to price a 5 -year call swaption using a BDT interest-rate tree. Assume that interest rate and volatility are fixed at \(6 \%\) and \(20 \%\) annually between the valuation date of the tree until its maturity. Build a tree with the following data.
```

Rates = 0.06 * ones (10,1);
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';...
'jan-1-2012';'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016'];
EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jjan-1-2011';''jan-1-2012';...
'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016';'jan-1-2017' ];
ValuationDate = 'jan-1-2007';
Compounding = 1;
% define the RateSpec
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates,
'Compounding', Compounding);
% use VolSpec to compute interest-rate volatility
Volatility = 0.20 * ones (10,1); VolSpec = bdtvolspec(ValuationDate,...

```
```

EndDates, Volatility);
% use TimeSpec to specify the structure of the time layout for a BDT tree
TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
% build the BDT tree
BDTTree = bdttree(VolSpec, RateSpec, TimeSpec);
% use the following swaption arguments
ExerciseDates = 'jan-1-2012';
SwapSettlement = ExerciseDates;
SwapMaturity = 'jan-1-2015';
Spread = 0;
SwapReset = 1;
Principal = 100;
OptSpec = 'call';
Strike=.062;
Basis=1;
% price the swaption
[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ...
'Basis', Basis, 'Principal', Principal)
Price =
2.0592
PriceTree =
struct with fields:
FinObj: 'BDTPriceTree'
tObs: [0 1 1 2 3 4 5 6 7 8 9 10]
PTree: {1\times11 cell}

```
- "Computing Instrument Prices" on page 2-84

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bdttree | instswaption | swapbybdt \\ Introduced before R2006a
}

\section*{swaptionbybk}

Price swaption from Black-Karasinski interest-rate tree

\section*{Syntax}
[Price, PriceTree] = swaptionbybk(BKTTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity,
'Name1', Value1, 'Name2', Value2)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline BKTree & Interest-rate tree structure created by bktree. \\
\hline OptSpec & \begin{tabular}{l}
NINST-by-1 cell array of character vectors ' call' or \\
'put '. A ' call ' swaption or Payer swaption allows the \\
option buyer to enter into an interest-rate swap in which \\
the buyer of the option pays the fixed rate and receives \\
the floating rate. A 'put ' swaption or Receiver swaption \\
allows the option buyer to enter into an interest-rate \\
swap in which the buyer of the option receives the fixed \\
rate and pays the floating rate.
\end{tabular} \\
\hline Strike & NINST-by-1 vector for strike swap rate values. \\
\hline ExerciseDates & \begin{tabular}{l}
For a European option: NINST-by-1 vector of exercise \\
dates. Each row is the schedule for one option. For a \\
European option, there is only one ExerciseDate on the \\
option expiry date.
\end{tabular} \\
\hline Spread & \begin{tabular}{l}
For an American option: NINST-by-2 vector of exercise \\
date boundaries. For each instrument, the option can \\
be exercised on any coupon date between or including \\
the pair of dates on that row. If only one non-NaN date is \\
listed, or if ExerciseDates is NINST-by-1, the option \\
can be exercised between the ValuationDate of the tree \\
and the single listed ExerciseDate.
\end{tabular} \\
\hline & \begin{tabular}{l}
NINST-by-1 vector representing the number of basis \\
points over the reference rate.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Settle & NINST-by-1 vector of dates representing the settle date for each swap. \\
\hline Maturity & NINST-by- 1 vector of dates representing the maturity date for the underlying swap for each swap. \\
\hline \multicolumn{2}{|l|}{Note: All optional inputs that follow are specified as matching parameter name/ value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. Parameter name/value pairs can be specified in any order; names are case-insensitive and partial matches are allowed provided no ambiguities exist.} \\
\hline AmericanOpt & \begin{tabular}{l}
(Optional) NINST-by-1 flags options: \\
- 0 for European options \\
- 1 for American options
\end{tabular} \\
\hline SwapReset & (Optional) NINST-by-1 vector representing the reset frequency per year for the underlying swap. Default is 1 . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/ 360 \\
- \(3=\) actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 vector of the notional principal amounts. Default is 100. \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = swaptionbybk(BKTTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, 'Name1', Value1, 'Name2', Value2) computes the price of a swaption from a BK interest-rate tree.

Note: The Settle date for every swaption is set to the ValuationDate of the BK tree. The swap argument Settle is ignored. The underlying swap starts at the maturity of the swaption.

The swaption may be a call swaption or a put swaption.
A call swaption or payer swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.

A put swaption or receiver swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

Price is a NINST-by- 1 vector of expected swaption prices at time 0 .
PriceTree is a MATLAB structure of trees containing vectors of swaption instrument prices and a vector of observation times for each node. Within PriceTree:
- PriceTree. PTree contains the clean prices.
- PriceTree.tObs contains the observation times.

\section*{Examples}

Price a 4-Year Call and Put Swaption Using a BK Interest-Rate Tree
This example shows how to price a 4 -year call and put swaption using a BK interest-rate tree, assuming the interest rate is fixed at \(7 \%\) annually.
```

Rates =0.07 * ones (10,1);
Compounding = 2;
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009'; ...
'jul-1-2009'; 'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009'; ...
'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];
ValuationDate = 'jan-1-2007';
% define the RateSpec
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates,..
'Compounding', Compounding);

```
```

% use BKVolSpec to compute the interest-rate volatility
Volatility = 0.10*ones(10,1);
AlphaCurve = 0.05*ones(10,1);
AlphaDates = EndDates;
BKVolSpec = bkvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);
% use BKTimeSpec to specify the structure of the time layout for the BK interest-rate
BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);
% build the BK tree
BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec);
% use the following arguments for a 1-year swap and 4-year swaption
ExerciseDates = 'jan-1-2011';
SwapSettlement = ExerciseDates;
SwapMaturity = 'jan-1-2012';
Spread = 0;
SwapReset = 2 ;
Principal = 100;
OptSpec = {'call' ;'put'};
Strike= [ 0.07 ; 0.0725];
Basis=1;
% price the swaption
PriceSwaption = swaptionbybk(BKTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, 'Basis', Basis, ...
'Principal', Principal)
PriceSwaption =
0.3634
0.4798

```
- "Pricing Using Interest-Rate Tree Models" on page 2-84

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bktree | instswaption | swapbybk \\ Introduced before R2006a
}

\section*{swaptionbyblk}

Price European swaption instrument using Black model

\section*{Syntax}

Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle, ExerciseDates, Maturity, Volatility) Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle, ExerciseDates, Maturity, Volatility, Name, Value)

\section*{Description}

Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle, ExerciseDates, Maturity, Volatility) prices swaptions using the Black option pricing model.

Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle, ExerciseDates, Maturity, Volatility, Name, Value) prices swaptions using the Black option pricing model with additional options specified by one or more Name, Value pair arguments.

Note: When pricing swaptions using the Black model, the underlying is not a regular swap, but a forward on a swap.

\section*{Input Arguments}

\section*{RateSpec}

Structure containing the properties of an interest-rate structure. See intenvset for information on creating RateSpec.

RateSpec can be a NINST-by-2 input variable of RateSpecs, with the second input being the discount curve for the paying leg if different than the receiving leg. If only one curve is specified, then it is used to discount both legs.

\section*{OptSpec}

NINST-by-1 cell array of character vectors 'call' or 'put'.
A 'call' swaption or Payer swaption allows the option buyer to enter into an interestrate swap in which the buyer of the option pays the fixed rate and receives the floating rate.

A 'put ' swaption or Receiver swaption allows the option buyer to enter into an interestrate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

\section*{Strike}

NINST-by-1 vector of strike swap rate values.

\section*{Settle}

Settlement date. NINST-by-1 vector of serial date numbers or date character vectors representing the settlement date for each swaption. Settle must not be later than ExerciseDate.

The Settle date input for swaptionbyblk is the valuation date on which the swaption (an option to enter into a swap) is priced. The swaption buyer pays this price on this date to hold the swaption.

\section*{ExerciseDate}

For a European option: NINST-by-1 vector of exercise dates. Each row is the schedule for one option. When using a European option, there is only one ExerciseDate on the option expiry date.

The ExerciseDate is the date on which the swaption expires and the underlying swap starts. The swaption holder can choose to enter into the swap on this date if the situation is favorable.

\section*{Maturity}

Maturity date. NINST-by-1 vector of dates representing the maturity date for the underlying swap for each swaption.

\section*{Volatility}

Volatilities values. NINST-by-1 vector of volatilities.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{Basis}

Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\mathrm{actual} / 365\) (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- \(13=\) BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{Principal}

NINST-by-1 vector of the notional principal amount.
Default: 100

\section*{Reset}

NINST-by-1 vector representing the reset frequency per year for the underlying forward swap.

Default: 1

\section*{ProjectionCurve}

The rate curve to be used in generating the future forward rates. This structure must be created using intenvset. Use this optional input if the forward curve is different from the discount curve.

Default: If ProjectionCurve is not specified, then RateSpec is used both for discounting cash flows and projecting future forward rates.

\section*{Output Arguments}

\section*{Price}

NINST-by-1 vector of prices for the swaptions at time 0 .

\section*{Examples}

\section*{Price a European Swaption Using the Black Model Where the Yield Curve is Flat at 6\%}

Price a European swaption that gives the holder the right to enter in five years into a three-year paying swap where a fixed-rate of \(6.2 \%\) is paid and floating is received. Assume that the yield curve is flat at \(6 \%\) per annum with continuous compounding, the volatility of the swap rate is \(20 \%\), the principal is \(\$ 100\), and payments are exchanged semiannually.

Create the RateSpec.
```

Rate = 0.06;

```
Compounding = -1;
ValuationDate = 'Jan-1-2010';
EndDates = 'Jan-1-2020';
Basis = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', ValuationDate, ...
```

'EndDates', EndDates, 'Rates', Rate, 'Compounding', Compounding, 'Basis', Basis);

```

Price the swaption using the Black model.
```

Settle = 'Jan-1-2011';
ExerciseDates = 'Jan-1-2016';
Maturity = 'Jan-1-2019';
Reset = 2;
Principal = 100;
Strike = 0.062;
Volatility = 0.2;
OptSpec = 'call';
Price= swaptionbyblk(RateSpec, OptSpec, Strike, Settle, ExerciseDates, Maturity, ...
Volatility, 'Reset', Reset, 'Principal', Principal, 'Basis', Basis)

```
Price =
 2.0710

\section*{Price a European Swaption Using the Black Model Where the Yield Curve Is Incrementally Increasing}

Price a European swaption that gives the holder the right to enter into a 5 -year receiving swap in a year, where a fixed rate of \(3 \%\) is received and floating is paid. Assume that the 1 -year, 2 -year, 3 -year, 4 -year and 5 - year zero rates are \(3 \%, 3.4 \%, 3.7 \%, 3.9 \%\) and \(4 \%\) with continuous compounding. The swap rate volatility is \(21 \%\), the principal is \(\$ 1000\), and payments are exchanged semiannually.

Create the RateSpec.
```

ValuationDate = 'Jan-1-2010';
EndDates = {'Jan-1-2011';'Jan-1-2012';'Jan-1-2013';'Jan-1-2014';'Jan-1-2015'};
Rates = [0.03; 0.034 ; 0.037; 0.039; 0.04;];
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, ...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding,'Basis', Basis)

```
RateSpec =
```

struct with fields:
FinObj: 'RateSpec'
Compounding: -1
Disc: [5\times1 double]
Rates: [5\times1 double]
EndTimes: [5\times1 double]
StartTimes: [5\times1 double]
EndDates: [5\times1 double]
StartDates: 734139
ValuationDate: 734139
Basis: 1
EndMonthRule: 1

```

Price the swaption using the Black model.
```

Settle = 'Jan-1-2011';
ExerciseDates = 'Jan-1-2012';
Maturity = 'Jan-1-2017';
Strike = 0.03;
Volatility = 0.21;
Principal =1000;
Reset = 2;
OptSpec = 'put';
Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle, ExerciseDates, ...
Maturity, Volatility,'Basis', Basis, 'Reset', Reset,'Principal', Principal)
Price =
0.5771

```

\section*{Price a Swaption Using a Different Curve to Generate the Future Forward Rates}

Define the OIS and Libor curves.
```

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006 .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .0109 .0162 .0216 .0262 .0309 .0348]';

```

Create an associated RateSpec for the OIS and Libor curves.
```

OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates,'Compour
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates,'Cor
Define the swaption instruments.

```
```

ExerciseDate = '15-Mar-2018';

```
ExerciseDate = '15-Mar-2018';
Maturity = {'15-Mar-2020';'15-Mar-2023'};
Maturity = {'15-Mar-2020';'15-Mar-2023'};
OptSpec = 'call';
OptSpec = 'call';
Strike = 0.04;
Strike = 0.04;
BlackVol = 0.2;
```

BlackVol = 0.2;

```

Price the swaption instruments using the term structure OISCurve both for discounting the cash flows and generating the future forward rates.
```

Price = swaptionbyblk(OISCurve, OptSpec, Strike, Settle, ExerciseDate, Maturity, Black

```
Price =
 1.0956
 2.6944

Price the swaption instruments using the term structure LiborCurve to generate the future forward rates. The term structure OISCurve is used for discounting the cash flows.

PriceLC = swaptionbyblk(OISCurve, OptSpec, Strike, Settle, ExerciseDate, Maturity, Bla

PriceLC =
1.5346
3.8142
- "Calibrate the SABR Model " on page 2-21
- "Price a Swaption Using the SABR Model" on page 2-27

\section*{More About}

\section*{Forward Swap}

A forward swap is a swap that starts at a future date.
- "Supported Interest-Rate Instruments" on page 2-2
```

See Also
blackvolbysabr | bondbyzero | cfbyzero | fixedbyzero | floatbyzero |
intenvset

```

Introduced before R2006a

\section*{swaptionbyhim}

Price swaption from Heath-Jarrow-Morton interest-rate tree

\section*{Syntax}
[Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity,
'Name1', Value1, 'Name2', Value2)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline HJMTree & Interest-rate tree structure created by hjmtree. \\
\hline OptSpec & \begin{tabular}{l}
NINST-by-1 cell array of character vectors 'call' or \\
'put '. A ' call' swaption or Payer swaption allows the \\
option buyer to enter into an interest-rate swap in which \\
the buyer of the option pays the fixed rate and receives \\
the floating rate. A 'put ' swaption or Receiver swaption \\
allows the option buyer to enter into an interest-rate \\
swap in which the buyer of the option receives the fixed \\
rate and pays the floating rate.
\end{tabular} \\
\hline Strike & NINST-by-1 vector of strike swap rate values. \\
\hline ExerciseDates & \begin{tabular}{l}
For a European option: NINST-by-1 vector of exercise \\
dates. Each row is the schedule for one option. For a \\
European option, there is only one ExerciseDate on the
\end{tabular} \\
option expiry date.
\end{tabular}
\(\left.\begin{array}{|l|l|}\hline \text { Settle } & \begin{array}{l}\text { NINST-by-1 vector of dates representing the settle date } \\ \text { for each swap. }\end{array} \\ \hline \text { Maturity } & \begin{array}{l}\text { NINST-by-1 vector of dates representing the maturity } \\ \text { date for the underlying swap for each swap. }\end{array} \\ \hline \begin{array}{l}\text { Note: All optional inputs that follow are specified as matching parameter name/ } \\ \text { value pairs. The parameter name is specified as a character vector, followed by the } \\ \text { corresponding parameter value. Parameter name/value pairs may be specified in } \\ \text { any order; names are case-insensitive and partial matches are allowed provided no } \\ \text { ambiguities exist. }\end{array} \\ \hline \text { AmericanOpt } & \begin{array}{l}\text { (Optional) NINST-by-1 flags options: } \\ \text { - } \\ \text { - }\end{array} \\ \hline \text { Sfor European options }\end{array}\right\}\)
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- 8 = actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 vector of the notional principal amounts. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, 'Name1', Value1, 'Name2', Value2) computes the price of a swaption from an HJM interest-rate tree.

Note: The Settle date for every swaption is set to the ValuationDate of the HJM tree. The swap argument Settle is ignored. The underlying swap starts at the maturity of the swaption.

The swaption may be a call swaption or a put swaption.
A call swaption or payer swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.

A put swaption or receiver swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

Price is a (NINST-by- 1 vector of expected swaption prices at time 0 .
PriceTree is a MATLAB structure of trees containing vectors of swaption instrument prices and a vector of observation times for each node. Within PriceTree:
- PriceTree. PTree contains the clean prices.
- PriceTree.tObs contains the observation times.

\section*{Examples}

\section*{Price a 1-Year Call Swaption Using an HJM Interest-Rate Tree}

This example shows how to price a 1-year call swaption using an HJM interest-rate tree. Assume that interest rate is fixed at \(5 \%\) annually between the valuation date of the tree until its maturity. Build a tree with the following data.
```

Rates = [ 0.05;0.05;0.05;0.05];
StartDates = 'jan-1-2007';
EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011'];
ValuationDate = StartDates;
Compounding = 1;
% define the RateSpec
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...
EndDates, 'Compounding', Compounding);
% use VolSpec to compute the interest-rate volatility
VolSpec=hjmvolspec('Constant',0.01);

```
```

% use TimeSpec to specify the structure of the time layout for the HJM interest-rate t
TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
% build the HJM tree
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec);
% use the following swaption arguments
ExerciseDates = '01-Jan-2008';
SwapSettlement = ExerciseDates;
SwapMaturity = 'jan-1-2010';
Spread = [0];
SwapReset = 1;
Basis = 1;
Principal = 100;
OptSpec = 'call';
Strike=0.05;
% price the swaption
[Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...
'Basis', Basis, 'Principal', Principal)
Price =
0.9296
PriceTree =
struct with fields:
FinObj: 'HJMPriceTree'
tObs: [5\times1 double]
PBush: {1\times5 cell}

```
- "Computing Instrument Prices" on page 2-84

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also}
hjmtree | instswaption | swapbyhjm
Introduced before R2006a

\section*{swaptionbyhw}

Price swaption from Hull-White interest-rate tree

\section*{Syntax}
[Price, PriceTree] = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, 'Name1', Value1, 'Name2', Value2)

\section*{Arguments}
\(\left.\begin{array}{|l|l|}\hline \text { HWTree } & \text { Interest-rate tree structure created by hwtree. } \\ \hline \text { OptSpec } & \begin{array}{l}\text { NINST-by-1 cell array of character vectors 'call' or } \\ \text { 'put '. A ' call ' swaption or Payer swaption allows the } \\ \text { option buyer to enter into an interest-rate swap in which } \\ \text { the buyer of the option pays the fixed rate and receives } \\ \text { the floating rate. A 'put ' swaption or Receiver swaption } \\ \text { allows the option buyer to enter into an interest-rate } \\ \text { swap in which the buyer of the option receives the fixed } \\ \text { rate and pays the floating rate. }\end{array} \\ \hline \text { Strike } & \text { NINST-by-1 vector for strike swap rate values. } \\ \hline \text { ExerciseDates } & \begin{array}{l}\text { For a European option: NINST-by-1 vector of exercise } \\ \text { dates. Each row is the schedule for one option. For a } \\ \text { European option, there is only one ExerciseDate on the } \\ \text { option expiry date. }\end{array} \\ \hline \text { For an American option: NINST-by-2 vector of exercise } \\ \text { date boundaries. For each instrument, the option can } \\ \text { be exercised on any coupon date between or including } \\ \text { the pair of dates on that row. If only one non-NaN date is } \\ \text { listed, or if ExerciseDates is NINST-by-1, the option } \\ \text { can be exercised between the ValuationDate of the tree } \\ \text { and the single listed ExerciseDate. }\end{array}\right\}\)
\begin{tabular}{|c|c|}
\hline Settle & NINST-by-1 vector of dates representing the settle date for each swap. \\
\hline Maturity & NINST-by- 1 vector of dates representing the maturity date for the underlying swap for each swap. \\
\hline \multicolumn{2}{|l|}{Note: All optional inputs that follow are specified as matching parameter name/ value pairs. The parameter name is specified as a character vector, followed by the corresponding parameter value. Parameter name/value pairs can be specified in any order; names are case-insensitive and partial matches are allowed provided no ambiguities exist.} \\
\hline AmericanOpt & \begin{tabular}{l}
(Optional) NINST-by-1 flags options: \\
- 0 for European options \\
- 1 for American options
\end{tabular} \\
\hline SwapReset & (Optional) NINST-by-1 vector representing the reset frequency per year for the underlying swap. Default is 1 . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- 10 = actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline Principal & (Optional) NINST-by-1 vector of the notional principal amounts. Default is 100 . \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

\section*{Description}
[Price, PriceTree] = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, 'Name1', Value1, 'Name2', Value2) computes the price of a swaption from an HW interest-rate tree.

Note: The Settle date for every swaption is set to the ValuationDate of the HW tree. The swap argument Settle is ignored. The underlying swap starts at the maturity of the swaption.

The swaption can be a call swaption or a put swaption.
A call swaption or payer swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.

A put swaption or receiver swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

Price is a NINST-by- 1 vector of expected swaption prices at time 0.
PriceTree is a MATLAB structure of trees containing vectors of swaption instrument prices and a vector of observation times for each node. Within PriceTree:
- PriceTree. PTree contains the clean prices.
- PriceTree.tObs contains the observation times.

\section*{Examples}

\section*{Price a 3-Year Put Swaption Using an HW Interest-Rate Tree}

This example shows how to price a 3 -year put swaption using an HW interest-rate tree with the following data.
```

Rates =0.075 * ones (10,1);
Compounding = 2;
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'juul-1-2008';'jan-1-2009';...
'jul-1-2009';'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009';...
'jan-1-2010';'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];
ValuationDate = 'jan-1-2007';
% define the RatesSpec
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...
EndDates, 'Compounding', Compounding);

```
```

% use HWVolSpec to compute the interest-rate volatility
Volatility = 0.05*ones(10,1);
AlphaCurve = 0.01*ones(10,1);
AlphaDates = EndDates;
HWVolSpec = hwvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);
% use HWTimeSpec to specify the structure of the time layout for an HW interest-rate tו
HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);
% build the HW tree
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec);
% use the following arguments for a 1-year swap and 3-year swaption
ExerciseDates = 'jan-1-2010';
SwapSettlement = ExerciseDates;
SwapMaturity = 'jan-1-2012';
Spread = 0;
SwapReset = 2 ;
Principal = 100;
OptSpec = 'put';
Strike= 0.04;
Basis=1;
% price the swaption
PriceSwaption = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...
'Basis', Basis,'Principal', Principal)
PriceSwaption =
2.9201

```
- "Pricing Using Interest-Rate Tree Models" on page 2-84
- "Calibrating Hull-White Model Using Market Data" on page 2-96

\section*{More About}
- "Understanding Interest-Rate Tree Models" on page 2-64
- "Pricing Options Structure" on page B-2
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ hwtree | instswaption | swapbyhw \\ Introduced before R2006a
}

\section*{swaptionbylg2f}

Price European swaption using Linear Gaussian two-factor model

\section*{Syntax}

Price = swaptionbylg2f(ZeroCurve,a,b,sigma,eta,rho, Strike, ExerciseDate,Maturity) Price = swaptionbylg2f(__, Name,Value)

\section*{Description}

Price = swaptionbylg2f(ZeroCurve,a,b,sigma,eta,rho, Strike, ExerciseDate, Maturity) returns the European swaption price for a twofactor additive Gaussian interest-rate model.

Price = swaptionbylg2f(\(\qquad\) , Name, Value) returns the Eurpoean swaption price for two-factor additive Gaussian interest-rate model using optional name-value pairs.

\section*{Examples}

\section*{Price a European Swaption Using a Linear Gaussian Two-Factor Model}

Define the ZeroCurve, \(a, b\), sigma, eta, and rho parameters to compute the price of the swaption.
```

Settle = datenum('15-Dec-2007');
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes,1);
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
a = .07;
b = .5;
sigma = .01;
eta = .006;

```
```

rho = -.7;
Reset = 1;
ExerciseDate = daysadd(Settle,360*5,1);
Maturity = daysadd(ExerciseDate,360*[3;4],1);
Strike = .05;
Price = swaptionbylg2f(irdc,a,b,sigma,eta,rho,Strike,ExerciseDate,Maturity,'Reset',Res
Price =
1.1870
1.5633

```
- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108
- "Price Swaptions with Interest-Rate Models Using Simulation" on page 2-108

\section*{Input Arguments}

\section*{ZeroCurve - Zero-curve for Linear Gaussian two-factor model \\ structure}

Zero-curve for the Linear Gaussian two-factor model, specified using IRDataCurve or RateSpec.

\section*{Data Types: struct}

\section*{a - Mean reversion for first factor for Linear Gaussian two-factor model}

\section*{scalar}

Mean reversion for first factor for the Linear Gaussian two-factor model, specified as a scalar.

Data Types: single | double
b - Mean reversion for second factor for Linear Gaussian two-factor model scalar

Mean reversion for second factor for the Linear Gaussian two-factor model, specified as a scalar.

\section*{Data Types: single | double}

\section*{sigma - Volatility for first factor for Linear Gaussian two-factor model scalar}

Volatility for first factor for the Linear Gaussian two-factor model, specified as a scalar. Data Types: single | double

\section*{eta - Volatility for second factor for Linear Gaussian two-factor model scalar}

Volatility for second factor for the Linear Gaussian two-factor model, specified as a scalar.

Data Types: single | double

\section*{rho - Scalar correlation of the factors \\ scalar}

Scalar correlation of the factors, specified as a scalar.
Data Types: single | double

\section*{Strike - Swaption strike price \\ nonnegative integer | vector of nonnegative integers}

Swaption strike price, specified as a nonnegative integer using a NumSwaptions-by-1 vector.

Data Types: single | double

\section*{ExerciseDate - Swaption exercise dates}
vector of nonnegative integers | character vector of dates
Swaption exercise dates, specified as a NumSwaptions-by-1 vector of serial date numbers or date character vectors.

Data Types: single | double | char | cell

\section*{Maturity - Underlying swap maturity date}
vector of nonnegative integers | character vector of dates
Underlying swap maturity date, specified using a NumSwaptions-by-1 vector of serial date numbers or date character vectors.

Data Types: single | double | char | cell

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.

Example: Price = swaptionbylg2f(irdc, a, b, sigma, eta, rho, Strike, ExerciseDate, Maturity, 'Reset ' , 1,

\section*{'Reset ' - Frequency of swaption payments per year}

2 (default) | positive integer from the set[1,2,3,4,6,12]| vector of positive integers from the set \([1,2,3,4,6,12]\)

Frequency of swaption payments per year, specified as positive integers for the values \(1,2,4,6,12\) in a NumSwaptions-by-1 vector.

Data Types: single | double

\author{
'Notional' - Notional value of swaption \\ 100 (default) | nonnegative integer | vector of nonnegative integers
}

Notional value of swaption, specified as a nonnegative integer using a NumSwaptions-by- 1 vector of notional amounts.

\section*{Data Types: single | double}
```

'OptSpec ' - Option specification for the swaption
'call' (default) | character vector with value of 'call' or 'put' | cell array of
character vectors with values of 'call' or 'put'

```

Option specification for the swaption, specified as a character vector or a NumSwaptions-by- 1 cell array of character vectors with a value of 'call' or 'put'.

A 'call' swaption or Payer swaption allows the option buyer to enter into an interestrate swap in which the buyer of the option pays the fixed rate and receives the floating rate.

A 'put ' swaption or Receiver swaption allows the option buyer to enter into an interestrate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

\section*{Data Types: char | cell}

\section*{Output Arguments}

\section*{Price - Swaption price}
scalar | vector
Swaption price, returned as a scalar or an NumSwaptions-by-1 vector.

\section*{More About}

\section*{Algorithms}

The following defines the swaption price for a two-factor additive Gaussian interest-rate model, given the ZeroCurve, a, b, sigma, eta, and rho parameters:
\[
\begin{aligned}
& r(t)=x(t)+y(t)+\phi(t) \\
& d x(t)=-a x(t) d t+\sigma d W_{1}(t), \quad x(0)=0 \\
& d y(t)=-b y(t) d t+\eta d W_{2}(t), \quad y(0)=0
\end{aligned}
\]
where \(d W_{1}(t) d W_{2}(t)=\rho d t\) is a two-dimensional Brownian motion with correlation \(\rho\) and \(\phi\) is a function chosen to match the initial zero curve.
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

\author{
See Also \\ LinearGaussian2F | capbylg2f | floorbylg2f \\ Introduced in R2013a
}

\section*{time2date}

Dates from time and frequency

\section*{Syntax}

Dates = time2date(Settle, Times, Compounding, Basis, EndMonthRule)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Settle & \begin{tabular}{l}
Settlement date. A vector of serial date numbers or date \\
character vectors.
\end{tabular} \\
\hline Times & \begin{tabular}{l}
Vector of times corresponding to the compounding value. Times \\
must be equal to or greater than 0.
\end{tabular} \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar value representing the rate at which the input \\
zero rates were compounded when annualized. Default \(=2\). This \\
argument determines the formula for the discount factors: \\
Compounding \(=1,2,3,4,6,12=F\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding \\
frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units; \\
for example, \(T=F\) is 1 year. \\
Compounding \(=365\)
\end{tabular} \\
\begin{tabular}{ll}
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in \\
the basis year and \(T\) is a number of days elapsed computed by \\
basis. \\
Compounding \(=-1\) \\
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of \\
integers.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- \(3=\) actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline
\end{tabular}

\section*{Description}

Dates = time2date(Settle, Times, Compounding, Basis, EndMonthRule) computes dates corresponding to compounded rate quotes between Settle and time factors.

Note To obtain accurate results from this function, the Basis and Dates arguments must be consistent. If the Dates argument contains months that have 31 days, Basis must be one of the values that allow months to contain more than 30 days; for example, Basis = 0, 3, or 7 .

\section*{The time2date function is the inverse of date2time.}

\section*{Examples}

Show that date2time and time2date are the inverse of each other. First compute the time factors using date2time.
```

Settle = '1-Sep-2002';
Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006';
'31-Dec-2006']);
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
Times = date2time(Settle, Dates, Compounding, Basis,...
EndMonthRule)
Times =
5.9945
6.9945
7.5738
8.6576

```

Now use the calculated Times in time2date and compare the calculated dates with the original set.
```

Dates_calc = time2date(Settle, Times, Compounding, Basis,...
EndMonthRule)
Dates_calc =
732555
732736
7 3 2 8 4 3
733042
datestr(Dates_calc)
ans =
31-Aug-2005
28-Feb-2006
15-Jun-2006
31-Dec-2006

```

\section*{More About}
- "Understanding the Interest-Rate Term Structure" on page 2-40

\author{
See Also \\ cfamounts | cftimes | date2time | disc2rate | rate2disc \\ Introduced before R2006a
}

\section*{treepath}

Entries from node of recombining binomial tree

\section*{Syntax}

Values = treepath(Tree, BranchList)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Tree & Recombining binomial tree. \\
\hline BranchList & \begin{tabular}{l}
Number of paths (NUMPATHS) by path length (PATHLENGTH) \\
matrix containing the sequence of branchings.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Values = treepath(Tree, BranchList) extracts entries of a node of a recombining binomial tree. The node path is described by the sequence of branchings taken, starting at the root. The top branch is number one, the second-to-top is two, and so on. Set the branch sequence to zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved entries of a recombining tree.

\section*{Examples}

Create a BDT tree by loading the example file.
```

load deriv.mat;

```

Then
```

FwdRates = treepath(BDTTree.FwdTree, [$$
\begin{array}{lll}{1}&{2}&{1}\end{array}
$$])

```
returns the rates at the tree nodes located by taking the up branch, then the down branch, and finally the up branch again.

FwdRates =
1.1000
1.0979
1.1377
1.1183

You can visualize this with the treeviewer function.
treeviewer (BDTTree)

\section*{More About}
- "Overview of Interest-Rate Tree Models" on page 2-35

\section*{See Also}
mktree | treeshape
Introduced before R2006a

\section*{treeshape}

Shape of recombining binomial tree

\section*{Syntax}
[NumLevels, NumPos, IsPriceTree] = treeshape(Tree)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Tree & Recombining binomial tree. \\
\hline
\end{tabular}

\section*{Description}
[NumLevels, NumPos, IsPriceTree] = treeshape(Tree) returns information on a recombining binomial tree's shape.

NumLevels is the number of time levels of the tree.
NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in each level.

IsPriceTree is a Boolean determining if a final horizontal branch is present in the tree.

\section*{Examples}

Create a BDT tree by loading the example file.

\section*{load deriv.mat;}

With treeviewer you can see the general shape of the BDT interest-rate tree.
treeviewer(BDTTree)

With this tree
[NumLevels, NumPos, IsPriceTree] = treeshape(BDTTree.FwdTree)
returns
NumLevels =
4

NumPos =
\(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\)

IsPriceTree =
0

\section*{More About}
- "Overview of Interest-Rate Tree Models" on page 2-35

\section*{See Also}
mktree | treepath

11 Functions - Alphabetical List

Introduced before R2006a

\section*{treeviewer}

Tree information

\section*{Syntax}
```

treeviewer(Tree)
treeviewer(PriceTree, InstSet)
treeviewer(CFTree, InstSet)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Tree & \begin{tabular}{l}
Tree can be any of the following types of trees. \\
Interest-rate trees: \\
- Black-Derman-Toy (BDTTree) \\
- Black-Karasinski (BKTree) \\
- Heath-Jarrow-Morton (HJMTree) \\
- Hull-White (HWTree) \\
For information on creating interest-rate trees, see: \\
- bktree for information on creating BKTree. \\
- bdttree for information on creating BDTTree. \\
- hjmtree for information on creating HJMTree. \\
- hwtree for information on creating HWTree. \\
Money market trees: \\
- Money market tree (MMktTree) \\
For information on creating money-market trees, see: \\
- mmktbybdt for information on creating a money-market tree from a BDT interest-rate tree. \\
- mmktbyhjm for information on creating a money-market tree from an HJM interest-rate tree.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline PriceTree & \begin{tabular}{l}
PriceTree is a Black-Derman-Toy (BDTPriceTree), \\
Black-Karasinski (BKPriceTree), Heath-Jarrow-Morton \\
(HJMPriceTree), Hull-White (HWPriceTree), Cox-Ross-Rubinstein \\
(crrprice), Equal probabilities (eqpprice), Implied Trinomial \\
tree (ittprice), or standard trinomial tree (sttprice) tree of \\
instrument prices.
\end{tabular} \\
\hline CFTree & \begin{tabular}{l}
CFTree is a tree of swap cash flows. You create cash flow trees when \\
executing the Black-Derman-Toy and Heath-Jarrow-Morton swap \\
functions. (Black-Derman-Toy cash flow trees contain only NaNs.)
\end{tabular} \\
\hline InstSet & \begin{tabular}{l}
(Optional) Variable containing a collection of instruments whose \\
prices or cash flows are contained in a tree. The collection can be \\
created with the function instadd or as a cell array containing the \\
names of the instruments. To display the names of the instruments, \\
the field Name should exist in InstSet. If InstSet is not passed, \\
treeviewer uses default instruments names (numbers) when \\
displaying prices or cash flows.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
treeviewer (Tree) displays an interest rate, stock price, or money-market tree.
treeviewer(PriceTree, InstSet) displays a tree of instrument prices. If you provide the name of an instrument set (InstSet) and you have named the instruments using the field Name, the treeviewer display identifies the instrument being displayed with its name. (See Example 3 for a description.) If you do not provide the optional InstSet argument, the instruments are identified by their sequence number in the instrument set. (See Example 6 for a description.)
treeviewer (CFTree, InstSet) displays a cash flow tree that has been created with swapbybdt or swapbyhjm. If you provide the name of an instrument set (InstSet) containing cash flow names, the treeviewer display identifies the instrument being displayed with its name. (See Example 3 for a description.) If the optional InstSet argument is not present, the instruments are identified by their sequence number in the instrument set. See Example 6 for a description.)
treeviewer price tree diagrams follow the convention that increasing prices appear on the upper branch of a tree and, so, decreasing prices appear on the lower branch. Conversely, for interest rate displays, decreasing interest rates appear on the upper
branch (prices are rising) and increasing interest rates on the lower branch (prices are falling).
treeviewer provides an interactive display of prices or interest rates. The display is activated by clicking the nodes along the price or interest rate path shown in the left pane when the function is called. For HJM trees, you select the endpoints of the path, and treeviewer displays all data from beginning to end. With recombining trees, such as BDT, BK, and HW, you must click each node in succession from the beginning (\(t=1\)) to the last node \((\mathrm{t}=\mathrm{n})\). Do not include the root node, the node at \(\mathrm{t}=0\). If you do not click the nodes in the proper order, you are reminded with the message

Parent of selected node must be selected.

\section*{Examples}

\section*{Example 1. Display an HJM Interest-Rate Tree.}
```

load deriv.mat
treeviewer(HJMTree)

```

The treeviewer function displays the structure of an HJM tree in the left pane. The tree visualization in the right pane is blank.

To visualize the actual interest-rate tree, go to the Tree Visualization pane and clickPath(the default) and Diagram. Now, select the first path by clicking the last node (\(\mathrm{t}=3\)) of the upper branch.

The entire upper path is highlighted in red.
To complete the process, select a second path by clicking the last node (\(t=3\)) of another branch. The second path is highlighted in purple. The final display looks like this.

\section*{Alternative Forms of Display}

The Tree Visualization pane allows you to select alternative ways to display tree data. For example, if you select Path and Table as your visualization choices, the final display above instead appears in tabular form.

To see a plot of interest rates along the chosen branches, click Path and Plot in the Tree Visualization pane.

With Plot selected, rising interest rates are shown on the upper branch and declining interest rates on the lower.

Finally, if you clicked Node and Children under Tree Visualization, you restrict the data displayed to just the selected parent node and its children.

With Node and Children selected, the choices under Visualization are unavailable.

\section*{Example 2. Display a BDT Interest-Rate Tree.}
```

load deriv.mat treeviewer (BDTTree)

```

The treeviewer function displays the structure of a BDT tree in the left pane. The tree visualization in the right pane is blank.

To visualize the actual interest-rate tree, go to the Tree Visualization pane and click Path (the default) and Diagram. Now, select the first path by clicking the first node of the up branch \((t=1)\). Continue by clicking the down branch at the next node \((t=2)\). The two figures below show the treeviewer path diagrams for these selections.

Continue clicking all nodes in succession until you reach the end of the branch. The entire path you have selected is highlighted in red.

Select a second path by clicking the first node of the lower branch (\(t=1\)). Continue clicking lower nodes as you did on the first branch. The second branch is highlighted in purple. The final display looks like this.

\section*{Example 3. Display an HJM Price Tree for Named Instruments.}
```

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)

```


\section*{Example 4. Display a BDT Price Tree for Named Instruments.}
load deriv.mat
[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet); treeviewer(PriceTree, BDTInstSet)

\section*{Example 5. Display an HJM Price Tree with Renamed Instruments.}
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
Names = \{'Bond1', 'Bond2', 'Option', 'Fixed','Float', 'Cap',... 'Floor', 'Swap'\};
treeviewer(PriceTree, Names)

\section*{Example 6. Display an HJM Price Tree Using Default Instrument Names (Numbers).}
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet); treeviewer(PriceTree)

\section*{More About}
- "Overview of Interest-Rate Tree Models" on page 2-35

\section*{See Also}
bdttree | bktree | bktree | eqptree | hjmtree | hwtree | instadd | itttree | lrtree | mmktbybdt \| mmktbyhjm | stttree \| swapbybdt \| swapbyhjm

Introduced before R2006a

\section*{trintreepath}

Entries from node of recombining trinomial tree

\section*{Syntax}
```

Values = trintreepath(TrinTree, BranchList)

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline TrinTree & Recombining price or interest-rate trinomial tree. \\
\hline BranchList & \begin{tabular}{l}
Number of paths (NUMPATHS) by path length (PATHLENGTH) matrix \\
containing the sequence of branchings.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Values = trintreepath(TrinTree, BranchList) extracts entries of a node of a recombining trinomial tree. The node path is described by the sequence of branchings taken, starting at the root. The top branch is number 1 , the middle branch is 2 , and the bottom branch is 3 . Set the branch sequence to 0 to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved entries of a recombining tree.

\section*{Examples}

Create a Hull-White tree by loading the example file.

\section*{load deriv.mat;}

Then, for example
```

FwdRates = trintreepath(HWTree, [1 2 3])

```
returns the rates at the tree nodes located by starting at 0 , taking the up branch at the first node, the middle branch at the second node, and finally the bottom branch at the third node.

FwdRates =
1.0279
1.0528
1.0652
1.0591

You can visualize this with the treeviewer function.
treeviewer(HWTree)

\section*{More About}
- "Overview of Interest-Rate Tree Models" on page 2-35

\section*{See Also}
mktrintree

Introduced before R2006a

\section*{trintreeshape}

Shape of recombining trinomial tree

\section*{Syntax}
[NumLevels, NumPos, NumStates] = trintreeshape(TrinTree)

\section*{Arguments}
\begin{tabular}{|l|l}
\hline TrinTree & Recombining price or interest-rate trinomial tree. \\
\hline
\end{tabular}

\section*{Description}
[NumLevels, NumPos, NumStates] = trintreeshape(TrinTree) returns information on a recombining trinomial tree's shape.

NumLevels is the number of time levels of the tree.
NumPos is a 1 -by-NUMLEVELS vector containing the length of the state vectors in each level.

NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in each level.

\section*{Examples}

Create a Hull-White tree by loading the example file.
load deriv.mat;
With treeviewer you can see the general shape of the HW interest-rate tree.
treeviewer (HWTree)

With this tree
[NumLevels, NumPos, NumStates] = trintreeshape(HWTree)
returns
NumLevels =
4
NumPos \(=\)
\(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\)
NumStates =
135

\section*{More About}
- "Overview of Interest-Rate Tree Models" on page 2-35

\author{
See Also \\ mktrintree | trintreepath \\ Introduced before R2006a
}

\section*{agencyoas}

Determine option-adjusted spread of callable bond using Agency OAS model

\section*{Syntax}

OAS = agencyoas(ZeroData, Price, CouponRate, Settle, Maturity, Vol, CallDate)
OAS = agencyoas(ZeroData, Price, CouponRate, Settle, Maturity, Vol, CallDate, Name,Value)

\section*{Description}

OAS = agencyoas(ZeroData, Price, CouponRate, Settle, Maturity, Vol, CallDate) computes OAS of a callable bond given price using the Agency OAS model.

OAS = agencyoas(ZeroData, Price, CouponRate, Settle, Maturity, Vol, CallDate, Name, Value) computes OAS of a callable bond given price using the Agency OAS model with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{ZeroData}

Zero curve represented as a numRates-by-2 matrix where the first column is zero dates and the second column is the accompanying zero rates.

\section*{Price}
numBonds-by- 1 vector of prices.

\section*{CouponRate}
numBonds-by- 1 vector of coupon rates in decimal form.

\section*{Settle}

Scalar MATLAB date number for the settlement date for all bonds and the zero data.

Note: The Settle date must be an identical settlement date for all the bonds and the zero curve.

\section*{Maturity}
numBonds-by-1 vector of maturity dates.

\section*{Vol}
numBonds-by- 1 vector of volatilities in decimal form. This is the volatility of interest rates corresponding to the time of the CallDate.

\section*{CallDate}
numBonds-by- 1 vector of call dates.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'Basis'}

N-by-1 vector of day-count basis:
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- 10 = actual/365 (ICMA)
- 11 = 30/360E (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{'CurveBasis'}

Basis of the zero curve, where the choices are identical to Basis.
Default: 0 (actual/actual)

\section*{'CurveCompounding'}

Compounding frequency of the zero curve. Possible values include: \(-1,0,1,2,3,4,6,12\).
Default: 2 (Semi-annual)

\section*{'EndMonthRule'}

End-of-month rule; 1, indicating in effect, and 0, indicating rule not in effect for the bond(s). When 1, the rule is in effect for the bond(s), this means that a security that pays coupon interest on the last day of the month will always make payment on the last day of the month.

Default: 1 - Indicates in effect
```

'Face'

```

Face value of the bond.
Default: 100

\section*{'FirstCouponDate'}

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

\section*{'InterpMethod'}

Interpolation method used to obtain points from the zero curve. Values are:
- linear - linear interpolation
- cubic - piecewise cubic spline interpolation
- pchip - piecewise cubic Hermite interpolation

Default: linear
'IssueDate'
Bond issue date.
Default: If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.

\section*{'LastCouponDate'}

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

\section*{'Period'}

Number of coupon payments per year. Possible values include: \(0,1,2,3,4,6,12\).

\section*{Default: 2}

\section*{'StartDate'}

Forward starting date of payments.
Default: If you do not specify a StartDate, the effective start date is the Settle date.

\section*{Output Arguments}

\section*{OAS}
numBonds-by-1 matrix of option-adjusted spreads.

\section*{Examples}

\section*{Compute the Agency OAS Value}

This example shows how to compute the agency OAS value.
```

Settle = datenum('20-Jan-2010');
ZeroRates = [.07 .164 .253 1.002 1.732 2.226 2.605 3.316 ...
3.474 4.188 4.902]'/100;
ZeroDates = daysadd(Settle,360*[.25 .5 1 2 3 4 5 7 10 20 30],1);
ZeroData = [ZeroDates ZeroRates];
Maturity = datenum('30-Dec-2013');
CouponRate = .022;
Price = 99.155;
Vol = .5117;
CallDate = datenum('30-Dec-2010');
OAS = agencyoas(ZeroData, Price, CouponRate, Settle, Maturity, Vol, CallDate)
OAS =
8.5837

```
- "Computing the Agency OAS for Bonds" on page 6-3

\section*{More About}

\section*{Agency OAS Model}

The BMA European Callable Securities Formula provides a standard methodology for computing price and option-adjusted spread for European Callable Securities (ECS).
- "Agency Option-Adjusted Spreads" on page 6-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

SIFMA, The BMA European Callable Securities Formula, http://www.sifma.org.

\section*{See Also \\ agencyprice}

Introduced before R2006a

\section*{agencyprice}

Price callable bond using Agency OAS model

\section*{Syntax}
```

Price = agencyprice(ZeroData, OAS, CouponRate, Settle, Maturity,
Vol, CallDate)
Price = agencyprice(ZeroData, OAS, CouponRate, Settle, Maturity,
Vol, CallDate, Name,Value)

```

\section*{Description}

Price = agencyprice(ZeroData, OAS, CouponRate, Settle, Maturity, Vol, CallDate) computes the price for a callable bond, given OAS, using the Agency OAS model.

Price = agencyprice(ZeroData, OAS, CouponRate, Settle, Maturity, Vol, CallDate, Name, Value) computes the price for a callable bond, given
OAS, using the Agency OAS model with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{ZeroData}

Zero curve represented as a numRates-by-2 matrix where the first column is zero dates and the second column is the accompanying zero rates.

\section*{OAS}
numBonds-by- 1 vector of option-adjusted spreads, expressed as a decimal (that is, 50 basis points is entered as .005).

\section*{CouponRate}
numBonds-by- 1 vector of coupon rates in decimal form.

\section*{Settle}

Scalar MATLAB date number for the settlement date for all the bonds and the zero data.

Note: The Settle date must be an identical settlement date for all bonds and the zero curve.

\section*{Maturity}
numBonds-by-1 vector of maturity dates.

\section*{Vol}
numBonds-by- 1 vector of volatilities in decimal form. This is the volatility of interest rates corresponding to the time of the CallDate.

\section*{CallDate}
numBonds-by- 1 vector of call dates.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'Basis'}

N-by-1 vector of day-count basis:
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0 (actual/actual)

\section*{'CurveBasis'}

Basis of the zero curve, where the choices are identical to Basis.
Default: 0 (actual/actual)

\section*{'CurveCompounding'}

Compounding frequency of the curve. Possible values include: \(-1,0,1,2,3,4,6,12\).
Default: 2 (Semi-annual)

\section*{'EndMonthRule'}

End-of-month rule; 1, indicating in effect, and 0, indicating rule not in effect for the bond(s). When 1, the rule is in effect for the bond(s). This means that a security that pays coupon interest on the last day of the month will always make payment on the last day of the month.

Default: 1 - Indicates in effect

\section*{'Face'}

Face value of the bond.
Default: 100

\section*{'FirstCouponDate'}

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

\section*{'InterpMethod'}

Interpolation method used to obtain points from the zero curve. Values are:
- linear - linear interpolation
- cubic - piecewise cubic spline interpolation
- pchip - piecewise cubic Hermite interpolation

Default: linear

\section*{'IssueDate'}

Bond issue date.
Default: If you do not specify an IssueDate, the cash flow payment dates are determined from other inputs.

\section*{'LastCouponDate'}

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

\section*{'Period'}

Number of coupon payments per year. Possible values include: 0, 1, 2, 3, 4, 6, 12.

\section*{Default: 2}

\section*{'StartDate'}

Forward starting date of payments.
Default: If you do not specify a StartDate, the effective start date is the Settle date.

\section*{Output Arguments}

Price
numBonds-by-1 matrix of the price.

\section*{Examples}

\section*{Compute the Agency Price}

This example shows how to compute the agency Price.
```

Settle = datenum('20-Jan-2010');
ZeroRates = [.07 . 164 . 253 1.002 1.732 2.226 2.605 3.316 ...
3.474 4.188 4.902]'/100;
ZeroDates = daysadd(Settle,360*[.25 .5 1 2 3 4 5 7 10 20 30],1);
ZeroData = [ZeroDates ZeroRates];
Maturity = datenum('30-Dec-2013');
CouponRate = .022;
OAS = 6.53/10000;
Vol = .5117;
CallDate = datenum('30-Dec-2010');
Price = agencyprice(ZeroData, OAS, CouponRate, Settle, Maturity, Vol, CallDate)
Price =
99.4212

```
- "Computing the Agency OAS for Bonds" on page 6-3

\section*{More About}

\section*{Agency OAS Model}

The BMA European Callable Securities Formula provides a standard methodology for computing price and option-adjusted spread for European Callable Securities (ECS).
- "Agency Option-Adjusted Spreads" on page 6-2
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

SIFMA, The BMA European Callable Securities Formula, http://www.sifma.org.

\section*{See Also \\ agencyoas}

Introduced before R2006a

\section*{bkcall}

Price European call option on bonds using Black model

\section*{Syntax}

CallPrice = bkcall(Strike, ZeroData, Sigma, BondData, Settle, Expiry, Period, Basis, EndMonthRule, InterpMethod, StrikeConvention)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Strike & \begin{tabular}{l}
Scalar or number of options (NOPT)-by-1 vector of strike \\
prices.
\end{tabular} \\
\hline ZeroData & \begin{tabular}{l}
Two-column (optionally three-column) matrix containing \\
zero (spot) rate information used to discount future cash \\
flows.
\end{tabular} \\
& \begin{tabular}{l}
- Column 1: Serial maturity date associated with the zero \\
rate in the second column. \\
Column 2: Annualized zero rates, in decimal form, \\
appropriate for discounting cash flows occurring on \\
the date specified in the first column. All dates must \\
occur after Set tle (dates must correspond to future \\
investment horizons) and must be in ascending order. \\
- \begin{tabular}{l}
Column 3 (optional): Annual compounding frequency. \\
Values are 1 (annual), 2 (semiannual, default), \\
3 (three times per year), 4 (quarterly), 6 (bimonthly), \\
12 (monthly), and -1 (continuous).
\end{tabular} \\
\hline Sigma \\
\hline BondData \\
\hline \begin{tabular}{l}
Scalar or NOPT-by-1 vector of annualized price volatilities \\
required by Black's model.
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l}
Row vector with three (optionally four) columns or \\
NOPT-by-3 (optionally NOPT-by-4) matrix specifying \\
characteristics of underlying bonds in the form:
\end{tabular} \\
[CleanPrice CouponRate Maturity Face]
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
CleanPrice is the price excluding accrued interest. \\
CouponRate is the decimal coupon rate. \\
Maturity is the bond maturity date in serial date number format. \\
Face is the face value of the bond. If unspecified, the face value is assumed to be 100 .
\end{tabular} \\
\hline Settle & Settlement date of the options. May be a serial date number or date character vector. Settle also represents the starting reference date for the input zero curve. \\
\hline Expiry & Scalar or NOPT-by- 1 vector of option maturity dates. May be a serial date number or date character vector. \\
\hline Period & (Optional) Number of coupons per year for the underlying bond. Default \(=2\) (semiannual). Supported values are 0, 1, 2, 3, 4, 6, and 12. \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the bond. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- \(3=\) actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline EndMonthRule & \begin{tabular}{l}
(Optional) End-of-month rule. This rule applies only when \\
Maturity is an end-of-month date for a month having \\
30 or fewer days. 0 = ignore rule, meaning that a bond's \\
coupon payment date is always the same numerical day of \\
the month. 1 = set rule on (default), meaning that a bond's \\
coupon payment date is always the last actual day of the \\
month.
\end{tabular} \\
\hline InterpMethod & \begin{tabular}{l}
(Optional) Scalar integer zero curve interpolation \\
method. For cash flows that do not fall on a date found \\
in the ZeroData spot curve, indicates the method \\
used to interpolate the appropriate zero discount rate. \\
Available methods are (0) nearest, (1) linear, and (2) cubic. \\
Default = 1. See interp1 for more information.
\end{tabular} \\
\hline StrikeConvention & \begin{tabular}{l}
(Optional) Scalar or NOPT-by-1 vector of option contract \\
strike price conventions.
\end{tabular} \\
\begin{tabular}{ll}
StrikeConvention = 0 (default) defines the strike price \\
as the cash (dirty) price paid for the underlying bond.
\end{tabular} \\
\hline & \begin{tabular}{l}
StrikeConvention = 1 defines the strike price as the \\
quoted (clean) price paid for the underlying bond. When \\
evaluating Black's model, the accrued interest of the bond \\
at option expiration is added to the input strike price.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

CallPrice = bkcall(Strike, ZeroData, Sigma, BondData, Settle, Expiry, Period, Basis, EndMonthRule, InterpMethod, StrikeConvention) using Black's model, derives an NOPT-by-1 vector of prices of European call options on bonds.

If cash flows occur beyond the dates spanned by ZeroData, the input zero curve, the appropriate zero rate for discounting such cash flows is obtained by extrapolating the nearest rate on the curve (that is, if a cash flow occurs before the first or after the last date on the input zero curve, a flat curve is assumed).

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an IRDataCurve object with a Dates property to create a vector of dates and data
acceptable for bkcall. For more information, see "Converting an IRDataCurve or IRFunctionCurve Object" on page 9-40.

\section*{Examples}

\section*{Price a European Call Option On Bonds Using the Black Model}

This example shows how to price a European call option on bonds using the Black model. Consider a European call option on a bond maturing in 9.75 years. The underlying bond has a clean price of \(\$ 935\), a face value of \(\$ 1000\), and pays \(10 \%\) semiannual coupons. Since the bond matures in 9.75 years, a \(\$ 50\) coupon will be paid in 3 months and again in 9 months. Also, assume that the annualized volatility of the forward bond price is \(9 \%\). Furthermore, suppose the option expires in 10 months and has a strike price of \(\$ 1000\), and that the annualized continuously compounded risk-free discount rates for maturities of 3,9 , and 10 months are \(9 \%, 9.5 \%\), and \(10 \%\), respectively.
```

% specify the option information
Settle = '15-Mar-2004';
Expiry = '15-Jan-2005'; % 10 months from settlement
Strike = 1000;
Sigma = 0.09;
Convention = [0 1]';
% specify the interest-rate environment
ZeroData = [datenum('15-Jun-2004') 0.09 -1; % 3 months
datenum('15-Dec-2004') 0.095 -1; % 9 months
datenum(Expiry) 0.10 -1]; % 10 months
% specify the bond information
CleanPrice = 935;
CouponRate = 0.1;
Maturity = '15-Dec-2013'; % 9.75 years from settlement
Face = 1000;
BondData = [CleanPrice CouponRate datenum(Maturity) Face];
Period = 2;
Basis = 1;
% call Black's model
CallPrices = bkcall(Strike, ZeroData, Sigma, BondData, Settle,...
Expiry, Period, Basis, [], [], Convention)

```

CallPrices =
9.4873
7.9686

When the strike price is the dirty price (Convention \(=0\)), the call option value is \(\$ 9.49\). When the strike price is the clean price (Convention \(=1\)), the call option value is \(\$ 7.97\).
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures"
- "Fitting the Diebold Li Model"

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th Edition, Prentice Hall, , 2003, pp. 287-288, 508-515.

\author{
See Also \\ bkput
}

Introduced before R2006a

\section*{bkcaplet}

Price interest-rate caplet using Black model

\section*{Compatibility}
bkcaplet will be removed in a future release. Use capbyblk instead.

\section*{Syntax}

CapPrices = bkcaplet(CapData, FwdRates, ZeroPrice, Settle, StartDate, EndDate, Sigma)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline CapData & \begin{tabular}{l}
Number of caps (NCAP)-by-2 matrix containing cap rates and bases: [CapRates Basis]. \\
Values for bases may be: \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual \(/ 360\) \\
- 3 = actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
\(\bullet \quad 12=\) actual/365 (ISDA) \\
\\
\\
For more information, see basis.
\end{tabular} \\
\hline FwdRates & \begin{tabular}{l}
Scalar or NCAP-by-1 vector containing forward rates in decimal. \\
FwdRates accrue on the same basis as CapRates.
\end{tabular} \\
\hline ZeroPrice & \begin{tabular}{l}
Scalar or NCAP-by-1 vector containing zero coupon prices with \\
maturities corresponding to those of each cap in CapData, per \$100 \\
nominal value.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
Scalar or NCAP-by-1 vector of identical elements containing \\
settlement date of caplets.
\end{tabular} \\
\hline StartDate & Scalar or NCAP-by-1 vector containing start dates of the caplets. \\
\hline EndDate & Scalar or NCAP-by-1 vector containing maturity dates of caplets. \\
\hline Sigma & \begin{tabular}{l}
Scalar or NCAP-by-1 vector containing volatility of forward rates in \\
decimal, corresponding to each caplet.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

CapPrices = bkcaplet(CapData, FwdRates, ZeroPrice, Settle, StartDate, EndDate, Sigma) computes the prices of interest-rate caplets for every \(\$ 100\) face value of principal.

\section*{Examples}

\section*{Compute the Price of Interest-Rate Caplets for Every \$100 Face Value of Principal}

This example shows how to compute the price of interest-rate caplets for every \(\$ 100\) face value of principal. Given a notional amount of \(\$ 1,000,000\), compute the value of a caplet on October 15, 2002 that starts on October 15, 2003 and ends on January 15, 2004.
```

CapData = [0.08, 1];
FwdRates = 0.07;
ZeroPrice = 100*exp(-0.065*1.25);
Settle = datenum('15-0ct-2002');
BeginDates = datenum('15-0ct-2003');
EndDates = datenum('15-Jan-2004');

```
```

Sigma = 0.20;
% because the caplet is \$100 notional, divide \$1,000,000 by \$100
Notional = 1000000/100;
CapPrice = Notional*bkcaplet(CapData, FwdRates, ZeroPrice, ...
Settle, BeginDates, EndDates, Sigma)
Warning: BKCAPLET will be removed in a future release. Use CAPBYBLK instead.
See the release notes for details.
> In bkcaplet (line 58)
CapPrice =
519.0046

```
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures"
- "Fitting the Diebold Li Model"

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\author{
See Also \\ bkfloorlet
}

\section*{Introduced before R2006a}

\section*{bkfloorlet}

Price interest-rate floorlet using Black model

\section*{Compatibility}
bkfloorlet will be removed in a future release. Use floorbyblk instead.

\section*{Syntax}

FloorPrices = bkfloorlet(FloorData, FwdRates, ZeroPrice, Settle, StartDate, EndDate, Sigma)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline FloorData & \begin{tabular}{l}
Number of floors (NFLR)-by-2 matrix containing floor rates and bases: [FloorRate Basis]. \\
Values for bases may be: \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- \(2=\) actual \(/ 360\) \\
- \(3=\) actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
• \(12=\) actual/365 (ISDA) \\
For more information, see basis.
\end{tabular} \\
\hline FwdRates & \begin{tabular}{l}
Scalar or NFLR-by-1 vector containing forward rates in decimal. \\
FwdRates accrue on the same basis as FloorRates.
\end{tabular} \\
\hline ZeroPrice & \begin{tabular}{l}
Scalar or NFLR-by-1 vector containing zero coupon prices with \\
maturities corresponding to those of each floor in FloorData, per \$100 \\
nominal value.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
Scalar or NFLR-by-1 vector of identical elements containing settlement \\
date of floorlets.
\end{tabular} \\
\hline StartDate & Scalar or NFLR-by-1 vector containing start dates of the floorlets. \\
\hline EndDate & Scalar or NFLR-by-1 vector containing maturity dates of floorlets. \\
\hline Sigma & \begin{tabular}{l}
Scalar or NFLR-by-1 vector containing volatility of forward rates in \\
decimal, corresponding to each floorlet.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

FloorPrices = bkfloorlet(FloorData, FwdRates, ZeroPrice, Settle, StartDate, EndDate, Sigma) computes the prices of interest-rate floorlets for every \(\$ 100\) of notional value.

\section*{Examples}

Price an Interest-Rate Floorlet For Every \(\mathbf{\$ 1 0 0}\) of Notional Value Using the Black Model
This example shows how to price an interest-rate floorlet for every \(\$ 100\) of notional value using the Black model. Given a notional amount of \(\$ 1,000,000\), compute the value of a floorlet on October 15, 2002 that starts on October 15, 2003 and ends on January 15, 2004.

FloorData \(=\) [0.08, 1];
FwdRates = 0.07;
ZeroPrice \(=100 * \exp (-0.065 * 1.25)\);
Settle = datenum('15-0ct-2002');
BeginDates = datenum('15-0ct-2003');
```

EndDates = datenum('15-Jan-2004');
Sigma = 0.20;
% because floorlet is \$100 notional, divide \$1,000,000 by \$100
Notional = 1000000/100;
FloorPrice = Notional*bkfloorlet(FloorData, FwdRates, ...
ZeroPrice, Settle, BeginDates, EndDates, Sigma)
Warning: BKFLOORLET will be removed in a future release. Use FLOORBYBLK instead.
See the release notes for details.
> In bkfloorlet (line 54)
FloorPrice =
2.8239e+03

```
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures"
- "Fitting the Diebold Li Model"

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{See Also \\ bkcaplet}

Introduced before R2006a

\section*{bkput}

Price European put option on bonds using Black model

\section*{Syntax}

PutPrice = bkput(Strike, ZeroData, Sigma, BondData, Settle, Expiry, Period, Basis, EndMonthRule, InterpMethod, StrikeConvention)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Strike & \begin{tabular}{l}
Scalar or number of options (NOPT)-by-1 vector of strike \\
prices.
\end{tabular} \\
\hline ZeroData & \begin{tabular}{l}
Two-column (optionally three-column) matrix containing zero \\
(spot) rate information used to discount future cash flows. \\
- \\
Column 1: Serial maturity date associated with the zero \\
rate in the second column. \\
Column 2: Annualized zero rates, in decimal form, \\
appropriate for discounting cash flows occurring on the \\
date specified in the first column. All dates must occur \\
after Settle (dates must correspond to future investment \\
horizons) and must be in ascending order. \\
Column 3 (optional): Annual compounding frequency. \\
Values are 1 (annual), 2 (semiannual, default), 3 (three \\
times per year), 4 (quarterly), 6 (bimonthly), 12 (monthly), \\
and -1 (continuous).
\end{tabular} \\
\hline Sigma & \begin{tabular}{l}
Scalar or NOPT-by-1 vector of annualized price volatilities \\
required by Black's model.
\end{tabular} \\
\hline BondData & \begin{tabular}{l}
Row vector with three (optionally four) columns or NOPT-by-3 \\
(optionally NOPT-by-4) matrix specifying characteristics of \\
underlying bonds in the form [CleanPrice CouponRate \\
Maturity Face] where:
\end{tabular} \\
- CleanPrice is the price excluding accrued interest. \\
- CouponRate is the decimal coupon rate.
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- Maturity is the bond maturity date in serial date number format. \\
- Face is the face value of the bond. If unspecified, the face value is assumed to be 100 .
\end{tabular} \\
\hline Settle & Settlement date of the options, specified using a serial date number or date character vector. Settle also represents the starting reference date for the input zero curve. \\
\hline Expiry & Scalar or NOPT-by-1 vector of option maturity dates, specified using a serial date number or date character vector. \\
\hline Period & (Optional) Number of coupons per year for the underlying bond. Default = 2 (semiannual). Supported values are 0, 1, 2, 3, 4, 6, and 12. \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the bond. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- \(2=\) actual/ 360 \\
- \(3=\) actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- 10 = actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline EndMonthRule & \begin{tabular}{l}
(Optional) End-of-month rule. This rule applies only when \\
Maturity is an end-of-month date for a month having \\
30 or fewer days. 0 = ignore rule, meaning that a bond's \\
coupon payment date is always the same numerical day of \\
the month. 1 = set rule on (default), meaning that a bond's \\
coupon payment date is always the last actual day of the \\
month.
\end{tabular} \\
\hline InterpMethod & \begin{tabular}{l}
(Optional) Scalar integer zero curve interpolation method. \\
For cash flows that do not fall on a date found in the \\
ZeroData spot curve, indicates the method used to \\
interpolate the appropriate zero discount rate. Available \\
methods are (0) nearest, (1) linear, and (2) cubic. Default = 1. \\
See interp1 for more information.
\end{tabular} \\
\hline StrikeConvention & \begin{tabular}{l}
(Optional) Scalar or NOPT-by-1 vector of option contract \\
strike price conventions.
\end{tabular} \\
\begin{tabular}{l}
StrikeConvention = 0 (default) defines the strike price as \\
the cash (dirty) price paid for the underlying bond.
\end{tabular} \\
\begin{tabular}{l}
StrikeConvention = 1 defines the strike price as the \\
quoted (clean) price paid for the underlying bond. The \\
accrued interest of the bond at option expiration is added to \\
the input strike price when evaluating Black's model.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

PutPrice = bkput(Strike, ZeroData, Sigma, BondData, Settle, Expiry, Period, Basis, EndMonthRule, InterpMethod, StrikeConvention) using Black's model, derives an NOPT-by-1 vector of prices of European put options on bonds.

If cash flows occur beyond the dates spanned by ZeroData, the input zero curve, the appropriate zero rate for discounting such cash flows is obtained by extrapolating the nearest rate on the curve (that is, if a cash flow occurs before the first or after the last date on the input zero curve, a flat curve is assumed).

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an IRDataCurve object with a Dates property to create a vector of dates and data acceptable for bkput. For more information, see "Converting an IRDataCurve or IRFunctionCurve Object" on page 9-40.

\section*{Examples}

\section*{Price European Put Options On Bonds Using the Black Model}

This example shows how to price European put options on bonds using the Black model. Consider a European put option on a bond maturing in 10 years. The underlying bond has a clean price of \(\$ 122.82\), a face value of \(\$ 100\), and pays \(8 \%\) semiannual coupons. Also, assume that the annualized volatility of the forward bond yield is \(20 \%\). Furthermore, suppose the option expires in 2.25 years and has a strike price of \(\$ 115\), and that the annualized continuously compounded risk free zero (spot) curve is flat at \(5 \%\). For a hypothetical settlement date of March 15, 2004, the following code illustrates the use of Black's model to duplicate the put prices in Example 22.2 of the Hull reference. In particular, it illustrates how to convert a broker's yield volatility to a price volatility suitable for Black's model.
```

% Specify the option information.
Settle = '15-Mar-2004';
Expiry = '15-Jun-2006'; % 2.25 years from settlement
Strike = 115;
YieldSigma = 0.2;
Convention = [0; 1];
% Specify the interest-rate environment. Since the
% zero curve is flat, interpolation into the curve always returns
% 0.05. Thus, the following curve is not unique to the solution.
ZeroData = [datenum('15-Jun-2004') 0.05 -1;
datenum('15-Dec-2004') 0.05 -1;
datenum(Expiry) 0.05 -1];
% Specify the bond information.
CleanPrice = 122.82;
CouponRate = 0.08;
Maturity = '15-Mar-2014'; % 10 years from settlement
Face = 100;
BondData = [CleanPrice CouponRate datenum(Maturity) Face];
Period = 2; % semiannual coupons
Basis = 1; % 30/360 day-count basis

```
```

% Convert a broker's yield volatility quote to a price volatility
% required by Black's model. To duplicate Example 22.2 in Hull,
% first compute the periodic (semiannual) yield to maturity from
% the clean bond price.
Yield = bndyield(CleanPrice, CouponRate, Settle, Maturity,...

```
```

Period, Basis);
% Compute the duration of the bond at option expiration. Most
% fixed-income sensitivity analyses use the modified duration
% statistic to examine the impact of small changes in periodic
% yields on bond prices. However, Hull's example operates in
% continuous time (annualized instantaneous volatilities and
% continuously compounded zero yields for discounting coupons).
% To duplicate Hull's results, use the second output of BNDDURY,
% the Macaulay duration.
[Modified, Macaulay] = bnddury(Yield, CouponRate, Expiry,...
Maturity, Period, Basis);
% Convert the yield-to-maturity from a periodic to a
% continuous yield.
Yield = Period .* log(1 + Yield./Period);
% Convert the yield volatility to a price volatility via
% Hull's Equation 22.6 (page 514).
PriceSigma = Macaulay .* Yield .* YieldSigma;
% Finally, call Black's model.
PutPrices = bkput(Strike, ZeroData, PriceSigma, BondData,...
Settle, Expiry, Period, Basis, [], [], Convention)
PutPrices =
1.7838
2.4071

```

When the strike price is the dirty price (Convention \(=0\)), the call option value is \(\$ 1.78\). When the strike price is the clean price (Convention \(=1\)), the call option value is \(\$ 2.41\).
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures"
- "Fitting the Diebold Li Model"

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th Edition, Prentice Hall, , 2003, pp. 287-288, 508-515.

\section*{See Also}
bkcall

Introduced before R2006a

\section*{bndfutimprepo}

Implied repo rates for bond future given price

\section*{Syntax}
```

ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle,
Delivery, ConvFactor, CouponRate, Maturity)
ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle,
Delivery, ConvFactor, CouponRate, Maturity,
'ParameterName', ParameterValue, ...)

```

\section*{Description}

ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle, Delivery, ConvFactor, CouponRate, Maturity) computes the implied repo rate for a bond future given the price of a bond, the bond properties, the price of the bond future, and the bond conversion factor.

ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle, Delivery, ConvFactor, CouponRate, Maturity, 'ParameterName', ParameterValue, ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. ParameterValue is the value corresponding to 'ParameterName '. Specify parameter-value pairs in any order. Names are caseinsensitive.

\section*{Input Arguments}

\section*{Price}
numBonds-by- 1 vector of bond prices.

\section*{FutPrice}
numBonds-by- 1 vector of future prices

\section*{FutSettle}
numBonds-by- 1 vector of future settle dates.

\section*{Delivery}
numBonds-by- 1 vector of future delivery dates.

\section*{ConvFactor}
numBonds-by-1 vector of bond conversion factors. For more information, see convfactor.

\section*{CouponRate}
numBonds-by- 1 vector of coupon rates in decimal form.

\section*{Maturity}
numBonds-by- 1 vector of coupon rates in decimal form.

\section*{Parameter-Value Pairs}

\section*{Basis}

Day-count basis. Possible values include
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- \(9=\) actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- 11 = 30/360E (ICMA)
- \(12=\mathrm{actual} / 365\) (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0

\section*{EndMonthRule}

End-of-month rule. Values are:
- 0 -Rule is not in effect for the bond.
- 1 - Rule is in effect for the bond. This means that a security that pays coupon interest on the last day of the month always makes payment on the last day of the month.

Default: 1

\section*{Face}

Face value of the bond. Face has no impact on key rate duration. This calling sequence is preserved for consistency.

Default: 100

\section*{FirstCouponDate}

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

\section*{IssueDate}

Issue date for a bond.

\section*{LastCouponDate}

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

\section*{Period}

Number of coupons payments per year. Possible values include:
- 0
- 1
- 2
- 3
- 4
- 6
- 12

Default: 2

\section*{ReinvestBasis}

Day count basis for resinvestment rate.
Default: Identical to RepoBasis.

\section*{ReinvestRate}

Rate for reinvesting intermediate coupons from the bond.
Default: Identical to ImpRepo.

\section*{RepoBasis}

Day count basis for ImpRepo.
Default: 2

\section*{StartDate}

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

\section*{Output Arguments}

\section*{ImpRepo}

Implied repo rate, or the repo rate that would produce the price input.

\section*{Definitions}
bndfutimprepo computes the implied repo rate for a bond future given:
- Price of a bond
- Bond properties
- Price of the bond future
- Bond conversion factor

The default behavior is that the coupon reinvestment rate matches the repo rate. However, you can specify a separate reinvestment rate using optional inputs.

\section*{Examples}

\section*{Compute the Repro Rate For a Bond Future}

This example shows how to compute the repro rate for a bond future using the following data.
bndfutimprepo(129,98,'9/21/2000','12/29/2000', 1.3136,. 0875, '8/15/2020')
ans =
0.0584
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures"
- "Fitting the Diebold Li Model"

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill, 2005.

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley \& Sons, 2002.

\author{
See Also \\ bndfutprice | convfactor
}

Introduced in R2009b

\section*{bndfutprice}

Price bond future given repo rates

\section*{Syntax}
[FutPrice,AccrInt] = bndfutprice(RepoRate, Price, FutSettle, Delivery, ConvFactor, CouponRate, Maturity) FutPrice,AccrInt] = bndfutprice(RepoRate, FutPrice, FutSettle, Delivery, ConvFactor, CouponRate, Maturity, 'ParameterName',ParameterValue, ...)

\section*{Description}
[FutPrice,AccrInt] = bndfutprice(RepoRate, Price, FutSettle, Delivery, ConvFactor, CouponRate, Maturity) computes the price of a bond futures contract for one or more bonds given a repo rate, and bond properties, including the bond conversion factor.

FutPrice,AccrInt] = bndfutprice(RepoRate, FutPrice, FutSettle, Delivery, ConvFactor, CouponRate, Maturity, 'ParameterName',ParameterValue, ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. ParameterValue is the value corresponding to 'ParameterName '. Specify parameter-value pairs in any order. Names are caseinsensitive.

\section*{Input Arguments}

\section*{RepoRate}
numBonds-by- 1 vector of repo rates.

\section*{Price}
numBonds-by-1 vector of bond prices

\section*{FutSettle}
numBonds-by- 1 vector of future settle dates.

\section*{Delivery}
numBonds-by- 1 vector of future delivery dates.

\section*{ConvFactor}
numBonds-by-1 vector of bond conversion factors. For more information, see convfactor.

\section*{CouponRate}
numBonds-by- 1 vector of coupon rates in decimal form.

\section*{Maturity}
numBonds-by- 1 vector of coupon rates in decimal form.

\section*{Parameter-Value Pairs}

\section*{Basis}

Day-count basis. Possible values include
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- \(2=\) actual/ 360
- 3 = actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- 8 = actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- \(12=\mathrm{actual} / 365\) (ISDA)
- 13 = BUS/252

For more information, see basis.
Default: 0

\section*{EndMonthRule}

End-of-month rule. Values are:
- 0 - Rule is not in effect for the bond.
- 1 - Rule is in effect for the bond. This means that a security that pays coupon interest on the last day of the month always makes payment on the last day of the month.

Default: 1

\section*{IssueDate}

Issue date for a bond.

\section*{Face}

Face value of the bond. Face has no impact on key rate duration. This calling sequence is preserved for consistency.

Default: 100

\section*{FirstCouponDate}

Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs.

\section*{LastCouponDate}

Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs.

\section*{Period}

Number of coupons payments per year. Possible values include:
- 0
- 1
- 2
- 3
- 4
- 6
- 12

Default: 2

\section*{ReinvestBasis}

Day count basis for reinvestment rate.
Default: Identical to RepoBasis.

\section*{ReinvestRate}

Compounding convention for reinvestment rate.
Default: Identical to RepoRate.

\section*{RepoBasis}

Day count basis for RepoRate.
Default: 2

\section*{StartDate}

Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.

\section*{Output Arguments}

\section*{FutPrice}

Quoted futures price, per \(\$ 100\) notional.

\section*{AccrInt}

Accrued interest due at delivery date, per \(\$ 100\) notional.

\section*{Definitions}
bndfutprice computes the price of a bond futures contract for one or more bonds, given a repo rate, and bond properties, including the bond conversion factor. The default behavior is that the coupon reinvestment rate matches the repo rate. However, you can specify a separate reinvestment rate using optional inputs.

\section*{Examples}

\section*{Compute the Price For a Bond Future}

This example shows how to compute the price for a bond future using the following data. bndfutprice(.064, 129, '9/21/2000','12/29/2000', 1.3136, .0875, '8/15/2020')
ans =
98.1516
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures"
- "Fitting the Diebold Li Model"

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2

\section*{References}

Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill, 2005.

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley \& Sons, 2002.

\section*{See Also}
bndfutimprepo | convfactor

Introduced in R2009b

\section*{bootstrap}

Bootstrap interest-rate curve from market data

\section*{Class}
@IRDataCurve

\section*{Syntax}

Dcurve = IRDataCurve.bootstrap(Type, Settle, InstrumentTypes, Instruments)

Dcurve = IRDataCurve.bootstrap(Type, Settle, InstrumentTypes, Instruments, 'Parameter1', Value1, 'Parameter2', Value2, ...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Type & \begin{tabular}{l}
Type of interest-rate curve. Type refers to the \\
type of data in the curve that is bootstrapped from \\
the market instruments. Acceptable values are: \\
discount, forward, or zero.
\end{tabular} \\
\begin{tabular}{l}
When using the bootstrap method, the choice \\
of the Type parameter can impact the curve \\
construction because it will affect the type of \\
data that will be interpolated on (that is, forward \\
rates, zero rates or discount factors) during \\
the bootstrapping process. So curves that are \\
bootstrapped using different Type parameters \\
undergo different bootstrapping algorithms with \\
different interpolation methods, and they can \\
sometimes produce different results when using the \\
"get" methods (for example, getForwardRates).
\end{tabular} \\
\hline Settle & Scalar or column vector of settlement dates. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline InstrumentTypes & N -by- 1 cell array (where N is the number of instruments) indicating what kind of instrument is in the Instruments matrix. Acceptable values are deposit, futures, swap, bond, and fra. \\
\hline \multirow[t]{2}{*}{Instruments} & \begin{tabular}{l}
N -by- 3 data matrix for Instruments where the first column is Settle date, the second column is Maturity, and the third column is the market quote (dates must be MATLAB date numbers). \\
The market quote represents the following for each instrument: \\
- deposit: rate \\
- futures: price (e.g., 9628.54) \\
- swap: rate \\
- bond: clean price \\
- fra: forward rate
\end{tabular} \\
\hline & Note: When using fra, the first column of N -by-3 data matrix for Instruments is the start dates for the forward rate agreement (FRA). \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per year for an IRDataCurve object: \\
- \(-1=\) Continuous compounding \\
- \(0=\) Simple interest (no compounding) for "zero" and "discount" curve types only, not supported for "forward" curves \\
- 1 = Annual compounding \\
- \(2=\) Semiannual compounding (default) \\
- \(3=\) Compounding three times per year \\
- 4 = Quarterly compounding \\
- \(6=\) Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the interest-rate curve. A scalar of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- \(3=\) actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline InterpMethod & \begin{tabular}{l}
(Optional) Values are: \\
- 'linear' — Linear interpolation (default). \\
- 'constant' - Piecewise constant interpolation. \\
- 'pchip' - Piecewise cubic Hermite interpolation. \\
- 'spline' - Cubic spline interpolation.
\end{tabular} \\
\hline IRBootstrapOptionsObj & (Optional) An IRBootstrapOptions object. \\
\hline DiscountCurve & (Optional) RateSpec for a curve used to discount the cash flows. \\
\hline
\end{tabular}

\section*{Instrument Parameters}

For each bond Instrument, you can specify the following additional instrument parameters as parameter/value pairs. For example, InstrumentBasis distinguishes a bond instrument's Basis value from the curve's Basis value. For instruments of type deposit, futures, or swap the Basis and Compounding values must be identical for each instance of the instrument.
\begin{tabular}{|c|c|}
\hline InstrumentCouponRate & (Optional) Decimal number indicating the annual percentage rate used to determine the coupons payable on an instrument. \\
\hline InstrumentPeriod & (Optional) Coupons per year of the instrument. A vector of integers. Allowed values are \(0,1,2\) (default), \(3,4,6\), and 12 . \\
\hline InstrumentBasis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual \(/ 360\) \\
- 3 = actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline InstrumentEndMonthRul & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
having 30 or fewer days. \(0=\) ignore rule, meaning that \\
an instrument's coupon payment date is always the same \\
numerical day of the month. \(1=\) set rule on (default), \\
meaning that an instrument's coupon payment date is \\
always the last actual day of the month.
\end{tabular} \\
\hline Instrument IssueDate & (Optional) Date when an instrument was issued. \\
\hline InstrumentFirstCoupon & \begin{tabular}{l}
(Optional) Date when a bond makes its first coupon \\
payment; used when bond has an irregular first coupon \\
period. When FirstCouponDate and LastCouponDate \\
are both specified, FirstCouponDate takes precedence in \\
determining the coupon payment structure. If you do not \\
specify a FirstCouponDate, the cash flow payment dates \\
are determined from other inputs.
\end{tabular} \\
\hline InstrumentLastCouponD & \begin{tabular}{l}
(Optional) Last coupon date of a bond before the maturity \\
date; used when bond has an irregular last coupon period. \\
In the absence of a specified FirstCouponDate, a specified \\
LastCouponDate determines the coupon structure of \\
the bond. The coupon structure of a bond is truncated at \\
the LastCouponDate, regardless of where it falls, and is \\
followed only by the bond's maturity cash flow date. If you \\
do not specify a LastCouponDate, the cash flow payment \\
dates are determined from other inputs.
\end{tabular} \\
\hline InstrumentFace & (Optional) Face or par value. Default = 100. \\
\hline
\end{tabular}

Note: When using Instrument parameter/value pairs, you can specify simple interest for an Instrument by specifying the InstrumentPeriod value as 0 . If InstrumentBasis and InstrumentPeriod are not specified for an Instrument, the following default values are used:
- deposit instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod is 0 (simple interest).
- futures instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod is 4 (quarterly).
- swap instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod is 2.
- bond instrument uses InstrumentBasis as 0 (act/act) and InstrumentPeriod is 2.
- FRA instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod is 4 (quarterly).

\section*{Description}

Dcurve = IRDataCurve.bootstrap(Type, Settle, InstrumentTypes, Instruments, 'Parameter1', Value1, 'Parameter2', Value2, ...) bootstraps an interest-rate curve from market data. The dates of the bootstrapped curve correspond to the maturity dates of the input instruments. You must enter the optional arguments for Basis, Compounding, Interpmethod, IRBootstrapOptionsObj, and DiscountCurve as parameter/value pairs.

\section*{Examples}

\section*{Use the bootstrap Method to Create an IRDataCurve Object}

In this bootstrapping example, InstrumentTypes, Instruments, and a Settle date are defined:
```

InstrumentTypes = {'Deposit';'Deposit';...
'Futures';'Futures';'Futures';'Futures';'Futures';'Futures';...
'Swap';'Swap';'Swap';'Swap';};
Instruments = [datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...
datenum('08/10/2007'), datenum('11/17/2007'),.0535866; ...
datenum('08/08/2007'), datenum('19-Dec-2007'),9485; ...
datenum('08/08/2007'), datenum('19-Mar-2008'),9502; ...
datenum('08/08/2007'), datenum('18-Jun-2008'),9509.5; ...
datenum('08/08/2007'), datenum('17-Sep-2008'),9509; ...
datenum('08/08/2007'), datenum('17-Dec-2008'),9505.5; ...
datenum('08/08/2007'), datenum('18-Mar-2009'),9501; ...
datenum('08/08/2007'), datenum('08/08/2014'),.0530; ...
datenum('08/08/2007'), datenum('08/08/2019'),.0551; ...
datenum('08/08/2007'), datenum('08/08/2027'),.0565; ...
datenum('08/08/2007'), datenum('08/08/2037'),.0566];
CurveSettle = datenum('08/10/2007');

```

Use the bootstrap method to create an IRDataCurve object.
```

bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
InstrumentTypes, Instruments,'InterpMethod','pchip');

```

To create the plot for the bootstrapped market data:
```

PlottingDates = (datenum('08/11/2007'):30:CurveSettle+365*25)';
plot(PlottingDates, getParYields(bootModel, PlottingDates),'r')
ylim([0 .06])
datetick

```


\section*{Use the bootstrap Method to Create an IRDataCurve Object That Includes Bonds}

In this bootstrapping example, InstrumentTypes, Instruments, and a Settle date are defined:
```

CurveSettle = datenum('8-Mar-2010');
InstrumentTypes = {'Deposit';'Deposit';'Deposit';'Deposit';...
Futures';'Futures';'Futures';'Futures';'Swap';'Swap';'Bond';'Bond '};
Instruments = [datenum('8-Mar-2010'),datenum('8-Apr-2010'),.003; ...
datenum('8-Mar-2010'), datenum('8-Jun-2010'),.005; ...
datenum('8-Mar-2010'), datenum('8-Sep-2010'),.007; ...
datenum('8-Mar-2010'), datenum('8-Mar-2011'),.009; ...
datenum('8-Mar-2010'), datenum('18-Jun-2011'),9840; ...
datenum('8-Mar-2010'), datenum('17-Sep-2011'),9820; ...
datenum('8-Mar-2010'), datenum('17-Dec-2011'), 9810; ...
datenum('8-Mar-2010'), datenum('18-Mar-2012'), 9800; ...
datenum('8-Mar-2010'), datenum('8-Mar-2015'),.025; ...
datenum('8-Mar-2010'), datenum('8-Mar-2020'),.035; ...
datenum('8-Mar-2010'), datenum('8-Mar-2030'),99; ...
datenum('8-Mar-2010'), datenum('8-Mar-2040'), 101];

```

When bonds are used, InstrumentCouponRate must be specified:
```

InstrumentCouponRate = [zeros(10,1);.045;.05];

```

Note, for parameters that are only applicable to bonds (e.g.: InstumentFirstCouponDate, InstrumentLastCouponDate, InstumentIssueDate, InstumentFace) the entries for non-bond instruments (deposits and futures) are ignored.

Use the bootstrap method to create an IRDataCurve object.
```

bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
InstrumentTypes, Instruments,'InterpMethod','pchip',...
'InstrumentCouponRate',InstrumentCouponRate);

```

To create the plot for the bootstrapped market data:
```

PlottingDates = datemnth(CurveSettle,1:30*12);
plot(PlottingDates, getParYields(bootModel, PlottingDates),'r')
ylim([0 .06])
datetick

```


Use IRBootstrap0ptionsObj with bootstrap for Negative Zero Interest-Rates
Use the IRBootstrapOptionsObj optional argument with the bootstrap method to allow for negative zero rates when solving for the swap zero points.
```

Settle = datenum('15-Mar-2015');
InstrumentTypes = {'Deposit';'Deposit';'Swap';'Swap';'Swap';'Swap';};
Instruments = [Settle,datenum('15-Jun-2015'),.001; ...
Settle,datenum('15-Dec-2015'),.0005; ...
Settle,datenum('15-Mar-2016'),-.001; ...
Settle,datenum('15-Mar-2017'),-0.0005; ...
Settle,datenum('15-Mar-2018'),.0017; ...
Settle,datenum('15-Mar-2020'),.0019];

```
```

irbo = IRBootstrapOptions('LowerBound',-1);
bootModel = IRDataCurve.bootstrap('zero', Settle, InstrumentTypes,...
Instruments,'IRBootstrapOptions',irbo);
bootModel.getZeroRates(datemnth(Settle,1:60))
ans =
0.0012
0.0011
0.0010
0.0009
0.0008
0.0008
0.0007
0.0006
0.0005
-0.0000
-0.0005
-0.0010
-0.0010
-0.0009
-0.0009
-0.0008
-0.0008
-0.0007
-0.0007
-0.0007
-0.0006
-0.0006
-0.0005
-0.0005
-0.0003
-0.0001
0.0001
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014

```
```

0.0015
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0019
0.0019
0.0019
0.0019
0.0019
0.0019
0.0019

```

Note that optional argument for LowerBound is set to -1 for negative zero rates when solving the swap zero points.
- "Creating Interest-Rate Curve Objects" on page 9-4
- "IRDataCurve Bootstrapping Based on Market Instruments" on page 9-7
- "Bootstrapping a Swap Curve"
- "Dual Curve Bootstrapping" on page 9-16

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{See Also \\ "@IRDataCurve" on page A-7 |"@IRBootstrapOptions" on page A-2 | toRateSpec \\ Introduced in R2008b}

\section*{cdsoptprice}

Price payer and receiver credit default swap options

\section*{Syntax}
[Payer, Receiver] = cdsoptprice(ZeroData, ProbData, Settle, OptionMaturity, CDSMaturity, Strike, SpreadVol) [Payer, Receiver] = cdsoptprice(ZeroData, ProbData, Settle, OptionMaturity, CDSMaturity, Strike, SpreadVol, Name, Value)

\section*{Description}
[Payer, Receiver] = cdsoptprice(ZeroData, ProbData, Settle, OptionMaturity, CDSMaturity, Strike, SpreadVol) computes the price of payer and receiver credit default swap options.
[Payer, Receiver] = cdsoptprice(ZeroData, ProbData, Settle, OptionMaturity, CDSMaturity, Strike, SpreadVol, Name, Value) computes the price of payer and receiver credit default swap options with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{ZeroData}

M-by-2 vector of dates and zero rates or an IRDataCurve object of zero rates. For more information on an IRDataCurve object, see "Creating an IRDataCurve Object" on page 9-6.

\section*{ProbData}

P-by-2 array of dates and default probabilities.

\section*{Settle}

Settlement date is a serial date number or date character vector. Settle must be earlier than the maturity date.

\section*{OptionMaturity}

N -by-1 vector of serial date numbers or date character vectors containing the option maturity dates.

\section*{CDSMaturity}

N -by- 1 vector of serial date numbers or date character vectors containing the CDS maturity dates.

\section*{Strike}

N -by-1 vector of option strikes expressed in basis points.

\section*{SpreadVol}

N -by- 1 vector of annualized credit spread volatilities expressed as a positive decimal number.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Note: Any optional input of size N -by-1 is also acceptable as an array of size 1 -by-N, or as a single value applicable to all contracts. Single values are internally expanded to an array of size N -by- 1 .

\section*{'AdjustedForwardSpread'}

N-by- 1 vector of adjusted forward spreads (in basis points) to be used when pricing CDS index options.

Default: unadjusted forward spread normally used for single-name CDS options

\section*{'Basis'}

N-by- 1 vector of contract day-count basis:
- \(0=\) actual/actual
- \(1=30 / 360\) (SIA)
- \(2=\) actual/360
- 3 = actual/365
- \(4=30 / 360\) (BMA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ICMA)
- 9 = actual/360 (ICMA)
- \(10=\) actual/365 (ICMA)
- \(11=30 / 360 \mathrm{E}\) (ICMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

\section*{For more information, see basis.}

Default: 2 (actual/360)

\section*{'BusDayConvention'}

Business day conventions, specified by a character vector or N -by- 1 cell array of character vectors of business day conventions. The selection for business day convention determines how non-business days are treated. Non-business days are defined as weekends plus any other date that businesses are not open (e.g. statutory holidays). Values are:
- actual - Non-business days are effectively ignored. Cash flows that fall on nonbusiness days are assumed to be distributed on the actual date.
- follow - Cash flows that fall on a non-business day are assumed to be distributed on the following business day.
- modifiedfollow - Cash flows that fall on a non-business day are assumed to be distributed on the following business day. However if the following business day is in a different month, the previous business day is adopted instead.
- previous - Cash flows that fall on a non-business day are assumed to be distributed on the previous business day.
- modifiedprevious - Cash flows that fall on a non-business day are assumed to be distributed on the previous business day. However if the previous business day is in a different month, the following business day is adopted instead.

\section*{Default: actual}

\section*{'Knockout'}

N -by- 1 vector of Boolean flags. If the credit default swaptions is a knockout, the flag is True, otherwise it is False.

\section*{Default: False}
'PayAccruedPremium'
N-by- 1 vector of Boolean flags. If accrued premiums are paid upon default, the flag is True, otherwise it is False.

Default: True

\section*{'Period'}

N -by- 1 vector of the number of premiums per year of the CDS. Allowed values are 1, 2, 3, 4,6 , and 12 .

\section*{Default: 4}

\section*{'RecoveryRate'}

N -by- 1 vector of recovery rates, expressed as a decimal from 0 to 1.
Default: 0.4

\section*{'ZeroBasis'}

Basis of the zero curve. Choices are identical to Basis.
Default: 0 (actual/actual)

\section*{'ZeroCompounding'}

Compounding frequency of the zero curve. Allowed values are:
- 1 -Annual compounding
- 2 -Semiannual compounding
- 3-Compounding three times per year
- 4-Quarterly compounding
- 6 - Bimonthly compounding
- 12 - Monthly compounding
- - 1 - Continuous compounding

Note: When ZeroData is an IRDataCurve object, the arguments ZeroCompounding and ZeroBasis are implicit in ZeroData and are redundant inside this function. In that case, specify these optional arguments when constructing the IRDataCurve object before calling this function.

Default: 2 (Semiannual compounding)

\section*{Output Arguments}

\section*{Payer}

N-by-1 vector of prices for payer swap options in Basis points.

\section*{Receiver}

N-by-1 vector of prices for receiver swap options in Basis points.

\section*{Examples}

\section*{Obtain Payer and Receiver Values for a Credit Default Swap Option}

Use cdsoptprice to generate Payer and Receiver values for a credit default swap option.
```

Settle = datenum('12-Jun-2012');
OptionMaturity = datenum('20-Sep-2012');
CDSMaturity = datenum('20-Sep-2017');
OptionStrike = 200;
SpreadVolatility = .4;
Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [.5 .75 1.5 1.7 1.9 2.2]'/100;
Zero_Dates = daysadd(Settle,360*Zero_Time,1);
ZeroData = [Zero_Dates Zero_Rate];
Market_Time = [1 2 3 5 7 10]';
Market_Rate = [100 120 145 220 245 270]';
Market Dates = daysadd(Settle,360*Market_Time,1);
MarketData = [Market_Dates Market_Rate];
ProbData = cdsbootstrap(ZeroData, MarketData, Settle);
[Payer,Receiver] = cdsoptprice(ZeroData, ProbData, Settle,...
OptionMaturity, CDSMaturity, OptionStrike, SpreadVolatility)

```

\section*{Payer =}
223.5780

Receiver =
22.7460
- "Pricing a Single-Name CDS Option" on page 8-37
- "Pricing a CDS Index Option" on page 8-39

\section*{More About}

\section*{Credit Default Swap Option}

A credit default swap (CDS) option, or credit default swaption, is a contract that provides the option holder with the right, but not the obligation, to enter into a credit default swap in the future. CDS options can either be payer swaptions or receiver swaptions. In
a payer swaption, the option holder has the right to enter into a CDS in which they are paying premiums and in a receiver swaption, the option holder is receiving premiums.

\section*{Algorithms}

The payer and receiver credit default swap options are computed using the Black's model as described in O'Kane [1]:
\[
\begin{aligned}
& V_{\text {Pay }(\text { Knockout })}=R P V 01\left(t, t_{E}, T\right)\left(F \Phi\left(d_{1}\right)-K \Phi\left(d_{2}\right)\right) \\
& V_{\text {Rec }(\text { Knockout })}=R P V 01\left(t, t_{E}, T\right)\left(K \Phi\left(-d_{2}\right)-F \Phi\left(-d_{1}\right)\right) \\
& d_{1}=\frac{\ln \left(\frac{F}{K}\right)+\frac{1}{2} \sigma^{2}\left(t_{E}-t\right)}{\sigma \sqrt{t_{E}-t}} \\
& d_{2}=d_{1}-\sigma \sqrt{t_{E}-t} \\
& \left.V_{\text {Pay }(\text { Non }}-\text { Knockout }\right)=V_{\text {Pay }(\text { Knockout })}+F E P \\
& V_{\text {Pay }(\text { Non-Knockout })}=V_{\text {Rec }(\text { Knockout })}
\end{aligned}
\]
where
\(R P V 01\) is the risky present value of a basis point (see cdsrpv01).
\(\Phi\) is the normal cumulative distribution function.
\(\sigma\) is the spread volatility.
\(t\) is the valuation date.
\(t_{E}\) is the option expiry date.
\(T\) is the CDS maturity date.
\(F\) is the forward spread (from option expiry to CDS maturity).
\(K\) is the strike spread.
\(F E P\) is the front-end protection (from option initiation to option expiry).
- "Credit Default Swap Option" on page 8-37
- Pricing and Valuation of Credit Default Swaps (4 min 22 sec)

\section*{References}
[1] O'Kane, D. Modelling Single-name and Multi-name Credit Derivatives. Wiley, 2008, pp. 156-169.

\author{
See Also \\ cdsbootstrap | cdsprice | cdsrpv01 | cdsspread | IRDataCurve Introduced in R2011a
}

\section*{cmosched}

Generate principal balance schedule for planned amortization class (PAC) or targeted amortization class (TAC) bond

\section*{Syntax}
[BalanceSchedule, InitialBalance] = cmosched(Principal, Coupon, OriginalTerm, TermRemaining, PrepaySpeed) [BalanceSchedule, InitialBalance] = cmosched(Principal, Coupon, OriginalTerm, TermRemaining, PrepaySpeed, TranchePrincipal)

\section*{Description}
[BalanceSchedule, InitialBalance] = cmosched(Principal, Coupon, OriginalTerm, TermRemaining, PrepaySpeed) generates a principal balance schedule for planned amortization class (PAC) bonds using two bands of Public Securities Association Prepayment Model (PSA) speeds or targeted amortization class (TAC) bonds using a single PSA speed.
[BalanceSchedule, InitialBalance] = cmosched(Principal, Coupon, OriginalTerm, TermRemaining, PrepaySpeed, TranchePrincipal) with a specified tranche principal generates a principal balance schedule for planned amortization class (PAC) bonds using two bands of PSA speeds or targeted amortization class (TAC) bonds using a single PSA speed.

\section*{Input Arguments}

\section*{Principal}

Principal of the underlying mortgage pool.

\section*{Coupon}

Coupon of the underlying mortgage pool.

\section*{OriginalTerm}

Original term in months of the underlying mortgage pool.

\section*{TermRemaining}

Terms remaining in months of the underlying mortgage pool.

\section*{PrepaySpeed}

PSA speed. For a PAC, the speed is a 1-by-2 matrix where the first element is the lower band and the second element is the upper band. For a TAC, the speed is a scalar.

\section*{TranchePrincipal}
(Optional) Principal of the scheduled tranche. If it is unspecified or empty [], the principal of the scheduled tranche is assumed to be the sum of the payment schedule calculated from the PSA prepayment speeds.

\section*{Output Arguments}

\section*{BalanceSchedule}

Matrix of size 1-by-NUMTERMS, where NUMTERMS is the number of terms remaining. Each column contains the scheduled principal balance for the time period corr-by-esponding to the column number.

\section*{InitialBalance}

Scalar containing the initial principal balance of the scheduled tranche.

\section*{Examples}

\section*{Calculate the Principal Balance Schedule for a CMO PAC Bond}

Define the mortgage pool under consideration and generate a principal balance schedule for planned amortization class (PAC) bonds using two bands of PSA speeds.
```

Principal = 128687000;
GrossRate = 0.0648;
OriginalTerm = 360;
TermRemaining = 325;

```
```

PrepaySpeed = [300 525];
PacPrincipal = 100250000;
[BalanceSchedule, InitialBalance] ...
= cmosched(Principal, GrossRate, OriginalTerm, TermRemaining, ...
PrepaySpeed, PacPrincipal)
BalanceSchedule =
1.0e+07 *
Columns 1 through 7
9.7996 9.5780 9.3602 9.1461 8.9357 8.7289 8.5257
Columns 8 through 14
8.3259 8.1296 7.9366 7.7469 7.5605 7.3773 7.1972
Columns 15 through 21
7.0202 6.8463 6.6754 6.5073 6.3422 6.1799 6.0204
Columns 22 through 28
5.8637 5.7096 5.5582 5.4094 5.2632 5.1194 4.9782
Columns 29 through 35
4.8394 4.7030
Columns 36 through 42
3.9325 3.8118 3.6931
Columns 43 through 49
3.1353 3.0334 2.9348 2.8394 2.7470 2.6576 2.5711
Columns 50 through 56
2.4873 2.4063 2.3279 2.2520 2.1786 2.1075 2.0387
Columns 57 through 63

```
\(\begin{array}{lllllll}1.9722 & 1.9078 & 1.8455 & 1.7852 & 1.7268 & 1.6703 & 1.6157\end{array}\)
Columns 64 through 70
\(\begin{array}{lllllll}1.5628 & 1.5117 & 1.4622 & 1.4142 & 1.3679 & 1.3231 & 1.2797\end{array}\)
Columns 71 through 77
1.2377
1.1970
1.1577
1.1197
1.0829
1.0473
1.0129

Columns 78 through 84
0.9795
0.9473
0.9161
0.8859
0.8567
0.8285
0.8011

Columns 85 through 91
0.7747
0.7491
0.7244
0.7004
0.6773
0.6549
0.6332

Columns 92 through 98
0.6122
0.5920
0.5723
0.5534
0.5350
0.5172
0.5001

Columns 99 through 105
0.4835
0.4674
0.4518
0.4368
0.4223
0.4082
0.3946

Columns 106 through 112
0.3814
0.3687
0.3564
0.3445
0.3330
0.3219
0.3111

Columns 113 through 119
0.3007
0.2906
0.2809
0.2715
0.2623
0.2535
0.2450

Columns 120 through 126
0.2368
0.2288
0.2211
0.2137
0.2065
0.1995
0.1928

Columns 127 through 133
\begin{tabular}{lllllll}
0.1863 & 0.1800 & 0.1739 & 0.1680 & 0.1623 & 0.1568 & 0.1515
\end{tabular}

Columns 134 through 140
0.1464
0.1414
0.1366
0.1319
0.1275
0.1231
0.1189

Columns 141 through 147
0.1149
0.1109
0.1072
0.1035
0.0999
0.0965
0.0932

Columns 148 through 154
0.0900
0.0869
0.0839
0.0811
0.0783
0.0756
0.0730

Columns 155 through 161
0.0704
0.0680
0.0657
0.0634
\(0.0612 \quad 0.0591\)
0.0570

Columns 162 through 168
0.0550
0.0531
0.0513
0.0495
0.0478
0.0461
0.0445

Columns 169 through 175
0.0429
0.0414
0.0400
0.0386
0.0372
0.0359
0.0346

Columns 176 through 182
0.0334
0.0322
0.0311
0.0300
0.0289
0.0279
0.0269

Columns 183 through 189
0.0260
0.0250
0.0241
0.0233
0.0224
0.0216
0.0209

Columns 190 through 196
0.0201
0.0194
0.0187
0.0180
0.0174
0.0167
0.0161

Columns 197 through 203
0.0155
0.0150
0.0144
0.0139
0.0134
0.0129
0.0124

Columns 204 through 210
\(\begin{array}{lllllll}0.0120 & 0.0115 & 0.0111 & 0.0107 & 0.0103 & 0.0099 & 0.0096\end{array}\)
Columns 211 through 217
0.0092
0.0089
0.0085
0.0082
0.0079
0.0076
0.0073

Columns 218 through 224
0.0070
0.0068
0.0065
0.0063
0.0060
0.0058
0.0056

Columns 225 through 231
0.0054
0.0052
0.0050
0.0048
0.0046
0.0044
0.0042

Columns 232 through 238
0.0041
0.0039
0.0037
0.0036
0.0035
0.0033
0.0032

Columns 239 through 245
0.0031
0.0029
0.0028
0.0027
0.0026
0.0025
0.0024

Columns 246 through 252
0.0023
0.0022
0.0021
0.0020
0.0019
0.0018
0.0018

Columns 253 through 259
0.0017
0.0016
0.0016
0.0015
0.0014
0.0014
0.0013

Columns 260 through 266
0.0012
0.0012
0.0011
0.0011
0.0010
0.0010
0.0009

Columns 267 through 273
\(\begin{array}{lllllll}0.0009 & 0.0009 & 0.0008 & 0.0008 & 0.0007 & 0.0007 & 0.0007\end{array}\)
Columns 274 through 280
0.0006
0.0006
0.0006
0.0005
0.0005
0.0005
0.0005

Columns 281 through 287
\(\begin{array}{lllllll}0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0003 & 0.0003\end{array}\)
Columns 288 through 294
0.0003 0.0003 0.0003 0.0002 0.0002 0.0002
0.0002
Columns 295 through 301
0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001
Columns 302 through 308
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Columns 309 through 315
0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Columns 316 through 322
0.0000 0.0000 0.0000
0 0
0 0
Columns 323 through 325
\(0 \quad 0\) 0
InitialBalance =
100250000
- "Create PAC and Sequential CMO" on page 5-59
More About
Planned Amortization Class (PAC) BondPAC bonds are a type of CMO bond. They are designed to largely eliminate prepaymentrisk for investors. They do this by transferring essentially all prepayment risk to otherbonds in the CMO that are called support bonds.

\section*{Targeted Amortization Class (TAC) Bond}

TAC bonds are analogous to PAC bonds, but are structured differently. TAC bonds offer one-sided protection, shielding investors from high prepayment rates up to a specified PSA and do not protect against low prepayment rates.
- "What Are CMOs?" on page 5-48
- "Prepayment Risk" on page 5-48
- "CMO Workflow" on page 5-56

\section*{References}

Hayre, Lakhbir, ed. Salomon Smith Barney Guide to Mortgage-Backed and Asset-Backed Securities. John Wiley and Sons, New York, 2001.

Lyuu, Yuh-Dah. Financial Engineering and Computation. Cambridge University Press, 2004.

\author{
See Also \\ cmoschedcf \\ Introduced in R2012a
}

\section*{cmoschedcf}

Generate cash flows for scheduled collateralized mortgage obligation (CMO) using PAC or TAC model

\section*{Syntax}
[Balances, Principal, Interest] = cmoschedcf(PrincipalPayments, TranchePrincipals, TrancheCoupons, BalanceSchedule)

\section*{Description}
[Balances, Principal, Interest] = cmoschedcf(PrincipalPayments, TranchePrincipals, TrancheCoupons, BalanceSchedule) generate cash flows for a scheduled CMO such as the planned amortization class (PAC) or targeted amortization class (TAC), given the underlying mortgage pool payments (or payments from another CMO tranche). The output Balance, Principal, and Interest from this function can be used as input into cmoseqcf to further divide the PAC, TAC, or support tranche into sequential tranches.

\section*{Input Arguments}

\section*{PrincipalPayments}

Matrix of size 1-by-NUMTERMS, where NUMTERMS is the number of terms remaining. Each column contains the underlying principal payment for the time period corresponding to the row number. Calculate underlying principal payments using mbscfamounts or mbspassthrough. The underlying principal payments can also be outputs from other CMO cash flow functions.

\section*{TranchePrincipals}

Matrix of size 2-by-1 specifying the initial principal for the scheduled and the support tranche.

\section*{TrancheCoupons}

Matrix of size 2-by-1 specifying the coupons for the schedule tranche and the support tranche. The weighted average coupon for the CMO should not exceed the coupon of the underlying mortgage.

\section*{BalanceSchedule}

Matrix of size 1 -by-NUMTERMS, where NUMTERMS is the number of terms remaining. Each element represents the targeted balance schedule for the time period corresponding to that column.

\section*{Output Arguments}

\section*{Balance}

Matrix of size 2-by-NUMTERMS, where NUMTERMS is the number of terms remaining. The first row is the principal balances of the scheduled tranche, and the second row is the principal balances of the support tranche at the time period corresponding to the column.

\section*{Principal}

Matrix of size 2-by-NUMTERMS, where NUMTERMS is the number of terms remaining. The first row is the principal payments of the scheduled tranche, and the second row is the principal payments of the support tranche at the time period corresponding to the column.

\section*{Interest}

Matrix of size 2-by-NUMTERMS, where NUMTERMS is the number of terms remaining. The first row is the interest payments of the schedule tranche, and the second row is the interest payments of the support tranche at the time period corresponding to the column.

\section*{Examples}

\section*{Calculate Cash Flows for Each PAC Tranche}

Define the mortgage pool under consideration for CMO structuring using mbscfamounts or mbspassthrough. Calculate the underlying mortgage cash flow, define the PAC schedule and CMO tranches, and calculate the cash flows for each tranche.
```

MortgagePrincipal = 1000000; % underlying mortgage
Coupon = 0.12;
Terms = 6; % months
[PrincipalBalance, MonthlyPayments, SchedPrincipalPayments, ...
InterestPayments, Prepayments] = ...
mbspassthrough(MortgagePrincipal, Coupon, Terms, Terms, 0, []);
PrincipalPayments = SchedPrincipalPayments.' + Prepayments.'
PrincipalPayments =
1.0e+05 *
1.6255 1.6417 1.6582 1.6747 1.6915 1.7084
Calculate the PAC schedule for CMO using cmosched.
PrepaySpeed = [100 300];
[BalanceSchedule, InitialBalance] ...
= cmosched(MortgagePrincipal, Coupon, Terms, Terms, PrepaySpeed, [])
BalanceSchedule =
1.0e+05 *
8.3617 6.7180 5.0581 3.3828 1.6955 0
InitialBalance =
9.9886e+05
Define CMO tranches.
TranchePrincipals = ...
[InitialBalance; MortgagePrincipal-InitialBalance];
TrancheCoupons = [0.12; 0.12];
Calculate cash flows for each tranche.
[Balance, Principal, Interest] = ...

```
```

cmoschedcf(PrincipalPayments, TranchePrincipals, ...
TrancheCoupons, BalanceSchedule)

```

Balance =
\(1.0 \mathrm{e}+05\) *
\begin{tabular}{rrrrrr}
8.3631 & 6.7213 & 5.0632 & 3.3885 & 1.6970 & 0 \\
0.0114 & 0.0114 & 0.0114 & 0.0114 & 0.0114 & 0.0000
\end{tabular}

Principal =
\(1.0 \mathrm{e}+05\) *
\begin{tabular}{rrrrrr}
1.6255 & 1.6417 & 1.6582 & 1.6747 & 1.6915 & 1.6970 \\
0 & 0 & 0 & 0 & 0 & 0.0114
\end{tabular}

Interest =
\(1.0 \mathrm{e}+03\) *
\begin{tabular}{llllll}
9.9886 & 8.3631 & 6.7213 & 5.0632 & 3.3885 & 1.6970 \\
0.0114 & 0.0114 & 0.0114 & 0.0114 & 0.0114 & 0.0114
\end{tabular}
- "Create PAC and Sequential CMO" on page 5-59

\section*{More About}

\section*{Planned Amortization Class (PAC) Tranches}

In a PAC CMO, there is a main tranche, known as the schedule tranche, and a support tranche. The main purpose of a schedule tranche is to give investors in the PAC tranche a more certain cash flow.

\section*{Targeted Amortization Class (TAC) Tranches}

TACs are like PACs, but principal payment is specified for only one prepayment rate. If prepayment rates are higher or lower, then the principal payment to TAC holders will be higher or lower accordingly.

\section*{Schedule and Support Tranche}

The main purpose of a PAC tranche is to give investors in the PAC tranche a more certain cash flow. The PAC tranche receives priority for receiving payments of principal and interest that gives investors in the PAC tranche a steadier income. If prepayments differ from what was expected, then the support tranche gets the variable portion of the payments. While income to the support tranche is more variable, it is also higher yielding. Estimates of the yield, average life, and lockout periods of the PAC tranche is more certain.
- "What Are CMOs?" on page 5-48
- "Prepayment Risk" on page 5-48
- "CMO Workflow" on page 5-56

\section*{References}

Hayre, Lakhbir, ed. Salomon Smith Barney Guide to Mortgage-Backed and Asset-Backed Securities. John Wiley and Sons, New York, 2001.

Lyuu, Yuh-Dah. Financial Engineering and Computation. Cambridge University Press, 2004.

\section*{See Also}
cmosched | cmoseqcf | mbscfamounts | mbspassthrough

Introduced in R2012a

\section*{cmoseqcf}

Generate cash flows for sequential collateralized mortgage obligation (CMO)

\section*{Syntax}
```

[balances, principals, interests] =
cmoseqcf(PrincipalPayments, TranchePrincipals, TrancheCoupons)
[balances, principals, interests] =
cmoseqcf(PrincipalPayments, TranchePrincipals, TrancheCoupons, HasZ)

```

\section*{Description}
[balances, principals, interests] = cmoseqcf(PrincipalPayments, TranchePrincipals, TrancheCoupons) generates cash flows for a sequential CMO without a Z-bond, given the underlying mortgage pool payments.
[balances, principals, interests] = cmoseqcf(PrincipalPayments, TranchePrincipals, TrancheCoupons, HasZ) generates cash flows for a sequential CMO with a Z-bond, given the underlying mortgage pool payments.

\section*{Input Arguments}

\section*{PrincipalPayments}

Matrix of size 1-by-NUMTERMS, where NUMTERMS is the number of terms remaining. Each row contains the underlying principal payment for the time period corresponding to the row number. The underlying principal payments can be calculated using mbscfamounts or mbspassthrough. The underlying principal payments can also be outputs from other CMO cash flow functions

\section*{TranchePrincipals}

Matrix of size NUMTRANCHES-by-1, where NUMTRANCHES is the number of tranches in the sequential CMO. Each element of the matrix represents the initial principal for each
tranche. If the sequential CMO includes a Z-bond (HasZ is true), the last element of this matrix is the principal of the Z-bond.

\section*{TrancheCoupons}

Matrix of size NUMTRANCHES-by-1, where NUMTRANCHES is the number of tranches in the sequential CMO. Each element of the matrix represents the coupon for each tranche. If the sequential CMO includes a Z-bond (HasZ is true), the last element of this matrix is the coupon of the Z-bond. The weighted average coupon for the CMO should not exceed the coupon of the underlying mortgage.

\section*{HasZ}
(Optional) Boolean (true or false). A value of true indicates that the sequential CMO contains a Z-bond, and the last element of TranchePrincipals and TrancheCoupons is treated as that of the Z-bond. A value of false indicates that there is no Z-bond in the sequential CMO, and the last element of TranchePrincipals and TrancheCoupons is treated as an ordinary tranche.

Default: false

\section*{Output Arguments}

\section*{Balance}

Matrix of size NUMTRANCHES-by-NUMTERMS, where NUMTRANCHES is the number of terms remaining and NUMTRANCHES is the number of tranches. Each element represents the principal balance at the time period corresponding to the column, and for the tranche corresponding to the row.

\section*{Principal}

Matrix of size NUMTRANCHES-by-NUMTERMS, where NUMTRANCHES is the number of terms remaining and NUMTRANCHES is the number of tranches. Each element represents the principal payments made at the time period corresponding to the column, and to the tranche corresponding to the row.

\section*{Interest}

Matrix of size NUMTRANCHES-by-NUMTERMS, where NUMTRANCHES is the number of terms remaining and NUMTRANCHES is the number of tranches. Each element represents the
interest payments made at the time period corresponding to the column, and to the tranche corresponding to the row.

\section*{Examples}

\section*{Calculate Cash Flows for a Sequential Collateralized Mortgage Obligation (CMO)}

Define the mortgage pool under consideration for CMO structuring using mbscfamounts or mbspassthrough and calculate the cash flows with an A and B tranche for a sequential CMO.
```

MortgagePrincipal = 1000000;
Coupon = 0.12;
Terms = 6; % months
% Calculate underlying mortgage cash flows
[PrincipalBalance, MonthlyPayments, SchedPrincipalPayments, ...
InterestPayments, Prepayments] = ...
mbspassthrough(MortgagePrincipal, Coupon, Terms, Terms, 0, []);
PrincipalPayments = SchedPrincipalPayments.' + Prepayments.

```
PrincipalPayments =
 \(1.0 \mathrm{e}+05\)
 \(\begin{array}{llllll}1.6255 & 1.6417 & 1.6582 & 1.6747 & 1.6915 & 1.7084\end{array}\)

Define CMO tranches, A and B.
TranchePrincipals = [500000; 500000]; TrancheCoupons = [0.12; 0.12];

Calculate cash flows for each tranche.
```

[Balance, Principal, Interest] = ...
cmoseqcf(PrincipalPayments, TranchePrincipals, TrancheCoupons, false)

```
```

    1.0e+05 *
    | 3.3745 | 1.7328 | 0.0746 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 5.0000 | 5.0000 | 5.0000 | 3.3999 | 1.7084 | 0.0000 |

Principal =
1.0e+05 *
1.6255 rrrrrr
Interest =
1.0e+03 *

| 5.0000 | 3.3745 | 1.7328 | 0.0746 | 0 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 5.0000 | 5.0000 | 5.0000 | 5.0000 | 3.3999 | 1.7084 |

```
- "Create PAC and Sequential CMO" on page 5-59

\section*{More About}

\section*{Sequential Pay CMO}

A sequential pay CMO involves tranches that pay off principal sequentially. For example, consider the following case, where all principal from the underlying mortgage pool is repaid on tranche A first, then tranche B, then tranche C. Interest is paid on each tranche as long as the principal for the tranche has not been retired.

\section*{CMO Tranche}

Tranche is a term often used to describe a specific class of bonds within an offering wherein each tranche offers varying degrees of risk to the investor.
- "What Are CMOs?" on page 5-48
- "Prepayment Risk" on page 5-48
- "CMO Workflow" on page 5-56

\section*{References}

Hayre, Lakhbir, ed. Salomon Smith Barney Guide to Mortgage-Backed and Asset-Backed Securities. John Wiley and Sons, New York, 2001.

Lyuu, Yuh-Dah. Financial Engineering and Computation. Cambridge University Press, 2004.

\author{
See Also \\ cmosched | cmoschedcf | mbscfamounts | mbspassthrough \\ Introduced in R2012a
}

\section*{convfactor}

Bond conversion factors

\section*{Syntax}

CF = convfactor(RefDate, Maturity, CouponRate)
CF = convfactor(RefDate, Maturity, CouponRate, 'ParameterName',ParameterValue, ...)

\section*{Description}

CF = convfactor(RefDate, Maturity, CouponRate) computes a conversion factor for a bond futures contract.

CF = convfactor(RefDate, Maturity, CouponRate, 'ParameterName', ParameterValue, ...) accepts optional inputs as one or more comma-separated parameter-value pairs. 'ParameterName' is the name of the parameter inside single quotes. ParameterValue is the value corresponding to 'ParameterName '. Specify parameter/value pairs in any order. Names are caseinsensitive. convfactor computes a conversion factor for a bond futures contract, given a Convention value for a U.S. Treasury bond, German bond, U.K. Gilt, or Japanese Government Bond.

\section*{Input Arguments}

\section*{RefDate}

Reference dates, for which conversion factor is computed (usually the first day of delivery months).

\section*{Maturity}

Maturity date of the underlying bond.

\section*{CouponRate}

Annual coupon rate of the underlying bond in decimal.

\section*{Parameter-Value Pairs}

Enter the following inputs only as parameter-value pairs.

\section*{Convention}

Conversion factor convention. Scalar. Valid values are:
- 1 = U.S. Treasury bond (30-year) and Treasury note (10-year) futures contract
- 2 = U.S. 2-year and 5-year Treasury note futures contract
- 3 = German Bobl, Bund, Buxl, and Schatz
- 4 = U.K. gilts
- 5 = Japanese Government Bonds (JGBs)

\section*{Default: 1}

\section*{FirstCouponDate}

Irregular or normal first coupon date.

\section*{RefYield}

Reference semiannual yield.
Default: 0.06 (6\%)

\section*{StartDate}

Forward starting date of payments.

\section*{Output Arguments}

\section*{CF}

N-by1 vector of conversion factors against the 6\% yield par-bond.

\section*{Definitions}

Conversion factors of U.S. Treasury bonds and other government bonds are based on a bond yielding \(6 \%\). Optionally, you can specify other types of bonds and yields using
inputs for RefYield and Convention. For U.S. Treasury bonds, verify the output of convfactor by comparing the output against the quotations provided by the Chicago Board of Trade (http://www.cmegroup.com/company/cbot.html).

For German bonds, verify the output of convfactor by comparing the output against the quotations provided by Eurex (http://www.eurexchange.com).

For U.K. Gilts, verify the output of convfactor by comparing the output against the quotations provided by Euronext (http://www.euronext.com).

For Japanese Government Bonds, verify the output of convfactor by comparing the output against the quotations provided by the Tokyo Stock Exchange (http:// www.jpx.co.jp/english/).

\section*{Examples}

\section*{Compute the Conversion Factors For a Bond Futures Contract}

This example shows how to calculate CF, given the following RefDate, Maturity, and CouponRate.
```

RefDate = {'1-Dec-2002';
'1-Mar-2003';
'1-Jun-2003';
'1-Sep-2003';
'1-Dec-2003';
'1-Sep-2003';
'1-Dec-2002';
'1-Jun-2003'};
Maturity = {'15-Nov-2012';
'15-Aug-2012';
'15-Feb-2012';
'15-Feb-2011';
'15-Aug-2011';
'15-Aug-2010';
'15-Aug-2009';
'15-Feb-2010'};
CouponRate = [0.04; 0.04375; 0.04875; 0.05; 0.05; 0.0575; 0.06; 0.065];
CF = convfactor(RefDate, Maturity, CouponRate)

```

\section*{CF =}
0.8539
0.8858
0.9259
0.9418
0.9403
0.9862
1.0000
1.0266

\section*{Compute the Conversion Factor For a German Bond}

This example shows how to calculate cf, given the following RefDate, Maturity, and CouponRate for a German bond.
```

cf = convfactor('3/10/2009','1/04/2018', .04,.06,3)

```
cf \(=\)
0.8659
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures"
- "Fitting the Diebold Li Model"

\section*{More About}
- "Managing Present Value with Bond Futures" on page 7-13

\section*{References}

Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill, 2005.

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley \& Sons, 2002.
See Alsobndfutimprepo | bndfutprice | tfutbyprice | tfutbyyield | tfutimprepo
Introduced in R2009b

\section*{fitFunction}

Custom fit interest-rate curve object to bond market data

\section*{Class}

\section*{@IRFunctionCurve}

\section*{Syntax}

CurveObj = IRFunctionCurve.fitFunction(Type, Settle, FunctionHandle, Instruments, IRFitOptionsObj)

CurveObj = IRFunctionCurve.fitFunction(Type, Settle, FunctionHandle, Instruments, IRFitOptionsObj, 'Parameter1', Value1, 'Parameter2', Value2, ...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Type & \begin{tabular}{l}
Type of interest-rate curve for a bond: zero, forward, or \\
discount.
\end{tabular} \\
\hline Settle & Scalar for the Settle date of the curve. \\
\hline FunctionHandle & \begin{tabular}{l}
Function handle that defines the interest-rate curve. The \\
function handle takes two numeric vectors (time-to-maturity \\
and a vector of function coefficients) and returns one numeric \\
output (interest rate or discount factor). For more information \\
on defining a function handle, see the MATLAB Programming \\
Fundamentals documentation.
\end{tabular} \\
\hline Instruments & \begin{tabular}{l}
N-by-4 data matrix for Instruments where the first \\
column is Settle date, the second column is Maturity, the \\
third column is the clean price, and the fourth column is a \\
CouponRate for the bond.
\end{tabular} \\
\hline IRFitOptionsObj & Object constructed from IRFitOptions. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per \\
year for the IRFunctionCurve object:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- -1 = Continuous compounding \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding (default) \\
- 3 = Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the bond. A scalar of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\mathrm{actual} / 365\) (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline
\end{tabular}

\section*{Instrument Parameters}

For each bond Instrument, you can specify the following additional instrument parameters as parameter/value pairs. For example, InstrumentBasis distinguishes a bond instrument's Basis value from the curve's Basis value.
\begin{tabular}{|c|c|}
\hline InstrumentPeriod & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12. \\
\hline InstrumentBasis & \begin{tabular}{l}
(Optional) Day-count basis of the bond. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- \(2=\) actual/360 \\
- \(3=\) actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline InstrumentEndMonthRul & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline InstrumentIssueDate & (Optional) Date when an instrument was issued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline InstrumentFirstCoupon & \begin{tabular}{l}
(Optional) Date when a bond makes its first coupon \\
payment; used when bond has an irregular first coupon \\
period. When FirstCouponDate and LastCouponDate \\
are both specified, FirstCouponDate takes precedence in \\
determining the coupon payment structure. If you do not \\
specify a FirstCouponDate, the cash flow payment dates \\
are determined from other inputs.
\end{tabular} \\
\hline InstrumentLastCouponD & \begin{tabular}{l}
(Optional) Last coupon date of a bond before the maturity \\
date; used when bond has an irregular last coupon period. \\
In the absence of a specified FirstCouponDate, a specified \\
LastCouponDate determines the coupon structure of \\
the bond. The coupon structure of a bond is truncated at \\
the LastCouponDate, regardless of where it falls, and is \\
followed only by the bond's maturity cash flow date. If you \\
do not specify a LastCouponDate, the cash flow payment \\
dates are determined from other inputs.
\end{tabular} \\
\hline InstrumentFace & (Optional) Face or par value. Default = 100. \\
\hline
\end{tabular}

Note: When using Instrument parameter/value pairs, you can specify simple interest for a bond by specifying the InstrumentPeriod value as 0 . If InstrumentBasis and InstrumentPeriod are not specified for a bond, the following default values are used: Basis is 0 (act/act) and Period is 2.

\section*{Description}

CurveObj = IRFunctionCurve.fitFunction(Type, Settle, FunctionHandle, Instruments, IRFitOptionsObj, 'Parameter1', Value1, 'Parameter2', Value2, ...) fits a bond to a custom fitting function. You must enter the optional arguments for Basis and Compounding as parameter/value pairs.

\section*{Examples}

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity \(=\) [datenum('07-Mar-2009'); datenum('07-Mar-2011'); ...
datenum('07-Mar-2013'); datenum('07-Sep-2016'); ..
datenum('07-Mar-2025'); datenum('07-Mar-2036')];
CleanPrice \(=[100.1 ; 100.1 ; 100.8 ; 96.6 ; 103.3 ; 96.3]\);
CouponRate \(=[0.0400 ; 0.0425 ; 0.0450 ; 0.0400 ; 0.0500 ; 0.0425]\);
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{```
Instruments = [Settle Maturity CleanPrice CouponRate];
CurveSettle = datenum('30-Apr-2008');
OptOptions = optimoptions('lsqnonlin','display','iter');
functionHandle = @(t,theta) polyval(theta,t);
```} \\
\hline \multicolumn{6}{|l|}{```
CustomModel = IRFunctionCurve.fitFunction('Zero'
functionHandle,Instruments, ...
IRFitOptions([.05 .05 .05],'FitType','price',...
'OptOptions',OptOptions));
```} \\
\hline Iteration & Func-count & \(\mathrm{f}(\mathrm{x})\) & Norm of step & First-order optimality & CG-iterations \\
\hline 0 & 4 & 38036.7 & & \(4.92 \mathrm{e}+04\) & \\
\hline 1 & 8 & 38036.7 & 10 & \(4.92 \mathrm{e}+04\) & 0 \\
\hline 2 & 12 & 38036.7 & 2.5 & \(4.92 \mathrm{e}+04\) & 0 \\
\hline 3 & 16 & 38036.7 & 0.625 & \(4.92 \mathrm{e}+04\) & 0 \\
\hline 4 & 20 & 38036.7 & 0.15625 & \(4.92 \mathrm{e}+04\) & 0 \\
\hline 5 & 24 & 30741.5 & 0.0390625 & \(1.72 \mathrm{e}+05\) & 0 \\
\hline 6 & 28 & 30741.5 & 0.078125 & \(1.72 \mathrm{e}+05\) & 0 \\
\hline 7 & 32 & 30741.5 & 0.0195312 & \(1.72 \mathrm{e}+05\) & 0 \\
\hline 8 & 36 & 28713.6 & 0.00488281 & \(2.33 \mathrm{e}+05\) & 0 \\
\hline 9 & 40 & 20323.3 & 0.00976562 & \(9.47 \mathrm{e}+05\) & 0 \\
\hline 10 & 44 & 20323.3 & 0.0195312 & \(9.47 \mathrm{e}+05\) & 0 \\
\hline 11 & 48 & 20323.3 & 0.00488281 & \(9.47 \mathrm{e}+05\) & 0 \\
\hline 12 & 52 & 20323.3 & 0.0012207 & \(9.47 \mathrm{e}+05\) & 0 \\
\hline 13 & 56 & 19698.8 & 0.000305176 & \(1.08 \mathrm{e}+06\) & 0 \\
\hline 14 & 60 & 17493 & 0.000610352 & \(7 \mathrm{e}+06\) & 0 \\
\hline 15 & 64 & 17493 & 0.0012207 & \(7 \mathrm{e}+06\) & 0 \\
\hline 16 & 68 & 17493 & 0.000305176 & \(7 \mathrm{e}+06\) & 0 \\
\hline 17 & 72 & 15455.1 & 7.62939e-05 & \(2.25 \mathrm{e}+07\) & 0 \\
\hline 18 & 76 & 15455.1 & 0.000177499 & \(2.25 \mathrm{e}+07\) & 0 \\
\hline 19 & 80 & 13317.1 & 3.8147e-05 & \(3.18 \mathrm{e}+07\) & 0 \\
\hline 20 & 84 & 12865.3 & 7.62939e-05 & \(7.83 \mathrm{e}+07\) & 0 \\
\hline 21 & 88 & 11779.8 & 7.62939e-05 & \(7.58 \mathrm{e}+06\) & 0 \\
\hline 22 & 92 & 11747.6 & 0.000152588 & \(1.45 \mathrm{e}+05\) & 0 \\
\hline 23 & 96 & 11720.9 & 0.000305176 & \(2.33 \mathrm{e}+05\) & 0 \\
\hline 24 & 100 & 11667.2 & 0.000610352 & \(1.48 \mathrm{e}+05\) & 0 \\
\hline 25 & 104 & 11558.6 & 0.0012207 & \(3.55 \mathrm{e}+05\) & 0 \\
\hline 26 & 108 & 11335.5 & 0.00244141 & \(1.57 \mathrm{e}+05\) & 0 \\
\hline 27 & 112 & 10863.8 & 0.00488281 & \(6.36 \mathrm{e}+05\) & 0 \\
\hline 28 & 116 & 9797.14 & 0.00976562 & \(2.53 \mathrm{e}+05\) & 0 \\
\hline 29 & 120 & 6882.83 & 0.0195312 & \(9.18 \mathrm{e}+05\) & 0 \\
\hline 30 & 124 & 6882.83 & 0.0373993 & \(9.18 \mathrm{e}+05\) & 0 \\
\hline 31 & 128 & 3218.45 & 0.00934981 & \(1.96 \mathrm{e}+06\) & 0 \\
\hline 32 & 132 & 612.703 & 0.0186996 & \(3.01 \mathrm{e}+06\) & 0 \\
\hline 33 & 136 & 13.0998 & 0.0253882 & \(3.05 \mathrm{e}+06\) & 0 \\
\hline 34 & 140 & 0.0762922 & 0.00154002 & \(5.05 \mathrm{e}+04\) & 0 \\
\hline 35 & 144 & 0.0731652 & 3.61102e-06 & 29.9 & 0 \\
\hline 36 & 148 & 0.0731652 & 6.32335e-08 & 0.063 & 0 \\
\hline
\end{tabular}

Local minimum possible.
lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the default value of the function tolerance.

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2
- "Creating Interest-Rate Curve Objects" on page 9-4
- Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
- Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30 min 00 sec)

\section*{See Also}
"@IRFitOptions" on page A-11 | "@IRFunctionCurve" on page A-13

Introduced in R2008b

\section*{fitNelsonSiegel}

Fit Nelson-Siegel function to bond market data

\section*{Class}
@IRFunctionCurve

\section*{Syntax}
```

CurveObj = IRFunctionCurve.fitNelsonSiegel(Type, Settle, Instruments)
CurveObj = IRFunctionCurve.fitNelsonSiegel(Type, Settle, Instruments,
'Parameter1', Value1, 'Parameter2', Value2, ...)

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Type & Type of interest-rate curve for a bond: zero or forward. \\
\hline Settle & Scalar for the Settle date of the curve. \\
\hline Instruments & \begin{tabular}{l}
N-by-4 data matrix for Instruments where the first \\
column is Settle date, the second column is Maturity, the \\
third column is the clean price, and the fourth column is a \\
CouponRate for the bond.
\end{tabular} \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per \\
year for the IRFunctionCurve object: \\
- \(\quad-1=\) Continuous compounding
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the interest-rate curve. A scalar \\
of integers.
\end{tabular} \\
& \begin{tabular}{l}
- \(\quad 0=\) actual/actual (default) \\
• \(1=30 / 360\) (SIA) \\
• \(2=\) actual/360 \\
• \(3=\) actual/365
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline IRFitOptions0bj & \begin{tabular}{l}
(Optional) Object constructed from IRFitOptions. When using IRFitOption, the default FitType is DurationWeightedPrice. Duration weighted price refers to the form of the objective function that needs to be minimized to find the optimal Nelson-Siegel parameters. Specifically, this objective function minimizes using the following three algroithms: \\
- The difference between observed and model-predicted yields for each bond, ObsY_i-PredY_i \\
- The difference between observed and model-predicted prices for each bond, ObsP_i-PredP_i \\
- The difference between observed and model-predicted prices, weighted by the inverse of the duration of each bond (ObsP_i - PredP_i) / D_i. Weighting price by inverse duration converts the pricing errors into yield fitting errors, to a first approximation.
\end{tabular} \\
\hline
\end{tabular}

\section*{Instrument Parameters}

For each bond Instrument, you can specify the following additional instrument parameters as parameter/value pairs. For example, InstrumentBasis distinguishes a bond instrument's Basis value from the curve's Basis value.
\begin{tabular}{|c|c|}
\hline InstrumentPeriod & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12. \\
\hline InstrumentBasis & \begin{tabular}{l}
(Optional) Day-count basis of the bond. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\mathrm{actual} / 360\) (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see .
\end{tabular} \\
\hline InstrumentEndMonthRul & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline InstrumentIssueDate & (Optional) Date when an instrument was issued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline InstrumentFirstCoupon & \begin{tabular}{l}
(Optional) Date when a bond makes its first coupon \\
payment; used when bond has an irregular first coupon \\
period. When FirstCouponDate and LastCouponDate \\
are both specified, FirstCouponDate takes precedence in \\
determining the coupon payment structure. If you do not \\
specify a FirstCouponDate, the cash flow payment dates \\
are determined from other inputs.
\end{tabular} \\
\hline InstrumentLastCouponD & \begin{tabular}{l}
(Optional) Last coupon date of a bond before the maturity \\
date; used when bond has an irregular last coupon period. \\
In the absence of a specified FirstCouponDate, a specified \\
LastCouponDate determines the coupon structure of \\
the bond. The coupon structure of a bond is truncated at \\
the LastCouponDate, regardless of where it falls, and is \\
followed only by the bond's maturity cash flow date. If you \\
do not specify a LastCouponDate, the cash flow payment \\
dates are determined from other inputs.
\end{tabular} \\
\hline InstrumentFace & (Optional) Face or par value. Default = 100. \\
\hline
\end{tabular}

Note: When using Instrument parameter/value pairs, you can specify simple for a bond by specifying the InstrumentPeriod value as 0 . If InstrumentBasis and InstrumentPeriod are not specified for a bond, the following default values are used: Basis is 0 (act/act) and Period is 2.

\section*{Description}

CurveObj = IRFunctionCurve.fitNelsonSiegel(Type, Settle, Instruments, 'Parameter1', Value1, 'Parameter2', Value2, ...) fits a Nelson-Siegel function to market data for a bond. You must enter the optional arguments for Basis, Compounding, and IRFitOptionsObj as parameter/value pairs. After creating a Nelson-Siegel model, you can view the model parameters using:

CurveObj. Parameters
where the order of parameters is [Beta0, Beta1, Beta2, tau1].

\section*{Examples}

\section*{Use the Nelson-Siegel Function to Fit Bond Market Data}

This example shows how to use the Nelson-Siegel function to fit bond market data.
```

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016'); ...
datenum('07-Mar-2025');datenum('07-Mar-2036')];
CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
PlottingPoints = datenum('07-Mar-2009'):180:datenum('07-Mar-2036');
Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity);
NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',datenum('30-Apr-2008'),Instruments);
NSModel.Parameters
% create the plot
plot(PlottingPoints, getParYields(NSModel, PlottingPoints),'r')
hold on
scatter(Maturity,Yield,'black')
datetick('x')
ans =
4.6617 -1.0227 -0.3484 1.2386

```

- "Fitting IRFunctionCurve Object Using Nelson-Siegel Method" on page 9-21
- "Fitting Interest Rate Curve Functions" on page 9-32
- "Using fitFunction to Create Custom Fitting Function" on page 9-28

\section*{More About}

\section*{Algorithms}

The Nelson-Siegel model proposes that the instantaneous forward curve can be modeled with the following:
\[
f=\beta_{0}+\beta_{1} e^{\frac{-m}{\tau}}+\beta_{2} \frac{m}{\tau} e^{\frac{-m}{\tau}}
\]

This can be integrated to derive an equation for the zero curve (see [6] for more information on the equations and the derivation):
\[
s=\beta_{0}+\left(\beta_{1}+\beta_{2}\right) \frac{\tau}{m}\left(1-e^{\frac{-m}{\tau}}\right)-\beta_{2} e^{\frac{-m}{1}}
\]

See [1] for more information.
- "Interest-Rate Curve Objects and Workflow" on page 9-2
- "Creating Interest-Rate Curve Objects" on page 9-4
- Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
- Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30 min 00 sec)

\section*{References}
[1] Nelson, C.R., Siegel, A.F. "Parsimonious modelling of yield curves." Journal of Business. Vol. 60, 1987, pp 473-89.
[2] Svensson, L.E.O. "Estimating and interpreting forward interest rates: Sweden 1992-4." International Monetary Fund, IMF Working Paper, 1994/114.
[3] Fisher, M., Nychka, D., Zervos, D. "Fitting the term structure of interest rates with smoothing splines." Board of Governors of the Federal Reserve System, Federal Reserve Board Working Paper 1995-1.
[4] Anderson, N., Sleath, J. "New estimates of the UK real and nominal yield curves." Bank of England Quarterly Bulletin, November, 1999, pp 384-92.
[5] Waggoner, D. "Spline Methods for Extracting Interest Rate Curves from Coupon Bond Prices." Federal Reserve Board Working Paper 1997-10.
[6] "Zero-coupon yield curves: technical documentation." BIS Papers No. 25, October 2005.
[7] Bolder, D.J., Gusba, S. "Exponentials, Polynomials, and Fourier Series: More Yield Curve Modelling at the Bank of Canada." Working Papers 2002-29, Bank of Canada.
[8] Bolder, D.J., Streliski, D. "Yield Curve Modelling at the Bank of Canada." Technical Reports 84, 1999, Bank of Canada.

\author{
See Also \\ "@IRFitOptions" on page A-11 | "@IRFunctionCurve" on page A-13 \\ Introduced in R2008b
}

\section*{fitSmoothingSpline}

Fit smoothing spline to bond market data

\section*{Class}

\section*{@IRFunctionCurve}

\section*{Syntax}

CurveObj = IRFunctionCurve.fitSmoothingSpline(Type, Settle, Instruments, Lambdafun)

CurveObj = IRFunctionCurve.fitSmoothingSpline(Type, Settle, Instruments, Lambdafun, 'Parameter1', Value1, 'Parameter2', Value2, ...)

\section*{Arguments}

Note: You must have a license for Curve Fitting Toolbox software to use the fitSmoothingSpline method.
\begin{tabular}{|l|l|}
\hline Type & Type of interest-rate curve for a bond: Forward, Zero, or Discount. \\
\hline Settle & Scalar for the Settle date of the curve. \\
\hline Instruments & \begin{tabular}{l}
N-by-4 data matrix for Instruments where the first column is \\
Settle date, the second column is Maturity, the third column \\
is the clean price, and the fourth column is a CouponRate for the \\
bond.
\end{tabular} \\
\hline Lambdafun & \begin{tabular}{l}
Penalty function that takes as its input time and returns a penalty \\
value. Use a function handle to support the penalty function. The \\
function handle for the penalty function which takes one numeric \\
input (time-to-maturity) and returns one numeric output (penalty \\
to be applied to the curvature of the spline). For more information
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & on defining a function handle, see the MATLAB Programming Fundamentals documentation. \\
\hline & Note: The smoothing spline represents the forward curve. The spline is penalized for curvature by specifying a penalty function. This fit may only be done with a FitType of DurationWeightedPrice. \\
\hline Knots & (Optional) Vector of knot locations (times-to-maturity); by default, knots is set to be a vector comprised of 0 and the time to maturity of all input instruments. The default is for the spline type to be cubic but you can specify any spline type by explicitly specifying the knots. User-defined knots can be specified using the following command, wherek is the order: augknt (knots, k). \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per year for the IRFunctionCurve object: \\
- \(-1=\) Continuous compounding (default) \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding \\
- 3 = Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the interest-rate curve. A scalar of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- \(3=\) actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\mathrm{actual} / 365\) (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline
\end{tabular}

\section*{Instrument Parameters}

For each bond Instrument, you can specify the following additional instrument parameters as parameter/value pairs. For example, InstrumentBasis distinguishes a bond instrument's Basis value from the curve's Basis value.
\begin{tabular}{|l|l|}
\hline InstrumentPeriod & \begin{tabular}{l}
(Optional) Coupons per year of the bond. A vector of \\
integers. Allowed values are \(0,1,2\) (default), \(3,4,6\), and 12.
\end{tabular} \\
\hline InstrumentBasis & (Optional) Day-count basis of the bond. A vector of integers. \\
& • \(0=\) actual/actual (default) \\
& • \(1=30 / 360\) (SIA) \\
& - \(2=\) actual/360 \\
& • \(3=\) actual/365
\end{tabular}
\begin{tabular}{|c|c|}
\hline & For more information, see basis. \\
\hline InstrumentEndMonthRul & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline InstrumentIssueDate & (Optional) Date when an instrument was issued. \\
\hline InstrumentFirstCoupon & (Optional) Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline InstrumentLastCouponD & \begin{tabular}{l}
(Optional) Last coupon date of a bond before the maturity \\
date; used when bond has an irregular last coupon period. \\
In the absence of a specified FirstCouponDate, a specified \\
LastCouponDate determines the coupon structure of \\
the bond. The coupon structure of a bond is truncated at \\
the LastCouponDate, regardless of where it falls, and is \\
followed only by the bond's maturity cash flow date. If you \\
do not specify a LastCouponDate, the cash flow payment \\
dates are determined from other inputs.
\end{tabular} \\
\hline InstrumentFace & (Optional) Face or par value. Default \(=100\). \\
\hline
\end{tabular}

Note: When using Instrument parameter/value pairs, you can specify simple interest for a bond by specifying the InstrumentPeriod value as 0 . If InstrumentBasis and InstrumentPeriod are not specified for a bond, the following default values are used: Basis is 0 (act/act) and Period is 2.

\section*{Description}

Fcurve = IRFunctionCurve.fitSmoothingSpline(Type, Settle, Instruments, Lambdafun, 'Parameter1', Value1, 'Parameter2', Value2, ...) fits a smoothing spline to market data for a bond. You must enter the optional arguments for Basis, Compounding, and Knots as parameter/value pairs.

\section*{Examples}

\section*{Use a Smoothing Spline Function to Fit Market Data For a Bond}

This example shows how to use a smoothing spline function to fit market data for a bond.
```

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];
CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
PlottingPoints = datenum('07-Mar-2009'):180:datenum('07-Mar-2036');

```
```

Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity);
% use the AUGKNT function to construct the knots for a cubic spline at every 5 years
CustomKnots = augknt(0:5:30,4);
SmoothingModel = IRFunctionCurve.fitSmoothingSpline('Zero',datenum('30-Apr-2008'),...
Instruments,@(t) 1000,'knots', CustomKnots);
% create the plot
plot(PlottingPoints, getParYields(SmoothingModel, PlottingPoints), 'b')
hold on
scatter(Maturity,Yield,'black')
datetick('x')

```

- "Fitting IRFunctionCurve Object Using Smoothing Spline Method" on page 9-25
- "Fitting Interest Rate Curve Functions" on page 9-32

\section*{More About}

\section*{Algorithms}

The term structure can be modeled with a spline - specifically, one way to model the term structure is by representing the forward curve with a cubic spline. To ensure that the spline is sufficiently smooth, a penalty is imposed relating to the curvature (second derivative) of the spline:
\[
\sum_{i=1}^{N}\left[\frac{P_{i}-\hat{P}_{i}(f)}{D_{i}}\right]^{2}+\int_{0}^{M} \lambda_{t}(m)\left[f^{\prime \prime}(m)\right]^{2} d m
\]
where the first term is the difference between the observed price \(P\) and the predicted price, \(\breve{P}\), (weighted by the bond's duration, \(D\)) summed over all bonds in our data set and the second term is the penalty term (where \(\lambda\) is a penalty function and \(f\) is the spline).

See [3], [4], [5] below.
There have been different proposals for the specification of the penalty function \(\lambda\). One approach, advocated by [4], and currently used by the UK Debt Management Office, is a penalty function of the following form:
\[
\log (\lambda(m))=L-(L-S) e^{\frac{-m}{f}}
\]
- "Interest-Rate Curve Objects and Workflow" on page 9-2
- "Creating Interest-Rate Curve Objects" on page 9-4
- Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
- Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30 min 00 sec)

\section*{References}
[1] Nelson, C.R., Siegel, A.F. "Parsimonious modelling of yield curves." Journal of Business. Vol. 60, 1987, pp 473-89.
[2] Svensson, L.E.O. "Estimating and interpreting forward interest rates: Sweden 1992-4." International Monetary Fund, IMF Working Paper, 1994/114.
[3] Fisher, M., Nychka, D., Zervos, D. "Fitting the term structure of interest rates with smoothing splines." Board of Governors of the Federal Reserve System, Federal Reserve Board Working Paper 1995-1.
[4] Anderson, N., Sleath, J. "New estimates of the UK real and nominal yield curves." Bank of England Quarterly Bulletin, November, 1999, pp 384-92.
[5] Waggoner, D. "Spline Methods for Extracting Interest Rate Curves from Coupon Bond Prices." Federal Reserve Board Working Paper 1997-10.
[6] "Zero-coupon yield curves: technical documentation." BIS Papers No. 25, October 2005.
[7] Bolder, D.J., Gusba, S. "Exponentials, Polynomials, and Fourier Series: More Yield Curve Modelling at the Bank of Canada." Working Papers 2002-29, Bank of Canada.
[8] Bolder, D.J., Streliski, D. "Yield Curve Modelling at the Bank of Canada." Technical Reports 84, 1999, Bank of Canada.

\author{
See Also \\ "@IRFunctionCurve" on page A-13 \\ Introduced in R2008b
}

\section*{fitSvensson}

Fit Svensson function to bond market data

\section*{Class}

\section*{@IRFunctionCurve}

\section*{Syntax}

CurveObj = IRFunctionCurve.fitSvensson(Type, Settle, Instruments)

CurveObj = IRFunctionCurve.fitSvensson(Type, Settle, Instruments, 'Parameter1', Value1, 'Parameter2', Value2, ...)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Type & Type of interest-rate curve for a bond: zero or forward. \\
\hline Settle & Scalar for the Settle date of the curve. \\
\hline Instruments & \begin{tabular}{l}
N-by-4 data matrix for Instruments where the first \\
column is Settle date, the second column is Maturity, the \\
third column is the clean price, and the fourth column is a \\
CouponRate for the bond.
\end{tabular} \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per \\
year for the IRFunctionCurve object:
\end{tabular} \\
\hline Basis \(-1=\) Continuous compounding
\end{tabular}\(|\)\begin{tabular}{l}
(Optional) Day-count basis of the interest-rate curve. A scalar \\
of integers. \\
\\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- 8 = actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline IRFitOptions & (Optional) Object constructed from IRFitOptions. \\
\hline
\end{tabular}

\section*{Instrument Parameters}

For each bond Instrument, you can specify the following additional instrument parameters as parameter/value pairs. For example, InstrumentBasis distinguishes a bond instrument's Basis value from the curve's Basis value.
\begin{tabular}{|c|c|}
\hline InstrumentPeriod & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12. \\
\hline InstrumentBasis & \begin{tabular}{l}
(Optional) Day-count basis of the bond. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see .
\end{tabular} \\
\hline InstrumentEndMonthRul & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline InstrumentIssueDate & (Optional) Date when an instrument was issued. \\
\hline InstrumentFirstCoupon & (Optional) Date when a bond makes its first coupon payment; used when bond has an irregular first coupon period. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. If you do not specify a FirstCouponDate, the cash flow payment dates are determined from other inputs. \\
\hline InstrumentLastCoupond & (Optional) Last coupon date of a bond before the maturity date; used when bond has an irregular last coupon period. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed only by the bond's maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment dates are determined from other inputs. \\
\hline InstrumentFace & (Optional) Face or par value. Default \(=100\). \\
\hline
\end{tabular}

Note: When using Instrument parameter/value pairs, you can specify simple interest for a bond by specifying the InstrumentPeriod value as 0 . If InstrumentBasis and

InstrumentPeriod are not specified for a bond, the following default values are used: Basis is 0 (act/act) and Period is 2.

\section*{Description}

CurveObj = IRFunctionCurve.fitSvensson(Type, Settle, Instruments, 'Parameter1', Value1, 'Parameter2', Value2, ...) fits the Svensson function to bond market data. You must enter the optional arguments for Basis, Compounding, and IRFitOptions as parameter/value pairs. After creating a Svensson model, you can view the model parameters using:

CurveObj.Parameters
where the order of parameters is [Beta0, Beta1, Beta2, Beta3, tau1, tau2].

\section*{Examples}

\section*{Use a Svensson Function to Fit Bond Market Data}

This example shows how to use a Svensson function to fit bond market data.
```

Settle = datenum('15-Apr-2014');
Maturity = datemnth(Settle,12*[1 2 3 5 7 10 20 30]');
CleanPrice = [100.1 100.1 100.2 99.0 101.8 99.2 101.7 100.2]';
CouponRate = [0.0200 0.0275 0.035 0.042 0.0475 0.0525 0.055 0.052]';
Instruments = [repmat(Settle,size(Maturity)) Maturity CleanPrice CouponRate];
PlottingPoints = datemnth(Settle,1:360);
Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity);
SvenssonModel = IRFunctionCurve.fitSvensson('Zero',Settle,Instruments);
SvenssonModel.Parameters
% create the plot
plot(PlottingPoints, getParYields(SvenssonModel, PlottingPoints),'g')
hold on
scatter(Maturity,Yield,'black')
datetick('x')
legend({'Svensson Fitted Curve','Yields'},'location','best')

```
```

    ans =
    1.8297 -1.2299 1.6316 12.3891 1.6982 8.9422
    ```

- "Fitting IRFunctionCurve Object Using Svensson Method" on page 9-23
- "Fitting Interest Rate Curve Functions" on page 9-32

\section*{More About}

\section*{Algorithms}

A similar model to the Nelson-Siegel is the Svensson model, which adds two additional parameters to account for greater flexibility in the term structure. This model proposes that the forward rate can be modeled with the following form:
\[
f=\beta_{0}+\beta_{1} e^{\frac{-m}{1}}+\beta_{2} e^{\frac{-m}{2}} \frac{m}{\tau_{1}}+\beta_{3} e^{\frac{-m}{2}} \frac{m}{\tau_{2}}
\]

As above, this can be integrated to derive an equation for the zero curve:
\[
s=\beta_{0}+\beta_{1}\left(1-e^{\frac{-m}{\tau_{1}}}\right)\left(-\frac{\tau_{1}}{m}\right)+\beta_{2}\left(\left(1-e^{\frac{-m}{\tau_{2}}}\right) \frac{\tau_{1}}{m}-e^{\frac{m}{\tau_{1}}}\right)+\beta_{3}\left(\left(1-e^{\frac{-m}{2}}\right) \frac{\tau_{2}}{m}-e^{\frac{m}{2}}\right)
\]
- "Interest-Rate Curve Objects and Workflow" on page 9-2
- "Creating Interest-Rate Curve Objects" on page 9-4
- Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
- Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk Applications (30 min 00 sec)

\section*{References}
[1] Nelson, C.R., Siegel, A.F. "Parsimonious modelling of yield curves." Journal of Business. Vol. 60, 1987, pp 473-89.
[2] Svensson, L.E.O. "Estimating and interpreting forward interest rates: Sweden 1992-4." International Monetary Fund, IMF Working Paper, 1994/114.
[3] Fisher, M., Nychka, D., Zervos, D. "Fitting the term structure of interest rates with smoothing splines." Board of Governors of the Federal Reserve System, Federal Reserve Board Working Paper 1995-1.
[4] Anderson, N., Sleath, J. "New estimates of the UK real and nominal yield curves." Bank of England Quarterly Bulletin, November, 1999, pp 384-92.
[5] Waggoner, D. "Spline Methods for Extracting Interest Rate Curves from Coupon Bond Prices." Federal Reserve Board Working Paper 1997-10.
[6] "Zero-coupon yield curves: technical documentation." BIS Papers No. 25, October 2005.
[7] Bolder, D.J., Gusba, S. "Exponentials, Polynomials, and Fourier Series: More Yield Curve Modelling at the Bank of Canada." Working Papers 2002-29, Bank of Canada.
[8] Bolder, D.J., Streliski, D. "Yield Curve Modelling at the Bank of Canada." Technical Reports 84, 1999, Bank of Canada.

\author{
See Also \\ "@IRFunctionCurve" on page A-13 | "@IRFitOptions" on page A-11 \\ Introduced in R2008b
}

\section*{getDiscountFactors}

Get discount factors for input dates for IRDataCurve

\section*{Class}
@IRDataCurve

\section*{Syntax}

F = getDiscountFactors(CurveObj, InpDates)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline CurveObj & \begin{tabular}{l}
Interest-rate curve object that is constructed using \\
IRDataCurve.
\end{tabular} \\
\hline InpDates & \begin{tabular}{l}
Vector of input dates using MATLAB date format. The input \\
dates must be after the settle date.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

F = getDiscountFactors(CurveObj, InpDates) returns discount factors for the input dates.

\section*{Examples}

\section*{Get Discount Factors For Input Dates for an IRDataCurve}

This example shows how to get discount factors for input dates for an IRDataCurve.
```

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;

```

Dates = datemnth(CurveSettle,12*[14 3 5 7 1020 30]);
irdc = IRDataCurve('Zero', CurveSettle,Dates,Data); getDiscountFactors(irdc, CurveSettle+30:30:CurveSettle+720)
ans =
0.9986
0.9971
0.9956
0.9940
0.9924
0.9907
0.9890
0.9873
0.9855
0.9836
0.9817
0.9798
0.9778
0.9757
0.9736
0.9715
0.9693
0.9671
0.9649
0.9626
0.9602
0.9578
0.9554
0.9529
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Creating an IRDataCurve Object" on page 9-6

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\author{
See Also \\ "@IRDataCurve" on page A-7
}

11 Functions - Alphabetical List

\section*{Introduced in R2008b}

\section*{getDiscountFactors}

Get discount factors for input dates for IRFunctionCurve

\section*{Class}
@IRFunctionCurve

\section*{Syntax}

F = getDiscountFactors(CurveObj, InpDates)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline CurveObj & \begin{tabular}{l}
Interest-rate curve object that is constructed using the \\
IRFunctionCurve.
\end{tabular} \\
\hline InpDates & \begin{tabular}{l}
Vector of input dates using MATLAB date format. The input \\
dates must be after the settle date.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

F = getDiscountFactors(CurveObj, InpDates) returns discount factors for the input dates.

\section*{Examples}

\section*{Get Discount Factors for Input Dates For an IRFunctionCurve}

This example shows how to get discount factors for input dates for an IRFunctionCurve.
irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t)); getDiscountFactors(irfc, today+30:30:today+720)
```

ans =
0.9984
0.9967
0.9950
0.9933
0.9916
0.9899
0.9881
0.9864
0.9846
0.9828
0.9810
0.9792
0.9773
0.9755
0.9736
0.9717
0.9698
0.9679
0.9660
0.9641
0.9621
0.9602
0.9582
0.9562

```
- "Creating an IRFunctionCurve Object" on page 9-21

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{See Also}
"@IRFunctionCurve" on page A-13

Introduced in R2008b

\section*{getForwardRates}

Get forward rates for input dates for IRDataCurve

\section*{Class}
@IRDataCurve

\section*{Syntax}
```

F = getForwardRates(CurveObj, InpDates)
F = getForwardRates(CurveObj, InpDates, 'Parameter1', Value1,
'Parameter2', Value2, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Curve0bj & Interest-rate curve object that is constructed using IRDataCurve. \\
\hline InpDates & Vector of input dates using MATLAB date format. The input dates must be after the settle date. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per year for forward rates. The default Compounding value is CurveObj. Compounding. Acceptable values are: \\
- - 1 = Continuous compounding \\
- \(0=\) Simple interest (no compounding) \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding \\
- 3 = Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis values for the forward rates: \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual \(/ 360\) \\
- 3 = actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

F = getForwardRates(CurveObj, InpDates, 'Parameter1', Value1, 'Parameter2', Value2, ...) returns forward rates for the input dates. getForwardRates returns discrete forward rates for the intervals input into this method. For example, running the following code:
getForwardRates(irdc, \{Date1, Date2, Date3\})
gives three forwards rates and the three tenors are: [Settle, Date1], [Date1, Date2], and [Date2, Date3].

You must enter the optional arguments for Basis and Compounding as parameter/ value pairs. The getForwardRates method returns forward rates corresponding to the periodicity of the dates input to getForwardRates. For example, where the dates are monthly, monthly forward rates are returned. The first element of the output is the
forward rate from the Settle to one month, the second element is the forward rate from one month to two months, etc.

\section*{Examples}

\section*{Get Forward Rates For Input Dates for an IRDataCurve}

This example shows how to get forward rates for input dates for an IRDataCurve.
```

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[11 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);
getForwardRates(irdc, CurveSettle+30:30:CurveSettle+720)

```
```

ans =
0.0174
0.0180
0.0187
0.0193
0.0199
0.0205
0.0212
0.0218
0.0224
0.0230
0.0237
0.0243
0.0249
0.0255
0.0262
0.0268
0.0274
0.0280
0.0287
0.0293
0.0299
0.0305
0.0312
0.0318

```

\section*{Use gefforwardRates to Compute the Five Year Forward Rate in Five Years Time}

Use getForwardRates to compute the forward rate from the Settle date to 5 years from now and then the forward rate for the period from 5 years to 10 years from now.
```

Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);
irdc = IRDataCurve('Zero',today,Dates,Data);
getForwardRates(irdc,datemnth(irdc.Settle,12*[5 10]))

```

\section*{ans =}
0.0312
0.0458

The first element (.0312) is the forward rate from the Settle to 5 years from now. The second rate (0.0458) is the forward rate for the period from 5 years to 10 years from now, in other words, the 5 -year forward rate 5 years from now.
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Creating an IRDataCurve Object" on page 9-6

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{See Also}
"@IRDataCurve" on page A-7

\section*{Introduced in R2008b}

\section*{getForwardRates}

Get forward rates for input dates for IRFunctionCurve

\section*{Class}

\section*{@IRFunctionCurve}

\section*{Syntax}

F = getForwardRates(CurveObj, InpDates)
F = getForwardRates(CurveObj, InpDates, 'Parameter1', Value1, 'Parameter2', Value2, ...)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline CurveObj & Interest-rate curve object that is constructed using IRFunctionCurve. \\
\hline InpDates & Vector of input dates using MATLAB date format. The input dates must be after the settle date. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per year for the forward rates are: \\
- - 1 = Continuous compounding \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding (default) \\
- 3 = Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis for the forward rates: \\
- \(0=\) actual/actual (default)
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

F = getForwardRates(CurveObj, InpDates, 'Parameter1', Value1, 'Parameter2', Value2, ...) returns forward rates for the input dates. You must enter the optional arguments for Basis and Compounding as parameter/value pairs.

\section*{Examples}

\section*{Get Forward Rates For Input Dates For an IRFunctionCurve}

This example shows how to get forward rates for input dates for an IRFunctionCurve.
```

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getForwardRates(irfc, today+30:30:today+720)

```
ans \(=\)
0.0202
0.0205
0.0207
0.0210
0.0212
0.0215
0.0217
0.0219
0.0222
0.0224
0.0226
0.0229
0.0231
0.0233
0.0235
0.0238
0.0240
0.0242
0.0244
0.0247
0.0249
0.0251
0.0253
0.0255
- "Creating an IRFunctionCurve Object" on page 9-21

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{See Also}
"@IRFunctionCurve" on page A-13
Introduced in R2008b

\section*{getParYields}

Get par yields for input dates for IRDataCurve

\section*{Class}

\author{
@IRDataCurve
}

\section*{Syntax}

F = getParYields(CurveObj, InpDates)
F = getParYields(CurveObj, InpDates, 'Parameter1', Value1, 'Parameter2', Value2, ...)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline CurveObj & Interest-rate curve object that is constructed using IRDataCurve. \\
\hline InpDates & Vector of input dates using MATLAB date format. The input dates must be after the settle date. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per year for the par yield rates are: \\
- \(-1=\) Continuous compounding \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding (default) \\
- 3 = Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis values for the par yield rates: \\
- \(0=\) actual/actual (default)
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

F = getParYields(CurveObj, InpDates, 'Parameter1', Value1, 'Parameter2', Value2, ...) returns par yields for the input dates. You must enter the optional arguments for Basis and Compounding as parameter/value pairs.

\section*{Examples}

\section*{Get Par Yields For Input Dates For an IRDataCurve}

This example shows how to get par yields for input dates for an IRDataCurve.
```

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);
getParYields(irdc, CurveSettle+30:30:CurveSettle+720)

```
```

ans =
0.0175
0.0177
0.0181
0.0183
0.0186
0.0189
0.0194
0.0197
0.0200
0.0203
0.0206
0.0209
0.0212
0.0215
0.0218
0.0221
0.0224
0.0227
0.0231
0.0233
0.0237
0.0240
0.0243
0.0246

```
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Creating an IRDataCurve Object" on page 9-6

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{See Also}
"@IRDataCurve" on page A-7
Introduced in R2008b

\section*{getParYields}

Get par yields for input dates for IRFunctionCurve

\section*{Class}

\section*{@IRFunctionCurve}

\section*{Syntax}
```

F = getParYields(CurveObj, InpDates)
F = getParYields(CurveObj, InpDates, 'Parameter1',
Value1, 'Parameter2', Value2, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline CurveObj & Interest-rate curve object that is constructed using IRFunctionCurve. \\
\hline InpDates & Vector of input dates using MATLAB date format. The input dates must be after the settle date. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per year for par yield rates are: \\
- - 1 = Continuous compounding \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding (default) \\
- 3 = Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis values for par yield rates: \\
- \(0=\) actual/actual (default)
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

F = getParYields(CurveObj, InpDates, 'Parameter1', Value1, 'Parameter2', Value2, ...) returns par yields for the input dates. You must enter the optional arguments for Basis and Compounding as parameter/value pairs.

\section*{Examples}

\section*{Get Par Yields For Input Dates For an IRFunctionCurve}

This example shows how to get par yields for input dates for an IRFunctionCurve.
```

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getParYields(irfc, today+30:30:today+720)

```
ans \(=\)
0.0204
0.0204
0.0206
0.0206
0.0208
0.0209
0.0207
0.0210
0.0210
0.0212
0.0213
0.0214
0.0216
0.0217
0.0218
0.0219
0.0221
0.0222
0.0222
0.0224
0.0225
0.0226
0.0227
0.0228
- "Creating an IRFunctionCurve Object" on page 9-21

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{See Also}
"@IRFunctionCurve" on page A-13
Introduced in R2008b

\section*{getZeroRates}

Get zero rates for input dates for IRDataCurve

\section*{Class}
@IRDataCurve

\section*{Syntax}
```

F = getZeroRates(CurveObj, InpDates)
F = getZeroRates(CurveObj, InpDates, 'Parameter1',
Value1, 'Parameter2', Value2, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline CurveObj & Interest-rate curve object that is constructed using IRDataCurve. \\
\hline InpDates & Vector of input dates using MATLAB date format. The input dates must be after the settle date. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per year for zero rates. The default Compounding value is CurveObj. Compounding. Acceptable values are: \\
- - 1 = Continuous compounding \\
- \(0=\) Simple interest (no compounding) \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding \\
- \(3=\) Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis values for zero rates: \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual \(/ 360\) \\
- \(3=\) actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- 8 = actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

F = getZeroRates(CurveObj, InpDates, 'Parameter1', Value1, 'Parameter2', Value2, ...) returns zero rates for the input dates. You must enter the optional arguments for Basis and Compounding as parameter/value pairs.

\section*{Examples}

\section*{Get Zero Rates For Input Dates For an IRDataCurve}

This example shows how to get zero rates for input dates for an IRDataCurve.
```

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[11 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);

```
```

getZeroRates(irdc, CurveSettle+30:30:CurveSettle+720)
ans =
0.0174
0.0177
0.0180
0.0183
0.0187
0.0190
0.0193
0.0196
0.0199
0.0202
0.0205
0.0208
0.0212
0.0215
0.0218
0.0221
0.0224
0.0227
0.0230
0.0233
0.0237
0.0240
0.0243
0.0246

```
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Creating an IRDataCurve Object" on page 9-6

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{See Also}
"@IRDataCurve" on page A-7

Introduced in R2008b

\section*{getZeroRates}

Get zero rates for input dates for IRFunctionCurve

\section*{Class}

\section*{@IRFunctionCurve}

\section*{Syntax}

F = getZeroRates(CurveObj, InpDates)
F = getZeroRates(CurveObj, InpDates, 'Parameter1', Value1, 'Parameter2', Value2, ...)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Curve0bj & Interest-rate curve object that is constructed using IRFunctionCurve. \\
\hline InpDates & Vector of input dates using MATLAB date format. The input dates must be after the settle date. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per year for zero rates are: \\
- - 1 = Continuous compounding \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding (default) \\
- \(3=\) Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis value for zero rates: \\
- \(0=\) actual/actual (default)
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

F = getZeroRates(CurveObj, InpDates, 'Parameter1', Value1, 'Parameter2', Value2, ...) returns zero rates for the input dates. You must enter the optional arguments for Basis and Compounding as parameter/value pairs.

\section*{Examples}

\section*{Get Zero Rates For Input Dates For an IRFunctionCurve}

This example shows how to get zero rates for input dates for an IRFunctionCurve.
```

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getZeroRates(irfc, today+30:30:today+720)

```
ans \(=\)
0.0201
0.0202
0.0204
0.0205
0.0206
0.0207
0.0209
0.0210
0.0211
0.0212
0.0213
0.0214
0.0216
0.0217
0.0218
0.0219
0.0220
0.0221
0.0223
0.0224
0.0225
0.0226
0.0227
0.0228
- "Creating an IRFunctionCurve Object" on page 9-21

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{See Also}
"@IRFunctionCurve" on page A-13

Introduced in R2008b

\section*{IRBootstrapOptions}

Construct specific options for bootstrapping interest-rate curve object

\section*{Class}
@IRBootstrapOptions

\section*{Syntax}
mybootoptions \(=\) IRBootstrapOptions('Param1', Value1)

\section*{Arguments}
\begin{tabular}{|ll|}
\hline ConvexityAdjustment & \begin{tabular}{l}
(Optional) Controls the convexity adjustment \\
to interest-rate futures. This can be specified \\
as a function handle that takes one numeric \\
input (time-to-maturity) and returns one numeric \\
output, ConvexityAdjustment. For more \\
information on defining a function handle, see \\
the MATLAB Programming Fundamentals \\
documentation.
\end{tabular} \\
& \begin{tabular}{l}
Alternatively, you can define \\
ConvexityAdjustment as an N-by-1 vector of \\
values, where N is the number of interest-rate \\
futures.
\end{tabular} \\
& \begin{tabular}{l}
In either case, the ConvexityAdjustment is \\
subtracted from the futures rate.
\end{tabular} \\
\hline LowerBound & \begin{tabular}{l}
(Optional) Specifies a lower bound for rates \\
associated with bonds or swaps. LowerBound \\
can be a scalar or N-by-1 vector where N is \\
the number of swaps and bonds. By default, \\
LowerBound is 0.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
mybootoptions = IRBootstrapOptions('Param1', Value1) constructs an IRBootstrapOptionsObj structure. The IRBootstrapOptionsObj is used with the bootstrap method.

\section*{Examples}

Create IRBootstrapOptionsObj to Use With the bootstrap Method
Set the ConvexityAdjustment to control interest-rate futures.
mybootoptions = IRBootstrapOptions('ConvexityAdjustment', repmat(.005,10,1))
mybootoptions =
IRBootstrapOptions with properties:
ConvexityAdjustment: [10×1 double]
LowerBound: 0

Use mybootoptions as the optional argument, IRBootstrapOptionsObj, to use with the bootstrap method.

\section*{Create an IRBootstrapOptionsObj to Use With Negative Zero Interest-Rates}

Use an IRBootstrapOptionsObj optional argument with the bootstrap method to allow for negative zero rates when solving the swap zero points.
```

Settle = datenum('15-Mar-2015');
InstrumentTypes = {'Deposit';'Deposit';'Swap';'Swap';'Swap';'Swap';};
Instruments = [Settle,datenum('15-Jun-2015'),.001; ...
Settle,datenum('15-Dec-2015'),.0005; ...
Settle,datenum('15-Mar-2016'),-.001; ...
Settle,datenum('15-Mar-2017'),-0.0005; ...
Settle,datenum('15-Mar-2018'),.0017; ..
Settle,datenum('15-Mar-2020'),.0019];

```
```

irbo = IRBootstrapOptions('LowerBound',-1);
bootModel = IRDataCurve.bootstrap('zero', Settle, InstrumentTypes,...
Instruments,'IRBootstrapOptions',irbo);
bootModel.getZeroRates(datemnth(Settle,1:60))
ans =
0.0012
0.0011
0.0010
0.0009
0.0008
0.0008
0.0007
0.0006
0.0005
-0.0000
-0.0005
-0.0010
-0.0010
-0.0009
-0.0009
-0.0008
-0.0008
-0.0007
-0.0007
-0.0007
-0.0006
-0.0006
-0.0005
-0.0005
-0.0003
-0.0001
0.0001
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0015

```
```

0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0019
0.0019
0.0019
0.0019
0.0019
0.0019
0.0019

```

Note that IRBootstrapOptions optional argument for LowerBound is set to -1 for negative zero rates when solving the swap zero points.
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Creating an IRDataCurve Object" on page 9-6
- "IRDataCurve Bootstrapping Based on Market Instruments" on page 9-7
- "Bootstrapping a Swap Curve"

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\author{
See Also \\ "@IRDataCurve" on page A-7
}

11 Functions - Alphabetical List

\section*{Introduced in R2008b}

\section*{IRDataCurve}

Construct interest-rate curve object from dates and data

\section*{Class}
@IRDataCurve

\section*{Syntax}

CurveObj = IRDataCurve(Type, Settle, Dates, Data)
CurveObj = IRDataCurve(Type, Settle, Dates, Data, 'Parameter1', Value1, 'Parameter2', Value2, ...)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Type & Type of interest-rate curve. Acceptable values are forward, zero, or discount. \\
\hline Settle & Scalar for the Settle date of the curve. \\
\hline Dates & Dates corresponding to rate data. \\
\hline Data & Interest-rate data for the curve object. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per year for the IRDataCurve object: \\
- \(-1=\) Continuous compounding \\
- \(0=\) Simple interest (no compounding) for "zero" and "discount" curve types only, not supported for "forward" curves \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding (default) \\
- 3 = Compounding three times per year \\
- 4 = Quarterly compounding
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline & Note: Simple interest can be specified for an instrument by specifying the Compounding value as 0 and is supported for "zero" and "discount" curve types only (not supported for "forward" curves). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the interest-rate curve. A scalar of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual \(/ 360\) \\
- 3 = actual \(/ 365\) \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- 8 = actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline InterpMethod & \begin{tabular}{l}
(Optional) Values are: \\
- 'linear' - Linear interpolation (default). \\
- 'constant' - Piecewise constant interpolation. \\
- 'pchip ' — Piecewise cubic Hermite interpolation. \\
- 'spline ' - Cubic spline interpolation.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

CurveObj = IRDataCurve(Type, Settle, Dates, Data, 'Parameter1', Value1, 'Parameter2', Value2, ...) constructs an interest-rate curve with the specified Dates and Data. You must enter the optional arguments for Basis, Compounding, and InterpMethod as parameter/value pairs.

Alternatively, an IRDataCurve object can be bootstrapped from market data using the bootstrap method.

After an IRDataCurve curve object is constructed, you can use the following methods to determine the forward rates, zero rates, and discount factors. In addition, you can use the toRateSpec method to convert the interest-rate curve object to a RateSpec structure.
\begin{tabular}{|l|l|}
\hline Method & Description \\
\hline getForwardRates & Returns forward rates for input dates. \\
\hline getZeroRates & Returns zero rates for input dates. \\
\hline getDiscountFactors & Returns discount factors for input dates. \\
\hline getParYields & Returns par yields for input dates. \\
\hline toRateSpec & \begin{tabular}{l}
Converts to be a RateSpec object; this structure is \\
identical to the RateSpec produced by the Financial \\
Instruments Toolbox function intenvset.
\end{tabular} \\
\hline bootstrap & Bootstraps an interest rate curve from market data. \\
\hline
\end{tabular}

\section*{Examples}
```

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data)
irdc =
Type: Zero
Settle: 736391 (02-Mar-2016)
Compounding: 2
Basis: 0 (actual/actual)
InterpMethod: linear

```
```

Dates: [8x1 double]
Data: [8x1 double]

```

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\author{
See Also \\ "@IRDataCurve" on page A-7 \\ Introduced in R2008b
}

\section*{IRFitOptions}

Construct specific options for fitting interest-rate curve object

\section*{Class}
@IRFitOptions

\section*{Syntax}
```

myfitoptions = IRFitOptions(InitialGuess)
myfitoptions = IRFitOptions(InitialGuess, 'Parameter1', Value1)

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline InitialGuess & \begin{tabular}{l}
Initial guess for the parameters of the curve function. Vector of \\
values for the starting point of the optimization.
\end{tabular} \\
\hline FitType & \begin{tabular}{l}
(Optional) Price, Yield, or DurationWeightedPrice \\
determines which is minimized in the curve fitting process. The \\
default is DurationWeightedPrice.
\end{tabular} \\
\hline UpperBound & (Optional) Lower bound for the parameters of the curve function. \\
\hline LowerBound & (Optional) Upper bound for the parameters of the curve function. \\
\hline OptOptions & \begin{tabular}{l}
(Optional) Optimization solver options constructed with \\
optimoptions from the Optimization Toolbox (optimset is \\
also supported).
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
myfitoptions = IRFitOptions('Param1', Value1) constructs the IRFitOptions structure with an initial guess or with an initial guess and bounds. You must enter the optional arguments for FitType, UpperBound, LowerBound, and OptOptions as parameter/value pairs.

Note: IRFitOptions constructor must be used with fitFunction method when building a custom fitting function.

\section*{Examples}
```

myfitoptions = IRFitOptions([7 2 1 0],'FitType','yield')
myfitoptions =
Properties:
FitType: 'yield'
InitialGuess: [7 2 1 0]
UpperBound: []
LowerBound: []
OptOptions: []

```

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{See Also}
"@IRFunctionCurve" on page A-13

Introduced in R2008b

\section*{IRFunctionCurve}

Construct interest-rate curve object from function handle or function and fit to market data

\section*{Class}

\section*{@IRFunctionCurve}

\section*{Syntax}

CurveObj = IRFunctionCurve(Type, Settle, FunctionHandle)
CurveObj = IRFunctionCurve(Type, Settle, FunctionHandle, 'Parameter1', Value1, 'Parameter2', Value2, ...)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Type & Type of interest-rate curve: zero, forward, or discount. \\
\hline Settle & Scalar for the Settle date of the curve. \\
\hline Compounding & \begin{tabular}{l}
(Optional) Scalar that sets the compounding frequency per year for the IRFunctionCurve object: \\
- - 1 = Continuous compounding \\
- 1 = Annual compounding \\
- 2 = Semiannual compounding (default) \\
- 3 = Compounding three times per year \\
- 4 = Quarterly compounding \\
- 6 = Bimonthly compounding \\
- 12 = Monthly compounding
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the bond. A scalar of integers. \\
- \(0=\) actual/actual (default)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- \(3=\) actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- 11 = 30/360E (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline FunctionHandle & Function handle that defines the interest-rate curve. The function handle requires one numeric input (time-to-maturity) and returns one numeric output (interest rate or discount factor). For more information on defining a function handle, see the MATLAB Programming Fundamentals documentation. \\
\hline Parameters & Fitted parameters for function. \\
\hline
\end{tabular}

\section*{Description}

CurveObj = IRFunctionCurve(Type, Settle, FunctionHandle,
'Parameter1', Value1, 'Parameter2', Value2, ...) constructs an interestrate curve object directly by specifying a function handle. You must enter the optional arguments for Basis and Compounding as parameter/value pairs.

After you use the IRFunctionCurve constructor to create an IRFunctionCurve object, you can fit the bond using the following methods.
\begin{tabular}{|l|l|}
\hline Method & Description \\
\hline getForwardRates & Returns forward rates for input dates. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Method & Description \\
\hline getZeroRates & Returns zero rates for input dates. \\
\hline getDiscountFactors & Returns discount factors for input dates. \\
\hline getParYields & Returns par yields for input dates. \\
\hline toRateSpec & Converts to be a RateSpec object. \\
& \begin{tabular}{l}
This RateSpec structure is identical to \\
the RateSpec produced by the Financial \\
Instruments Toolbox function intenvset.
\end{tabular} \\
\hline
\end{tabular}

Alternatively, you can construct an IRFunctionCurve object using the following static methods.
\begin{tabular}{|l|l|}
\hline Static Method & Description \\
\hline fitNelsonSiegel & Fits a Nelson-Siegel function to market data. \\
\hline fitSvensson & Fits a Svensson function to market data. \\
\hline fitSmoothingSpline & Fits a smoothing spline function to market data. \\
\hline fitFunction & Fits a custom function to market data. \\
\hline
\end{tabular}

\section*{Examples}
```

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t))
irfc =
Properties:
FunctionHandle: @(t)polyval([-0.0001,0.003,0.02],t)
Type: 'Forward'
Settle: 733599
Compounding: 2
Basis: 0

```

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\author{
See Also \\ "@IRCurve" on page A-4 \\ Introduced in R2008b
}

\section*{liborduration}

Duration of LIBOR-based interest-rate swap

\section*{Syntax}
[PayFixDuration GetFixDuration] = liborduration(SwapFixRate, Tenor, Settle)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline SwapFixRate & Scalar or column vector of swap fixed rates in decimal. \\
\hline Tenor & \begin{tabular}{l}
Scalar or column vector indicating life of the swap in years. \\
Fractional numbers are rounded upward.
\end{tabular} \\
\hline Settle & Scalar or column vector of settlement dates. \\
\hline
\end{tabular}

\section*{Description}
[PayFixDuration GetFixDuration] = liborduration(SwapFixRate, Tenor, Settle) computes the duration of LIBOR-based interest-rate swaps.

PayFixDuration is the modified duration, in years, realized when entering pay-fix side of the swap.

GetFixDuration is the modified duration, in years, realized when entering receive-fix side of the swap.

\section*{Examples}

\section*{Compute the Duration of LIBOR-Based Interest-Rate Swaps}

This example shows how to compute the duration of LIBOR-based interest-rate swaps using the following data.

SwapFixRate = 0.0383;
```

Tenor = 7;
Settle = datenum('11-Oct-2002');
[PayFixDuration GetFixDuration] = liborduration(SwapFixRate,...
Tenor, Settle)
PayFixDuration =
-4.7567
GetFixDuration =
4.7567

```
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures"
- "Fitting the Diebold Li Model"

\section*{More About}
- "Managing Present Value with Bond Futures" on page 7-13

\section*{See Also}
liborfloat2fixed | liborprice
Introduced before R2006a

\section*{liborfloat2fixed}

Compute par fixed-rate of swap given 3-month LIBOR data

\section*{Syntax}
[FixedSpec, ForwardDates, ForwardRates] = liborfloat2fixed(ThreeMonthRates, Settle, Tenor, StartDate, Interpolation, ConvexAdj, RateParam, InArrears, Sigma, FixedCompound, FixedBasis)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ThreeMonthRates & \begin{tabular}{l}
Three-month Eurodollar futures data or forward rate \\
agreement data. (A forward rate agreement stipulates that a \\
certain interest rate applies to a certain principal amount for \\
a given future time period.) An n-by-3 matrix in the form of \\
[month year IMMQuote]. The floating rate is assumed to \\
compound quarterly and to accrue on an actual/360 basis.
\end{tabular} \\
\hline Settle & Settlement date of the swap. Scalar. \\
\hline Tenor & Life of the swap. Scalar. \\
\hline StartDate & \begin{tabular}{l}
(Optional) Scalar value to denote reference date for valuation \\
of (forward) swap. This in effect allows forward swap \\
valuation. Default = Settle.
\end{tabular} \\
\hline Interpolation & \begin{tabular}{l}
(Optional) Interpolation method to determine applicable \\
forward rate for months when no Eurodollar data is \\
available. Default is ' linear ' or 1. Other possible values \\
are 'Nearest' or 0, and 'Cubic ' or 2.
\end{tabular} \\
\hline ConvexAdj & \begin{tabular}{l}
(Optional) Default = 0 (off). 1 = on. Denotes whether futures/ \\
forward convexity adjustment is required. Pertains to \\
forward rate adjustments when those rates are taken from \\
Eurodollar futures data.
\end{tabular} \\
\hline RateParam & \begin{tabular}{l}
(Optional) Short-rate model's parameters (Hull-White) \\
[a S], where the short-rate process is: \\
\(d r=[\theta(t)-a r] d t+S d z\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
& Default \(=[0.050 .015]\). \\
\hline InArrears & \begin{tabular}{l}
(Optional) Default \(=0\) (off). Set to 1 for on. If on, the routine \\
does an automatic a convexity adjustment to forward rates.
\end{tabular} \\
\hline Sigma & (Optional) Overall annual volatility of caplets. \\
\hline FixedCompound & \begin{tabular}{l}
(Optional) Scalar value. Compounding or frequency of \\
payment on the fixed side. Also, the reset frequency. Default \\
\(=\)
\end{tabular} \\
\hline FixedBasis (quarterly). Other values are 1, 2, and 12.
\end{tabular}

\section*{Description}
[FixedSpec, ForwardDates, ForwardRates] =
liborfloat2fixed(ThreeMonthRates, Settle, Tenor, StartDate, Interpolation, ConvexAdj, RateParam, InArrears, Sigma, FixedCompound, FixedBasis) computes forward rates, dates, and the swap fixed rate.

FixedSpec specifies the structure of the fixed-rate side of the swap:
- Coupon: Par-swap rate
- Settle: Start date
- Maturity: End date
- Period: Frequency of payment
- Basis: Accrual basis

ForwardDates are dates corresponding to ForwardRates (all third Wednesdays of the month, spread three months apart). The first element is the third Wednesday immediately after Settle.

ForwardRates are forward rates corresponding to the forward dates, quarterly compounded, and on the actual/360 basis.

Note To preserve input integrity, Tenor is rounded upward to the closest integer. Currently traded tenors are 2,5 , and 10 years.

The function assumes that floating-rate observations occur quarterly on the third Wednesday of a delivery month. The first delivery month is the month of the first third Wednesday after Settle. Floating-side payments occur on the third-month anniversaries of observation dates.

\section*{Examples}

\section*{Compute the Par Fixed-Rate of a Swap Given 3-Month LIBOR Data}

This example shows how to compute the par fixed-rate of a swap given 3-month LIBOR data. Use the supplied EDdata.xls file as input to a liborfloat2fixed computation.
```

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-0ct-2002');
Tenor = 2;
[FixedSpec, ForwardDates, ForwardRates] =...
liborfloat2fixed(EDFutData(:,1:3), Settle, Tenor)

```
FixedSpec =
 struct with fields:
```

        Coupon: 0.0222
        Settle: '16-Oct-2002'
    Maturity: '16-Oct-2004'
    Period: 4
        Basis: 1
    ForwardDates =
7 3 1 5 0 5
731596
731687
731778
731869
7 3 1 9 6 7
7 3 2 0 5 8
732149
ForwardRates =
0.0177
0.0166
0.0170
0.0188
0.0214
0.0248
0.0279
0.0305

```
- "Analysis of Bond Futures" on page 7-11
- "Managing Interest Rate Risk with Bond Futures"
- "Fitting the Diebold Li Model"

\section*{More About}
- "Managing Present Value with Bond Futures" on page 7-13

\author{
See Also \\ liborduration | liborprice
}

Introduced before R2006a

\section*{liborprice}

Price swap given swap rate

\section*{Syntax}

Price = liborprice(ThreeMonthRates, Settle, Tenor, SwapRate, StartDate, Interpolation, ConvexAdj, RateParam, InArrears, Sigma, FixedCompound, FixedBasis)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ThreeMonthRates & \begin{tabular}{l}
Three-month Eurodollar futures data or forward rate \\
agreement data. (A forward rate agreement stipulates \\
that a certain interest rate applies to a certain principal \\
amount for a given future time period.) An n-by-3 matrix \\
in the form of [month year IMMQuote]. The floating \\
rate is assumed to compound quarterly and to accrue on an \\
actual/360 basis.
\end{tabular} \\
\hline Settle & Settlement date of swap. Scalar. \\
\hline Tenor & Life of the swap. Scalar. \\
\hline SwapRate & Swap rate in decimal. \\
\hline StartDate & \begin{tabular}{l}
(Optional) Scalar value to denote reference date for \\
valuation of (forward) swap. This in effect allows forward \\
swap valuation. Default = Set tle.
\end{tabular} \\
\hline Interpolation & \begin{tabular}{l}
(Optional) Interpolation method to determine applicable \\
forward rate for months when no Eurodollar data is \\
available. Default is 'linear ' or 1. Other possible values \\
are 'Nearest' or 0, and 'Cubic ' or 2.
\end{tabular} \\
\hline ConvexAdj & \begin{tabular}{l}
(Optional) Default = 0 (off). 1 = on. Denotes whether \\
futures/forward convexity adjustment is required. Pertains \\
to forward rate adjustments when those rates are taken \\
from Eurodollar futures data.
\end{tabular} \\
\hline RateParam & \begin{tabular}{l}
(Optional) Short-rate model's parameters (Hull-White) \\
[a S], where the short-rate process is:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& d r=[\theta(t)-a r] d t+S d z \\
& \text { Default }=\left[\begin{array}{ll}
0.05 & 0.015
\end{array}\right]
\end{aligned}
\] \\
\hline InArrears & (Optional) Default = 0 (off). Set to 1 for on. If on, the routine does an automatic convexity adjustment to forward rates. \\
\hline Sigma & (Optional) Overall annual volatility of caplets. \\
\hline FixedCompound & (Optional) Scalar value. Compounding or frequency of payment on the fixed side. Also, the reset frequency. Default = 4 (quarterly). Other values are 1, 2, and 12. \\
\hline FixedBasis & \begin{tabular}{l}
(Optional) Scalar value. Basis of the fixed side. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- \(2=\) actual/ 360 \\
- 3 = actual/ 365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
For more information, see basis.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = liborprice(ThreeMonthRates, Settle, Tenor, SwapRate, StartDate, Interpolation, ConvexAdj, RateParam, InArrears, Sigma, FixedCompound, FixedBasis) computes the price per \(\$ 100\) notional value of a swap
given the swap rate. A positive result indicates that fixed side is more valuable than the floating side.

Price is the present value of the difference between floating and fixed-rate sides of the swap per \(\$ 100\) notional.

\section*{Examples}

\section*{Compute the Price Per \(\$ 100\) Notional Value of a Swap Given the Swap Rate}

This example shows that a swap paying the par swap rate has a value of 0 .
```

% load the input data
[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-0ct-2002');
Tenor = 2;
% compute the fixed rate from the Eurodollar data
FixedSpec = liborfloat2fixed(EDFutData(:,1:3), Settle, Tenor)
% compute the price of a par swap
Price = liborprice(EDFutData(:,1:3), Settle, Tenor, FixedSpec.Coupon)
FixedSpec =
struct with fields:
Coupon: 0.0222
Settle: '16-Oct-2002'
Maturity: '16-Oct-2004'
Period: 4
Basis: 1
Price =
2.7756e-15
Price is effectively equal to 0 .

- "Analysis of Bond Futures" on page 7-11

```
- "Managing Interest Rate Risk with Bond Futures"
- "Fitting the Diebold Li Model"

\section*{More About}
- "Managing Present Value with Bond Futures" on page 7-13

\author{
See Also \\ liborduration | liborfloat2fixed \\ Introduced before R2006a
}

\section*{mbscfamounts}

Cash flow and time mapping for mortgage pool

\section*{Syntax}
[CFlowAmounts, CFlowDates, TFactors, Factors, Payment, Principal, Interest, Prepayment] = mbscfamounts(Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Settle & \begin{tabular}{l}
Settlement date. A serial date number or date character \\
vector. Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Maturity date. A serial date number or date character \\
vector.
\end{tabular} \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline CouponRate & \begin{tabular}{l}
(Optional) Net coupon rate, in decimal. Default = \\
GrossRate.
\end{tabular} \\
\hline Delay & (Optional) Delay in days. Default is 0 (no delay). \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) to \\
the benchmark model. Default = 0. If you input a customized \\
prepayment matrix, set PrepaySpeed to [].
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Used only when PrepaySpeed is unspecified. \\
Customized prepayment vector. A NaN-padded matrix of size \\
max (TermRemaining) -by-NMBS. Each column corresponds \\
to each mortgage-backed security, and each row corresponds \\
to each month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS)-by-1 vectors.

\section*{Description}
[CFlowAmounts, CFLowDates, TFactors, Factors, Payment, Principal, Interest, Prepayment] = mbscfamounts(Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes cash flows between settle and maturity dates, the corresponding time factors in months from settle, and the mortgage factor (the fraction of loan principal outstanding).

CFlowAmounts is a vector of cash flows starting from Settle through end of the last month (Maturity).

CFlowDates indicates when cash flows occur, including at Settle. A negative number at Settle indicates that accrued interest is due.

TFactors is a vector of times in months from Settle, corresponding to each cash flow.
Factors is a vector of mortgage factors (the fraction of the balance still outstanding at the end of each month).

Payment is a NMBS-by-P matrix of total monthly payment.
Principal is a NMBS-by-P matrix of principal portion of the payment
Interest is a NMBS-by-P matrix of interest portion of the payment.
Prepayment is a NMBS-by-P matrix of unscheduled payment of principal.

\section*{Examples}

\section*{Calculate Cash Flow Amounts and Dates, Time Factors, and Mortgage Factors for a Single Mortgage}

Given a mortgage with the following characteristics, compute the cash flow amounts and dates, the time factors, and the mortgage factors.

Define the mortgage characteristics.
```

Settle = datenum('17-April-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;

```

\section*{PrepaySpeed = 100;}

Use mbscfamonts to evaluate the mortgage.
[CFlowAmounts, CFLowDates, TFactors, Factors] = ... mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ... CouponRate, Delay, PrepaySpeed)

\section*{CFlowAmounts =}

Columns 1 through 7
\[
\begin{array}{lllllll}
-0.0033 & 0.0118 & 0.0120 & 0.0121 & 0.0120 & 0.0119 & 0.0119
\end{array}
\]

Columns 8 through 14
\begin{tabular}{lllllll}
0.0118 & 0.0117 & 0.0117 & 0.0116 & 0.0115 & 0.0115 & 0.0114
\end{tabular}

Columns 15 through 21
0.0114
0.0113
0.0112
0.0112
0.0111
0.0110
0.0110

Columns 22 through 28
0.0109
0.0109
0.0108
0.0107
0.0107
0.0106
0.0106

Columns 29 through 35
0.0105
0.0105
0.0104
0.0103
0.0103
0.0102
0.0102

Columns 36 through 42
\begin{tabular}{lllllll}
0.0101 & 0.0101 & 0.0100 & 0.0099 & 0.0099 & 0.0098 & 0.0098
\end{tabular}

Columns 43 through 49
0.0097
0.0097
0.0096
0.0096
0.0095
0.0095
0.0094

Columns 50 through 56
\(\begin{array}{lllllll}0.0094 & 0.0093 & 0.0093 & 0.0092 & 0.0092 & 0.0091 & 0.0090\end{array}\)
Columns 57 through 63
0.0090
0.0089
0.0089
0.0088
0.0088
0.0087
0.0087

Columns 64 through 70
0.0087
0.0086
0.0086
0.0085
0.0085
0.0084
0.0084

Columns 71 through 77
0.0083
0.0083
0.0082
0.0082
0.0081
0.0081
0.0080

Columns 78 through 84
0.0080
0.0079
0.0079
0.0079
\(0.0078 \quad 0.0078\)
0.0077

Columns 85 through 91
0.0077
0.0076
0.0076
0.0075
0.0075
0.0075
0.0074

Columns 92 through 98
0.0074
0.0073
0.0073
0.0073
0.0072
0.0072
0.0071

Columns 99 through 105
\(\begin{array}{lllllll}0.0071 & 0.0070 & 0.0070 & 0.0070 & 0.0069 & 0.0069 & 0.0068\end{array}\)
Columns 106 through 112
\(\begin{array}{lllllll}0.0068 & 0.0068 & 0.0067 & 0.0067 & 0.0066 & 0.0066 & 0.0066\end{array}\)
Columns 113 through 119
\(\begin{array}{lllllll}0.0065 & 0.0065 & 0.0065 & 0.0064 & 0.0064 & 0.0063 & 0.0063\end{array}\)
Columns 120 through 126
0.0063
0.0062
0.0062
0.0062
0.0061
0.0061
0.0061

Columns 127 through 133
\(\begin{array}{lllllll}0.0060 & 0.0060 & 0.0059 & 0.0059 & 0.0059 & 0.0058 & 0.0058\end{array}\)
Columns 134 through 140
0.0058
0.0057
0.0057
0.0057
0.0056
0.0056
0.0056

Columns 141 through 147
\(\begin{array}{lllllll}0.0055 & 0.0055 & 0.0055 & 0.0054 & 0.0054 & 0.0054 & 0.0053\end{array}\)
Columns 148 through 154
0.0053
0.0053
0.0052
0.0052
0.0052
0.0052
0.0051

Columns 155 through 161
\(0.0051 \quad 0.0051\)
0.0050
0.0050
0.0050
0.0049
0.0049

Columns 162 through 168
0.0049
0.0048
0.0048
0.0048
0.0048
0.0047
0.0047

Columns 169 through 175
0.0047
0.0046
0.0046
0.0046
0.0046
0.0045
0.0045

Columns 176 through 182
0.0045
0.0044
0.0044
0.0044
0.0044
0.0043
0.0043

Columns 183 through 189
0.0043
0.0043
0.0042
0.0042
0.0042
0.0041
0.0041

Columns 190 through 196
\(\begin{array}{lllllll}0.0041 & 0.0041 & 0.0040 & 0.0040 & 0.0040 & 0.0040 & 0.0039\end{array}\)
Columns 197 through 203
0.0039
0.0039
0.0039
0.0038
0.0038
0.0038
0.0038

Columns 204 through 210
0.0037
0.0037
0.0037
0.0037
0.0036
0.0036
0.0036

Columns 211 through 217
0.0036
0.0035
0.0035
0.0035
0.0035
0.0035
0.0034

Columns 218 through 224
0.0034
0.0034
0.0034
0.0033
0.0033
0.0033
0.0033

Columns 225 through 231
0.0033
0.0032
0.0032
0.0032
0.0032
0.0031
0.0031

Columns 232 through 238
0.0031
0.0031
0.0031
0.0030
0.0030
0.0030
0.0030

Columns 239 through 245
0.0030
0.0029
0.0029
0.0029
0.0029
0.0029
0.0028

Columns 246 through 252
\(\begin{array}{lllllll}0.0028 & 0.0028 & 0.0028 & 0.0028 & 0.0027 & 0.0027 & 0.0027\end{array}\)
Columns 253 through 259
0.0027
0.0027
0.0026
0.0026
0.0026
0.0026
0.0026

Columns 260 through 266
0.0025
0.0025
0.0025
0.0025
0.0025
0.0024
0.0024

Columns 267 through 273
\(\begin{array}{lllllll}0.0024 & 0.0024 & 0.0024 & 0.0024 & 0.0023 & 0.0023 & 0.0023\end{array}\)
Columns 274 through 280
0.0023
0.0023
0.0023
0.0022
0.0022
0.0022
0.0022

Columns 281 through 287
\(\begin{array}{lllllll}0.0022 & 0.0021 & 0.0021 & 0.0021 & 0.0021 & 0.0021 & 0.0021\end{array}\)
Columns 288 through 294
0.0020
0.0020
0.0020
0.0020
0.0020
0.0020
0.0020

Columns 295 through 301
0.0019
0.0019
0.0019
0.0019
0.0019
0.0019
0.0018

Columns 302 through 308
0.0018
0.0018
0.0018
0.0018
0.0018
0.0017
0.0017

Columns 309 through 315
0.0017
0.0017
0.0017
0.0017
0.0017
0.0016
0.0016

Columns 316 through 322
0.0016
0.0016
0.0016
0.0016
0.0016
0.0015
0.0015

Columns 323 through 329
0.0015
0.0015
0.0015
0.0015
0.0015
0.0014
0.0014

Columns 330 through 334
0.0014
0.0014
0.0014
0.0014
0.0014

CFLowDates =
Columns 1 through 6
\(731323 \quad 731337\)
731368
731398
731429
731460

Columns 7 through 12
\begin{tabular}{llllll}
731490 & 731521 & 731551 & 731582 & 731613 & 731641
\end{tabular}

Columns 13 through 18
\(731672 \quad 731702\)

Columns 19 through 24
\begin{tabular}{lllll}
731855 & 731886 & 731916 & 731947 & 731978
\end{tabular}

Columns 25 through 30
\begin{tabular}{lllll}
732038 & 732068 & 732099 & 732129 & 732160
\end{tabular}

Columns 31 through 36
\(\begin{array}{lllll}732221 & 732252 & 732282 & 732313 & 732344\end{array}\)

Columns 37 through 42
732403 73243
732494
732525
732556

Columns 43 through 48

Columns 49 through 54

732

Columns 55 through 60
\(\begin{array}{lllll}732951 & 732982 & 733012 & 733043 & 733074\end{array}\)

Columns 61 through 66
\(733133 \quad 733163\)
733194
733224
733255
733286

Columns 67 through 72

733316
\(733377 \quad 733408\)
733439
733468

Columns 73 through 78
\(733499 \quad 733529\)
733560
733590
733621
733652

Columns 79 through 84

733774
733805
733833

Columns 85 through 90
\begin{tabular}{llllll}
733864 & 733894 & 733925 & 733955 & 733986 & 734017
\end{tabular}

Columns 289 through 294
\(740073 \quad 740103\)

Columns 295 through 300
\(740256 \quad 740287\)

Columns 301 through 306
\(740438 \quad 740468\)

Columns 307 through 312
\(740621 \quad 740652\)
740682
740713
740744
740773

Columns 313 through 318
740804

Columns 319 through 324
\begin{tabular}{lllll}
740987 & 741018 & 741048 & 741079 & 741110
\end{tabular}

Columns 325 through 330
\(\begin{array}{lllll}741169 & 741199 & 741230 & 741260 & 741291\end{array}\)

Columns 331 through 334
741352741383
741413
741444

\section*{TFactors =}

Columns 1 through 7
\[
\begin{array}{lllllll}
0 & 0.9333 & 1.9333 & 2.9333 & 3.9333 & 4.9333 & 5.9333
\end{array}
\]

Columns 8 through 14
6.9333
7.9333
8.9333
9.9333
10.9333
11.9333
12.9333

Columns 92 through 98
```

    90.9333 91.9333 92.9333 93.9333 94.9333 95.9333 96.9333
    Columns 99 through 105
97.9333 98.9333 99.9333 100.9333 101.9333 102.9333 103.9333
Columns }106\mathrm{ through 112
104.9333 105.9333 106.9333 107.9333 108.9333 109.9333 110.9333
Columns 113 through 119
111.9333 112.9333 113.9333 114.9333 115.9333 116.9333 117.9333
Columns 120 through 126
118.9333 119.9333 120.9333 121.9333 122.9333 123.9333 124.9333
Columns 127 through 133
125.9333 126.9333 127.9333 128.9333 129.9333 130.9333 131.9333
Columns 134 through 140
132.9333 133.9333 134.9333 135.9333 136.9333 137.9333 138.9333
Columns 141 through 147
139.9333 140.9333 141.9333 142.9333 143.9333 144.9333 145.9333
Columns 148 through 154
146.9333 147.9333 148.9333 149.9333 150.9333 151.9333 152.9333
Columns 155 through 161
153.9333 154.9333 155.9333 156.9333 157.9333 158.9333 159.9333
Columns }162\mathrm{ through 168
160.9333 161.9333 162.9333 163.9333 164.9333 165.9333 166.9333

```
```

Columns }169\mathrm{ through 175
167.9333 168.9333 169.9333 170.9333 171.9333 172.9333 173.9333
Columns 176 through 182
174.9333 175.9333 176.9333 177.9333 178.9333 179.9333 180.9333
Columns 183 through 189
181.9333 182.9333 183.9333 184.9333 185.9333 186.9333 187.9333
Columns }190\mathrm{ through 196
188.9333 189.9333 190.9333 191.9333 192.9333 193.9333 194.9333
Columns }197\mathrm{ through 203
195.9333 196.9333 197.9333 198.9333 199.9333 200.9333 201.9333
Columns 204 through 210
202.9333 203.9333 204.9333 205.9333 206.9333 207.9333 208.9333
Columns 211 through 217
209.9333 210.9333 211.9333 212.9333 213.9333 214.9333 215.9333
Columns 218 through 224
216.9333 217.9333 218.9333 219.9333 220.9333 221.9333 222.9333
Columns 225 through 231
223.9333 224.9333 225.9333 226.9333 227.9333 228.9333 229.9333
Columns 232 through 238
230.9333 231.9333 232.9333 233.9333 234.9333 235.9333 236.9333
Columns 239 through 245
237.9333 238.9333 239.9333 240.9333 241.9333 242.9333 243.9333

```

Columns 246 through 252
\(244.9333 \quad 245.9333 \quad 246.9333 \quad 247.9333 \quad 248.9333 \quad 249.9333 \quad 250.9333\)
Columns 253 through 259
\(251.9333 \quad 252.9333 \quad 253.9333 \quad 254.9333 \quad 255.9333 \quad 256.9333 \quad 257.9333\)
Columns 260 through 266
\(258.9333 \quad 259.9333 \quad 260.9333 \quad 261.9333 \quad 262.9333 \quad 263.9333 \quad 264.9333\)
Columns 267 through 273
\(265.9333 \quad 266.9333 \quad 267.9333 \quad 268.9333 \quad 269.9333 \quad 270.9333 \quad 271.9333\)
Columns 274 through 280
\(272.9333 \quad 273.9333 \quad 274.9333 \quad 275.9333 \quad 276.9333 \quad 277.9333 \quad 278.9333\)
Columns 281 through 287
\(279.9333 \quad 280.9333 \quad 281.9333 \quad 282.9333 \quad 283.9333 \quad 284.9333 \quad 285.9333\)

Columns 288 through 294
\(286.9333 \quad 287.9333 \quad 288.9333 \quad 289.9333 \quad 290.9333 \quad 291.9333 \quad 292.9333\)
Columns 295 through 301
\(293.9333 \quad 294.9333 \quad 295.9333 \quad 296.9333 \quad 297.9333 \quad 298.9333 \quad 299.9333\)
Columns 302 through 308
\(300.9333 \quad 301.9333 \quad 302.9333 \quad 303.9333 \quad 304.9333 \quad 305.9333 \quad 306.9333\)
Columns 309 through 315
\(307.9333 \quad 308.9333 \quad 309.9333 \quad 310.9333 \quad 311.9333 \quad 312.9333 \quad 313.9333\)
Columns 316 through 322
\(314.9333 \quad 315.9333 \quad 316.9333 \quad 317.9333 \quad 318.9333 \quad 319.9333 \quad 320.9333\)

Columns 323 through 329
\(321.9333 \quad 322.9333 \quad 323.9333 \quad 324.9333 \quad 325.9333 \quad 326.9333 \quad 327.9333\)
Columns 330 through 334
\(328.9333 \quad 329.9333 \quad 330.9333 \quad 331.9333 \quad 332.9333\)

\section*{Factors =}

Columns 1 through 7
1.0000
0.9944
0.9887
0.9828
0.9769
0.9711
0.9653

Columns 8 through 14
0.9595
0.9538
0.9481
0.9424
0.9368
0.9311
0.9255

Columns 15 through 21
\begin{tabular}{lllllll}
0.9199 & 0.9144 & 0.9089 & 0.9034 & 0.8979 & 0.8925 & 0.8871
\end{tabular}

Columns 22 through 28
0.8817
0.8763
0.8710
0.8657
0.8604
0.8552
0.8499

Columns 29 through 35
0.8447
0.8396
0.8344
0.8293
0.8242
0.8191
0.8140

Columns 36 through 42
\(\begin{array}{lllllll}0.8090 & 0.8040 & 0.7990 & 0.7941 & 0.7892 & 0.7842 & 0.7794\end{array}\)
Columns 43 through 49
0.7745
0.7697
0.7649
0.7601
0.7553
0.7506
0.7458

Columns 50 through 56
0.7411
0.7365
0.7318
0.7272
0.7226
0.7180
0.7134

Columns 57 through 63
0.7089
0.7044
0.6999
0.6954
0.6910
0.6865
0.6821

Columns 64 through 70
0.6777
0.6734
0.6690
0.6647
0.6604
0.6561
0.6519

Columns 71 through 77
0.6476
0.6434
0.6392
0.6350
0.6309
0.6267
0.6226

Columns 78 through 84
0.6185
0.6144
0.6104
0.6063
0.6023
0.5983
0.5943

Columns 85 through 91
0.5903
0.5864
0.5825
0.5785
0.5747
0.5708
0.5669

Columns 92 through 98
0.5631
0.5593
0.5555
0.5517
0.5479
0.5442
0.5405

Columns 99 through 105
0.5368
0.5331
0.5294
0.5257
0.5221
0.5185
0.5149

Columns 106 through 112
0.5113
0.5077
0.5042
0.5006
0.4971
0.4936
0.4901

Columns 113 through 119
0.4866
0.4832
0.4797
0.4763
0.4729
0.4695
0.4661

Columns 120 through 126
0.4628
0.4594
0.4561
0.4528
0.4495
0.4462
0.4430

Columns 127 through 133
\(\begin{array}{lllllll}0.4397 & 0.4365 & 0.4333 & 0.4301 & 0.4269 & 0.4237 & 0.4205\end{array}\)
Columns 134 through 140
0.4174
0.4143
0.4111
0.4080
0.4049
0.4019
0.3988

Columns 141 through 147
0.3958
0.3927
0.3897
0.3867
0.3837
0.3808
0.3778

Columns 148 through 154
0.3748
0.3719
0.3690
0.3661
0.3632
0.3603
0.3574

Columns 155 through 161
0.3546
0.3517
0.3489
0.3461
0.3433
0.3405
0.3377

Columns 162 through 168
0.3350
0.3322
0.3295
0.3267
0.3240
0.3213
0.3186

Columns 169 through 175
0.3160
0.3133
0.3106
0.3080
0.3054
0.3027
0.3001

Columns 176 through 182
0.2975
0.2950
0.2924
0.2898
0.2873
0.2847
0.2822

Columns 183 through 189
0.2797
0.2772
0.2747
0.2722
0.2698
0.2673
0.2649

Columns 190 through 196
0.2624
0.2600
0.2576
0.2552
0.2528
0.2504
0.2480

Columns 197 through 203
0.2457
0.2433
0.2410
0.2386
0.2363
0.2340
0.2317

Columns 204 through 210
0.2294
0.2271
0.2249
0.2226
0.2204
0.2181
0.2159

Columns 211 through 217
0.2137
0.2115
0.2093
0.2071
0.2049
0.2027
0.2005

Columns 218 through 224
0.1984
0.1962
0.1941
0.1920
0.1899
0.1877
0.1856

Columns 225 through 231
0.1836
0.1815
0.1794
0.1773
0.1753
0.1732
0.1712

Columns 232 through 238
0.1692
0.1671
0.1651
0.1631
0.1611
0.1591
0.1572

Columns 239 through 245
0.1552
0.1532
0.1513
0.1493
0.1474
0.1455
0.1436

Columns 246 through 252
0.1416
0.1397
0.1378
0.1359
0.1341
0.1322
0.1303

Columns 253 through 259
0.1285
0.1266
0.1248
0.1229
0.1211
0.1193
0.1175

Columns 260 through 266
0.1157
0.1139
0.1121
0.1103
0.1085
0.1068
0.1050

Columns 267 through 273
\(\begin{array}{lllllll}0.1032 & 0.1015 & 0.0998 & 0.0980 & 0.0963 & 0.0946 & 0.0929\end{array}\)
Columns 274 through 280
0.0912
0.0895
0.0878
0.0861
0.0844
0.0827
0.0811

Columns 281 through 287
\(\begin{array}{lllllll}0.0794 & 0.0778 & 0.0761 & 0.0745 & 0.0728 & 0.0712 & 0.0696\end{array}\)
Columns 288 through 294
0.0680
0.0664
0.0648
0.0632
0.0616
0.0600
0.0584

Columns 295 through 301
0.0568
0.0553
0.0537
0.0522
0.0506
0.0491
0.0476

Columns 302 through 308
\(\begin{array}{lllllll}0.0460 & 0.0445 & 0.0430 & 0.0415 & 0.0400 & 0.0385 & 0.0370\end{array}\)
Columns 309 through 315
\(\begin{array}{lllllll}0.0355 & 0.0340 & 0.0325 & 0.0311 & 0.0296 & 0.0281 & 0.0267\end{array}\)
Columns 316 through 322
0.0252
0.0238
0.0223
0.0209
0.0195
0.0180
0.0166

Columns 323 through 329
\(\begin{array}{lllllll}0.0152 & 0.0138 & 0.0124 & 0.0110 & 0.0096 & 0.0082 & 0.0068\end{array}\)
Columns 330 through 334
\(\begin{array}{lllll}0.0055 & 0.0041 & 0.0027 & 0.0014 & 0\end{array}\)

The result is contained in four 334 -element row vectors.

\section*{Compute Cash Flow Amounts and Dates, Time Factors, and Mortgage Factors for a Mortgage Portfolio}

Given a portfolio of mortgage-backed securities, use mbscfamounts to compute the cash flows and other factors from the portfolio.

Define characteristics for a mortgage portfolio.
```

Settle = datenum(['13-Jan-2000';'17-Apr-2002';'17-May-2002']);
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = [0.075; 0.07875; 0.0775];
Delay = 14;
PrepaySpeed = 100;

```

Use mbscfamonts to evaluate the mortgage.
```

[CFlowAmounts, CFlowDates, TFactors, Factors] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, PrepaySpeed)

```

\section*{CFlowAmounts =}

Columns 1 through 7
\begin{tabular}{lllllll}
-0.0025 & 0.0071 & 0.0072 & 0.0074 & 0.0076 & 0.0077 & 0.0079 \\
-0.0035 & 0.0121 & 0.0123 & 0.0124 & 0.0123 & 0.0122 & 0.0122 \\
-0.0034 & 0.0122 & 0.0123 & 0.0123 & 0.0122 & 0.0121 & 0.0121
\end{tabular}

Columns 8 through 14
\begin{tabular}{lllllll}
0.0080 & 0.0082 & 0.0084 & 0.0085 & 0.0087 & 0.0088 & 0.0090 \\
0.0121 & 0.0120 & 0.0120 & 0.0119 & 0.0118 & 0.0118 & 0.0117 \\
0.0120 & 0.0119 & 0.0119 & 0.0118 & 0.0117 & 0.0117 & 0.0116
\end{tabular}

Columns 15 through 21
\begin{tabular}{lllllll}
0.0091 & 0.0093 & 0.0094 & 0.0095 & 0.0097 & 0.0098 & 0.0099 \\
0.0116 & 0.0116 & 0.0115 & 0.0115 & 0.0114 & 0.0113 & 0.0113 \\
0.0116 & 0.0115 & 0.0114 & 0.0114 & 0.0113 & 0.0112 & 0.0112
\end{tabular}

Columns 22 through 28
\begin{tabular}{lllllll}
0.0101 & 0.0102 & 0.0103 & 0.0104 & 0.0106 & 0.0107 & 0.0108 \\
0.0112 & 0.0111 & 0.0111 & 0.0110 & 0.0110 & 0.0109 & 0.0108 \\
0.0111 & 0.0111 & 0.0110 & 0.0109 & 0.0109 & 0.0108 & 0.0108
\end{tabular}

Columns 29 through 35
\begin{tabular}{lllllll}
0.0109 & 0.0110 & 0.0111 & 0.0110 & 0.0110 & 0.0109 & 0.0109 \\
0.0108 & 0.0107 & 0.0107 & 0.0106 & 0.0105 & 0.0105 & 0.0104 \\
0.0107 & 0.0106 & 0.0106 & 0.0105 & 0.0105 & 0.0104 & 0.0103
\end{tabular}

Columns 36 through 42
\begin{tabular}{lllllll}
0.0108 & 0.0107 & 0.0107 & 0.0106 & 0.0106 & 0.0105 & 0.0104 \\
0.0104 & 0.0103 & 0.0103 & 0.0102 & 0.0101 & 0.0101 & 0.0100 \\
0.0103 & 0.0102 & 0.0102 & 0.0101 & 0.0101 & 0.0100 & 0.0099
\end{tabular}

Columns 43 through 49
\begin{tabular}{lllllll}
0.0104 & 0.0103 & 0.0103 & 0.0102 & 0.0102 & 0.0101 & 0.0101 \\
0.0100 & 0.0099 & 0.0099 & 0.0098 & 0.0098 & 0.0097 & 0.0096 \\
0.0099 & 0.0098 & 0.0098 & 0.0097 & 0.0097 & 0.0096 & 0.0096
\end{tabular}

Columns 50 through 56
\begin{tabular}{lllllll}
0.0100 & 0.0099 & 0.0099 & 0.0098 & 0.0098 & 0.0097 & 0.0097 \\
0.0096 & 0.0095 & 0.0095 & 0.0094 & 0.0094 & 0.0093 & 0.0093 \\
0.0095 & 0.0095 & 0.0094 & 0.0094 & 0.0093 & 0.0092 & 0.0092
\end{tabular}

Columns 57 through 63
\begin{tabular}{lllllll}
0.0096 & 0.0096 & 0.0095 & 0.0095 & 0.0094 & 0.0094 & 0.0093 \\
0.0092 & 0.0092 & 0.0091 & 0.0091 & 0.0090 & 0.0090 & 0.0089 \\
0.0091 & 0.0091 & 0.0090 & 0.0090 & 0.0089 & 0.0089 & 0.0088
\end{tabular}

Columns 64 through 70
\begin{tabular}{lllllll}
0.0093 & 0.0092 & 0.0091 & 0.0091 & 0.0090 & 0.0090 & 0.0089 \\
0.0089 & 0.0088 & 0.0088 & 0.0087 & 0.0087 & 0.0086 & 0.0086 \\
0.0088 & 0.0087 & 0.0087 & 0.0086 & 0.0086 & 0.0085 & 0.0085
\end{tabular}

Columns 71 through 77
\begin{tabular}{lllllll}
0.0089 & 0.0088 & 0.0088 & 0.0088 & 0.0087 & 0.0087 & 0.0086 \\
0.0085 & 0.0085 & 0.0084 & 0.0084 & 0.0083 & 0.0083 & 0.0082 \\
0.0085 & 0.0084 & 0.0084 & 0.0083 & 0.0083 & 0.0082 & 0.0082
\end{tabular}

Columns 78 through 84
\begin{tabular}{lllllll}
0.0086 & 0.0085 & 0.0085 & 0.0084 & 0.0084 & 0.0083 & 0.0083 \\
0.0082 & 0.0081 & 0.0081 & 0.0080 & 0.0080 & 0.0080 & 0.0079 \\
0.0081 & 0.0081 & 0.0080 & 0.0080 & 0.0079 & 0.0079 & 0.0078
\end{tabular}

Columns 85 through 91
\begin{tabular}{lllllll}
0.0082 & 0.0082 & 0.0081 & 0.0081 & 0.0080 & 0.0080 & 0.0080 \\
0.0079 & 0.0078 & 0.0078 & 0.0077 & 0.0077 & 0.0076 & 0.0076 \\
0.0078 & 0.0078 & 0.0077 & 0.0077 & 0.0076 & 0.0076 & 0.0075
\end{tabular}

Columns 92 through 98
\begin{tabular}{lllllll}
0.0079 & 0.0079 & 0.0078 & 0.0078 & 0.0077 & 0.0077 & 0.0076 \\
0.0076 & 0.0075 & 0.0075 & 0.0074 & 0.0074 & 0.0073 & 0.0073 \\
0.0075 & 0.0075 & 0.0074 & 0.0074 & 0.0073 & 0.0073 & 0.0072
\end{tabular}

Columns 99 through 105
\begin{tabular}{lllllll}
0.0076 & 0.0076 & 0.0075 & 0.0075 & 0.0074 & 0.0074 & 0.0074 \\
0.0073 & 0.0072 & 0.0072 & 0.0071 & 0.0071 & 0.0070 & 0.0070 \\
0.0072 & 0.0072 & 0.0071 & 0.0071 & 0.0070 & 0.0070 & 0.0070
\end{tabular}

Columns 106 through 112
\begin{tabular}{lllllll}
0.0073 & 0.0073 & 0.0072 & 0.0072 & 0.0071 & 0.0071 & 0.0071 \\
0.0070 & 0.0069 & 0.0069 & 0.0068 & 0.0068 & 0.0068 & 0.0067 \\
0.0069 & 0.0069 & 0.0068 & 0.0068 & 0.0068 & 0.0067 & 0.0067
\end{tabular}

Columns 113 through 119
\begin{tabular}{lllllll}
0.0070 & 0.0070 & 0.0069 & 0.0069 & 0.0069 & 0.0068 & 0.0068 \\
0.0067 & 0.0066 & 0.0066 & 0.0066 & 0.0065 & 0.0065 & 0.0065 \\
0.0066 & 0.0066 & 0.0066 & 0.0065 & 0.0065 & 0.0064 & 0.0064
\end{tabular}

Columns 120 through 126
\begin{tabular}{lllllll}
0.0067 & 0.0067 & 0.0067 & 0.0066 & 0.0066 & 0.0066 & 0.0065 \\
0.0064 & 0.0064 & 0.0063 & 0.0063 & 0.0063 & 0.0062 & 0.0062 \\
0.0064 & 0.0063 & 0.0063 & 0.0063 & 0.0062 & 0.0062 & 0.0061
\end{tabular}

Columns 127 through 133
\begin{tabular}{lllllll}
0.0065 & 0.0064 & 0.0064 & 0.0064 & 0.0063 & 0.0063 & 0.0063 \\
0.0062 & 0.0061 & 0.0061 & 0.0060 & 0.0060 & 0.0060 & 0.0059 \\
0.0061 & 0.0061 & 0.0060 & 0.0060 & 0.0060 & 0.0059 & 0.0059
\end{tabular}

Columns 134 through 140
\begin{tabular}{lllllll}
0.0062 & 0.0062 & 0.0062 & 0.0061 & 0.0061 & 0.0060 & 0.0060 \\
0.0059 & 0.0059 & 0.0058 & 0.0058 & 0.0058 & 0.0057 & 0.0057 \\
0.0059 & 0.0058 & 0.0058 & 0.0058 & 0.0057 & 0.0057 & 0.0057
\end{tabular}

Columns 141 through 147
\begin{tabular}{lllllll}
0.0060 & 0.0059 & 0.0059 & 0.0059 & 0.0058 & 0.0058 & 0.0058 \\
0.0057 & 0.0056 & 0.0056 & 0.0056 & 0.0055 & 0.0055 & 0.0055
\end{tabular}
0.0056
0.0056
0.0056
0.0055
0.0055
0.0055
0.0054

Columns 148 through 154
\begin{tabular}{lllllll}
0.0057 & 0.0057 & 0.0057 & 0.0056 & 0.0056 & 0.0056 & 0.0055 \\
0.0054 & 0.0054 & 0.0054 & 0.0053 & 0.0053 & 0.0053 & 0.0052 \\
0.0054 & 0.0054 & 0.0053 & 0.0053 & 0.0053 & 0.0052 & 0.0052
\end{tabular}

Columns 155 through 161
\begin{tabular}{lllllll}
0.0055 & 0.0055 & 0.0054 & 0.0054 & 0.0054 & 0.0053 & 0.0053 \\
0.0052 & 0.0052 & 0.0051 & 0.0051 & 0.0051 & 0.0050 & 0.0050 \\
0.0052 & 0.0051 & 0.0051 & 0.0051 & 0.0050 & 0.0050 & 0.0050
\end{tabular}

Columns 162 through 168
\begin{tabular}{lllllll}
0.0053 & 0.0052 & 0.0052 & 0.0052 & 0.0052 & 0.0051 & 0.0051 \\
0.0050 & 0.0050 & 0.0049 & 0.0049 & 0.0049 & 0.0048 & 0.0048 \\
0.0049 & 0.0049 & 0.0049 & 0.0049 & 0.0048 & 0.0048 & 0.0048
\end{tabular}

Columns 169 through 175
\begin{tabular}{lllllll}
0.0051 & 0.0050 & 0.0050 & 0.0050 & 0.0049 & 0.0049 & 0.0049 \\
0.0048 & 0.0047 & 0.0047 & 0.0047 & 0.0047 & 0.0046 & 0.0046 \\
0.0047 & 0.0047 & 0.0047 & 0.0046 & 0.0046 & 0.0046 & 0.0046
\end{tabular}

Columns 176 through 182
\begin{tabular}{lllllll}
0.0049 & 0.0048 & 0.0048 & 0.0048 & 0.0047 & 0.0047 & 0.0047 \\
0.0046 & 0.0045 & 0.0045 & 0.0045 & 0.0045 & 0.0044 & 0.0044 \\
0.0045 & 0.0045 & 0.0045 & 0.0044 & 0.0044 & 0.0044 & 0.0044
\end{tabular}

Columns 183 through 189
\begin{tabular}{lllllll}
0.0047 & 0.0046 & 0.0046 & 0.0046 & 0.0045 & 0.0045 & 0.0045 \\
0.0044 & 0.0043 & 0.0043 & 0.0043 & 0.0043 & 0.0042 & 0.0042 \\
0.0043 & 0.0043 & 0.0043 & 0.0043 & 0.0042 & 0.0042 & 0.0042
\end{tabular}

Columns 190 through 196
\begin{tabular}{lllllll}
0.0045 & 0.0044 & 0.0044 & 0.0044 & 0.0043 & 0.0043 & 0.0043 \\
0.0042 & 0.0041 & 0.0041 & 0.0041 & 0.0041 & 0.0040 & 0.0040 \\
0.0041 & 0.0041 & 0.0041 & 0.0041 & 0.0040 & 0.0040 & 0.0040
\end{tabular}

Columns 197 through 203
\begin{tabular}{lllllll}
0.0043 & 0.0042 & 0.0042 & 0.0042 & 0.0042 & 0.0041 & 0.0041 \\
0.0040 & 0.0040 & 0.0039 & 0.0039 & 0.0039 & 0.0039 & 0.0038 \\
0.0040 & 0.0039 & 0.0039 & 0.0039 & 0.0039 & 0.0038 & 0.0038
\end{tabular}

Columns 204 through 210
\begin{tabular}{lllllll}
0.0041 & 0.0041 & 0.0040 & 0.0040 & 0.0040 & 0.0040 & 0.0039 \\
0.0038 & 0.0038 & 0.0038 & 0.0037 & 0.0037 & 0.0037 & 0.0037 \\
0.0038 & 0.0038 & 0.0037 & 0.0037 & 0.0037 & 0.0037 & 0.0036
\end{tabular}

Columns 211 through 217
\begin{tabular}{lllllll}
0.0039 & 0.0039 & 0.0039 & 0.0038 & 0.0038 & 0.0038 & 0.0038 \\
0.0036 & 0.0036 & 0.0036 & 0.0036 & 0.0035 & 0.0035 & 0.0035 \\
0.0036 & 0.0036 & 0.0036 & 0.0035 & 0.0035 & 0.0035 & 0.0035
\end{tabular}

Columns 218 through 224
\begin{tabular}{lllllll}
0.0037 & 0.0037 & 0.0037 & 0.0037 & 0.0036 & 0.0036 & 0.0036 \\
0.0035 & 0.0034 & 0.0034 & 0.0034 & 0.0034 & 0.0034 & 0.0033 \\
0.0034 & 0.0034 & 0.0034 & 0.0034 & 0.0034 & 0.0033 & 0.0033
\end{tabular}

Columns 225 through 231
\begin{tabular}{lllllll}
0.0036 & 0.0036 & 0.0035 & 0.0035 & 0.0035 & 0.0035 & 0.0034 \\
0.0033 & 0.0033 & 0.0033 & 0.0032 & 0.0032 & 0.0032 & 0.0032 \\
0.0033 & 0.0033 & 0.0032 & 0.0032 & 0.0032 & 0.0032 & 0.0032
\end{tabular}

Columns 232 through 238
\begin{tabular}{lllllll}
0.0034 & 0.0034 & 0.0034 & 0.0033 & 0.0033 & 0.0033 & 0.0033 \\
0.0032 & 0.0031 & 0.0031 & 0.0031 & 0.0031 & 0.0030 & 0.0030 \\
0.0031 & 0.0031 & 0.0031 & 0.0031 & 0.0030 & 0.0030 & 0.0030
\end{tabular}

Columns 239 through 245
\begin{tabular}{lllllll}
0.0033 & 0.0032 & 0.0032 & 0.0032 & 0.0032 & 0.0032 & 0.0031 \\
0.0030 & 0.0030 & 0.0030 & 0.0029 & 0.0029 & 0.0029 & 0.0029 \\
0.0030 & 0.0030 & 0.0029 & 0.0029 & 0.0029 & 0.0029 & 0.0029
\end{tabular}

Columns 246 through 252
\begin{tabular}{lllllll}
0.0031 & 0.0031 & 0.0031 & 0.0031 & 0.0030 & 0.0030 & 0.0030 \\
0.0029 & 0.0028 & 0.0028 & 0.0028 & 0.0028 & 0.0028 & 0.0027 \\
0.0028 & 0.0028 & 0.0028 & 0.0028 & 0.0028 & 0.0027 & 0.0027
\end{tabular}

Columns 253 through 259
\begin{tabular}{lllllll}
0.0030 & 0.0029 & 0.0029 & 0.0029 & 0.0029 & 0.0029 & 0.0029 \\
0.0027 & 0.0027 & 0.0027 & 0.0027 & 0.0026 & 0.0026 & 0.0026 \\
0.0027 & 0.0027 & 0.0027 & 0.0026 & 0.0026 & 0.0026 & 0.0026
\end{tabular}

Columns 260 through 266
\begin{tabular}{lllllll}
0.0028 & 0.0028 & 0.0028 & 0.0028 & 0.0028 & 0.0027 & 0.0027 \\
0.0026 & 0.0026 & 0.0025 & 0.0025 & 0.0025 & 0.0025 & 0.0025 \\
0.0026 & 0.0025 & 0.0025 & 0.0025 & 0.0025 & 0.0025 & 0.0024
\end{tabular}

Columns 267 through 273
\begin{tabular}{lllllll}
0.0027 & 0.0027 & 0.0027 & 0.0026 & 0.0026 & 0.0026 & 0.0026 \\
0.0024 & 0.0024 & 0.0024 & 0.0024 & 0.0024 & 0.0024 & 0.0023 \\
0.0024 & 0.0024 & 0.0024 & 0.0024 & 0.0024 & 0.0023 & 0.0023
\end{tabular}

Columns 274 through 280
\begin{tabular}{lllllll}
0.0026 & 0.0025 & 0.0025 & 0.0025 & 0.0025 & 0.0025 & 0.0025 \\
0.0023 & 0.0023 & 0.0023 & 0.0023 & 0.0022 & 0.0022 & 0.0022 \\
0.0023 & 0.0023 & 0.0023 & 0.0022 & 0.0022 & 0.0022 & 0.0022
\end{tabular}

Columns 281 through 287
\begin{tabular}{lllllll}
0.0024 & 0.0024 & 0.0024 & 0.0024 & 0.0024 & 0.0024 & 0.0023 \\
0.0022 & 0.0022 & 0.0022 & 0.0021 & 0.0021 & 0.0021 & 0.0021 \\
0.0022 & 0.0022 & 0.0021 & 0.0021 & 0.0021 & 0.0021 & 0.0021
\end{tabular}

Columns 288 through 294
\begin{tabular}{lllllll}
0.0023 & 0.0023 & 0.0023 & 0.0023 & 0.0023 & 0.0022 & 0.0022 \\
0.0021 & 0.0021 & 0.0020 & 0.0020 & 0.0020 & 0.0020 & 0.0020 \\
0.0021 & 0.0020 & 0.0020 & 0.0020 & 0.0020 & 0.0020 & 0.0020
\end{tabular}

Columns 295 through 301
\begin{tabular}{lllllll}
0.0022 & 0.0022 & 0.0022 & 0.0022 & 0.0021 & 0.0021 & 0.0021 \\
0.0020 & 0.0019 & 0.0019 & 0.0019 & 0.0019 & 0.0019 & 0.0019
\end{tabular}
0.0019
0.0019
0.0019
0.0019
0.0019
0.0019
0.0018

Columns 302 through 308
\begin{tabular}{lllllll}
0.0021 & 0.0021 & 0.0021 & 0.0020 & 0.0020 & 0.0020 & 0.0020 \\
0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0017 \\
0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0017
\end{tabular}

Columns 309 through 315
\begin{tabular}{llr}
0.0020 & 0.0020 & 0 \\
0.0017 & 0.0017 & 0 \\
0.0017 & 0.0017 & 0 \\
olumns & 316 & through \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
0.0019 & 0.0019 & 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0018 \\
0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0015 \\
0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0015 & 0.0015
\end{tabular}

Columns 323 through 329
\begin{tabular}{lllllll}
0.0018 & 0.0018 & 0.0017 & 0.0017 & 0.0017 & 0.0017 & 0.0017 \\
0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0014 \\
0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0014 & 0.0014
\end{tabular}

Columns 330 through 336
\begin{tabular}{llr}
0.0017 & 0.0017 & 0 \\
0.0014 & 0.0014 & 0 \\
0.0014 & 0.0014 & 0 \\
columns 337 & through & 343
\end{tabular}
\(\begin{array}{rrr}0.0016 & 0.0016 & 0.0 \\ \text { NaN } & \mathrm{NaN} & \\ \mathrm{NaN} & \mathrm{NaN} & \\ & & \\ \text { olumns } 344 & \text { through } 350\end{array}\)
\begin{tabular}{rrrr}
0.0015 & 0.0015 & 0.0014 & 0.0014 \\
NaN & NaN & NaN & NaN \\
NaN & NaN & NaN & NaN
\end{tabular}
0.0014
NaN
NaN
0.0014
NaN
NaN
0.0014

NaN NaN

Columns 351 through 357
\begin{tabular}{rrrrrrr}
0.0014 & 0.0014 & 0.0014 & 0.0013 & 0.0013 & 0.0013 & 0.0013 \\
NaN & NaN & NaN & NaN & NaN & NaN & NaN \\
NaN & NaN & NaN & NaN & NaN & NaN & NaN
\end{tabular}

Columns 358 through 361
\begin{tabular}{rrrr}
0.0013 & 0.0013 & 0.0013 & 0.0013 \\
NaN & NaN & NaN & NaN \\
NaN & NaN & NaN & NaN
\end{tabular}

CFlowDates =
Columns 1 through 6
\begin{tabular}{llllll}
730498 & 730517 & 730546 & 730577 & 730607 & 730638 \\
731323 & 731337 & 731368 & 731398 & 731429 & 731460 \\
731353 & 731368 & 731398 & 731429 & 731460 & 731490
\end{tabular}

Columns 7 through 12
\begin{tabular}{llllll}
730668 & 730699 & 730730 & 730760 & 730791 & 730821 \\
731490 & 731521 & 731551 & 731582 & 731613 & 731641 \\
731521 & 731551 & 731582 & 731613 & 731641 & 731672
\end{tabular}

Columns 13 through 18

\(731672 \quad 731702\)

730911
731733
731763
730942
730972
731003
731763
731794
731825
731794
731825
731855

Columns 19 through 24
\begin{tabular}{lr}
731033 & 731064 \\
731855 & 731886 \\
731886 & 731916 \\
& \\
umns 25 & through 30
\end{tabular}
\begin{tabular}{llllll}
731217 & 731248 & 731276 & 731307 & 731337 & 731368 \\
732038 & 732068 & 732099 & 732129 & 732160 & 732191 \\
732068 & 732099 & 732129 & 732160 & 732191 & 732221
\end{tabular}

Columns 31 through 36
\begin{tabular}{llllll}
731398 & 731429 & 731460 & 731490 & 731521 & 731551 \\
732221 & 732252 & 732282 & 732313 & 732344 & 732372 \\
732252 & 732282 & 732313 & 732344 & 732372 & 732403
\end{tabular}

Columns 37 through 42
\begin{tabular}{llllll}
731582 & 731613 & 731641 & 731672 & 731702 & 731733 \\
732403 & 732433 & 732464 & 732494 & 732525 & 732556 \\
732433 & 732464 & 732494 & 732525 & 732556 & 732586
\end{tabular}

Columns 43 through 48
\begin{tabular}{llllll}
731763 & 731794 & 731825 & 731855 & 731886 & 731916 \\
732586 & 732617 & 732647 & 732678 & 732709 & 732737 \\
732617 & 732647 & 732678 & 732709 & 732737 & 732768
\end{tabular}

Columns 49 through 54
\begin{tabular}{lr}
731947 & 731978 \\
732768 & 732798 \\
732798 & 732829 \\
& \\
umns 55 & through 60
\end{tabular}
\begin{tabular}{llllll}
732129 & 732160 & 732191 & 732221 & 732252 & 732282 \\
732951 & 732982 & 733012 & 733043 & 733074 & 733102 \\
732982 & 733012 & 733043 & 733074 & 733102 & 733133
\end{tabular}

Columns 61 through 66
\begin{tabular}{llllll}
732313 & 732344 & 732372 & 732403 & 732433 & 732464 \\
733133 & 733163 & 733194 & 733224 & 733255 & 733286 \\
733163 & 733194 & 733224 & 733255 & 733286 & 733316
\end{tabular}

Columns 67 through 72
\begin{tabular}{llllll}
732494 & 732525 & 732556 & 732586 & 732617 & 732647 \\
733316 & 733347 & 733377 & 733408 & 733439 & 733468 \\
733347 & 733377 & 733408 & 733439 & 733468 & 733499
\end{tabular}

Columns 73 through 78

11-1719
\begin{tabular}{llllll}
732678 & 732709 & 732737 & 732768 & 732798 & 732829 \\
733499 & 733529 & 733560 & 733590 & 733621 & 733652 \\
733529 & 733560 & 733590 & 733621 & 733652 & 733682
\end{tabular}

Columns 79 through 84
\begin{tabular}{llllll}
732859 & 732890 & 732921 & 732951 & 732982 & 733012 \\
733682 & 733713 & 733743 & 733774 & 733805 & 733833 \\
733713 & 733743 & 733774 & 733805 & 733833 & 733864
\end{tabular}

Columns 85 through 90
\begin{tabular}{llllll}
733043 & 733074 & 733102 & 733133 & 733163 & 733194 \\
733864 & 733894 & 733925 & 733955 & 733986 & 734017 \\
733894 & 733925 & 733955 & 733986 & 734017 & 734047
\end{tabular}

Columns 91 through 96
\begin{tabular}{ll}
733224 & 733255 \\
734047 & 734078
\end{tabular}

733286
733316
734139
733347
733377
\(734047 \quad 734078\)
734108
734170
734170
734198
\(734078 \quad 734108\)
734139
734198
734229
Columns 97 through 102
\begin{tabular}{lll}
733408 & 733439 & 733468 \\
734229 & 734259 & 734290 \\
734259 & 734290 & 734320
\end{tabular}
\begin{tabular}{lll}
733499 & 733529 & 733560 \\
734320 & 734351 & 734382 \\
734351 & 734382 & 734412
\end{tabular}

Columns 103 through 108
\begin{tabular}{lr}
733590 & 733621 \\
734412 & 734443 \\
734443 & 734473 \\
umns 109 & through 114
\end{tabular}
\begin{tabular}{lcclll}
733774 & 733805 & 733833 & 733864 & 733894 & 733925 \\
734594 & 734624 & 734655 & 734685 & 734716 & 734747 \\
734624 & 734655 & 734685 & 734716 & 734747 & 734777 \\
7 & & & & & \\
umns 115 through 120 & & & & \\
7333955 & 733986 & 734017 & 734047 & 734078 & 734108
\end{tabular}
\begin{tabular}{llllll}
734777 & 734808 & 734838 & 734869 & 734900 & 734929 \\
734808 & 734838 & 734869 & 734900 & 734929 & 734960
\end{tabular}

Columns 121 through 126
\begin{tabular}{llllll}
734139 & 734170 & 734198 & 734229 & 734259 & 734290 \\
734960 & 734990 & 735021 & 735051 & 735082 & 735113 \\
734990 & 735021 & 735051 & 735082 & 735113 & 735143
\end{tabular}

Columns 127 through 132
\begin{tabular}{lll}
734320 & 734351 & 734382 \\
735143 & 735174 & 735204
\end{tabular}

734412
735235

734443
734473

735174735204
735266 735266 735294 me 133 through 138
Columns 133 through 138
73404
\begin{tabular}{ll}
734504 & 734535 \\
735325 & 735355
\end{tabular}
734563
735386
735416
734594
735416
735447

734624
734655
735325735355
886
735447
735447
735478
73535573538673516
735478 735508

Columns 139 through 144
\begin{tabular}{llllll}
734685 & 734716 & 734747 & 734777 & 734808 & 734838 \\
735508 & 735539 & 735569 & 735600 & 735631 & 735659 \\
735539 & 735569 & 735600 & 735631 & 735659 & 735690
\end{tabular}

Columns 145 through 150
\begin{tabular}{ll}
734869 & 734900 \\
735690 & 735720
\end{tabular}

734960
735781
734990
735021
735690735720
734929
735812 735812

735843
735720
735751
735781
735843
735873

Columns 151 through 156
\begin{tabular}{lr}
735051 & 735082 \\
735873 & 735904 \\
735904 & 735934 \\
& \\
umns 157 & through 162
\end{tabular}
\begin{tabular}{llllll}
735235 & 735266 & 735294 & 735325 & 735355 & 735386 \\
736055 & 736085 & 736116 & 736146 & 736177 & 736208 \\
736085 & 736116 & 736146 & 736177 & 736208 & 736238
\end{tabular}

11-1721

Columns 163 through 168
\begin{tabular}{llllll}
735416 & 735447 & 735478 & 735508 & 735539 & 735569 \\
736238 & 736269 & 736299 & 736330 & 736361 & 736390 \\
736269 & 736299 & 736330 & 736361 & 736390 & 736421
\end{tabular}

Columns 169 through 174
\begin{tabular}{ll}
735600 & 735631 \\
736421 & 736451
\end{tabular}

735659
735690
735720
735751
\(736421 \quad 736451\)
736482
736512
736543
736574
\(736451 \quad 736482\)
736512
736543
736574
736604

Columns 175 through 180
\begin{tabular}{llllll}
735781 & 735812 & 735843 & 735873 & 735904 & 735934 \\
736604 & 736635 & 736665 & 736696 & 736727 & 736755 \\
736635 & 736665 & 736696 & 736727 & 736755 & 736786
\end{tabular}

Columns 181 through 186
\begin{tabular}{lll}
735965 & 735996 & 736024 \\
736786 & 736816 & 736847
\end{tabular}

736055
736085
736116 \(736786736816 \quad 736847\)
736816736847
736877
736877
736908
736939
736908
736939
736969

Columns 187 through 192
\(736146736177 \quad 736208\)
736969737000737030
736238
737061
736269
736299

737000
737061
737092 737092 737120 737000

737030
Columns 193 through 198
\begin{tabular}{llllll}
736330 & 736361 & 736390 & 736421 & 736451 & 736482 \\
737151 & 737181 & 737212 & 737242 & 737273 & 737304 \\
737181 & 737212 & 737242 & 737273 & 737304 & 737334
\end{tabular}

Columns 199 through 204
\begin{tabular}{llllll}
736512 & 736543 & 736574 & 736604 & 736635 & 736665 \\
737334 & 737365 & 737395 & 737426 & 737457 & 737485 \\
737365 & 737395 & 737426 & 737457 & 737485 & 737516
\end{tabular}

Columns 205 through 210
\begin{tabular}{llllll}
736696 & 736727 & 736755 & 736786 & 736816 & 736847 \\
737516 & 737546 & 737577 & 737607 & 737638 & 737669 \\
737546 & 737577 & 737607 & 737638 & 737669 & 737699
\end{tabular}

Columns 211 through 216
\begin{tabular}{lr}
736877 & 736908 \\
737699 & 737730 \\
737730 & 737760 \\
& \\
umns 217 & through 222
\end{tabular}
\begin{tabular}{llllll}
737061 & 737092 & 737120 & 737151 & 737181 & 737212 \\
737882 & 737912 & 737943 & 737973 & 738004 & 738035 \\
737912 & 737943 & 737973 & 738004 & 738035 & 738065
\end{tabular}

Columns 223 through 228
\begin{tabular}{ll}
737242 & 737273 \\
738065 & 738096
\end{tabular}

737334
738157
737365
737395
738065738096
737304
738188 738216 738096738126 738157

738188 738216 738247

Columns 229 through 234
\begin{tabular}{lll}
737426 & 737457 & 737485 \\
738247 & 738277 & 738308 \\
738277 & 738308 & 738338
\end{tabular}
\begin{tabular}{ll}
737516 & 737546 \\
738338 & 738369 \\
738369 & 738400
\end{tabular}

737577
\(738277 \quad 738308 \quad 738338\)
738369
738400
738400
 738430

Columns 235 through 240
\begin{tabular}{lr}
737607 & 737638 \\
738430 & 738461 \\
738461 & 738491 \\
& \\
umns 241 & through 246
\end{tabular}
\begin{tabular}{llllll}
737791 & 737822 & 737851 & 737882 & 737912 & 737943 \\
738612 & 738642 & 738673 & 738703 & 738734 & 738765 \\
738642 & 738673 & 738703 & 738734 & 738765 & 738795
\end{tabular}

Columns 247 through 252
\begin{tabular}{llllll}
737973 & 738004 & 738035 & 738065 & 738096 & 738126
\end{tabular}

11-1723
\begin{tabular}{llllll}
738795 & 738826 & 738856 & 738887 & 738918 & 738946 \\
738826 & 738856 & 738887 & 738918 & 738946 & 738977
\end{tabular}

Columns 253 through 258
\begin{tabular}{llllll}
738157 & 738188 & 738216 & 738247 & 738277 & 738308 \\
738977 & 739007 & 739038 & 739068 & 739099 & 739130 \\
739007 & 739038 & 739068 & 739099 & 739130 & 739160
\end{tabular}

Columns 259 through 264
\begin{tabular}{lll}
738338 & 738369 & 738400 \\
739160 & 739191 & 73922
\end{tabular}

Columns 265 through 270
\(739343 \quad 73937\)
\(739373 \quad 739404\)
738581
738612
738642
739434739465739496
739465 739496 739526

Columns 271 through 276
\begin{tabular}{llllll}
738703 & 738734 & 738765 & 738795 & 738826 & 738856 \\
739526 & 739557 & 739587 & 739618 & 739649 & 739677 \\
739557 & 739587 & 739618 & 739649 & 739677 & 739708
\end{tabular}

Columns 277 through 282
\begin{tabular}{ll}
738887 & 738918 \\
739708 & 739738
\end{tabular}

738977
739799
739007
739038 \(739708 \quad 739738\)

738946

739830 739830 739861 739738 739769 739799 739861 739891

Columns 283 through 288
\begin{tabular}{lr}
739068 & 739099 \\
739891 & 739922 \\
739922 & 739952 \\
& \\
umns 289 & through 294
\end{tabular}
\begin{tabular}{llllll}
739252 & 739283 & 739312 & 739343 & 739373 & 739404 \\
740073 & 740103 & 740134 & 740164 & 740195 & 740226 \\
740103 & 740134 & 740164 & 740195 & 740226 & 740256
\end{tabular}

Columns 295 through 300
\begin{tabular}{llllll}
739434 & 739465 & 739496 & 739526 & 739557 & 739587 \\
740256 & 740287 & 740317 & 740348 & 740379 & 740407 \\
740287 & 740317 & 740348 & 740379 & 740407 & 740438
\end{tabular}

Columns 301 through 306
739618
\(740438 \quad 740468\)
739708
740529

739738
739769
\(740438 \quad 740468\)
739677
740529
740560
740591
740468740499
740529
740560
740591 740621

Columns 307 through 312
\begin{tabular}{llllll}
739799 & 739830 & 739861 & 739891 & 739922 & 739952 \\
740621 & 740652 & 740682 & 740713 & 740744 & 740773 \\
740652 & 740682 & 740713 & 740744 & 740773 & 740804
\end{tabular}

Columns 313 through 318
\begin{tabular}{lll}
739983 & 740014 & 740042 \\
740804 & 740834 & 740865
\end{tabular}

740073
740103
740134
740804740834
740895
740895
740926
740957
740834740865
740926
740957
740987

Columns 319 through 324
\begin{tabular}{ll}
740164 & 740195 \\
740987 & 741018
\end{tabular}
740226
741048
741079
740256
741079
741110

740287
740317
\(740987 \quad 741018\)
741079
741110 741110 741138 741018741048 741138 741169

Columns 325 through 330
\begin{tabular}{llllll}
740348 & 740379 & 740407 & 740438 & 740468 & 740499 \\
741169 & 741199 & 741230 & 741260 & 741291 & 741322 \\
741199 & 741230 & 741260 & 741291 & 741322 & 741352
\end{tabular}

Columns 331 through 336
\begin{tabular}{rrrrrr}
740529 & 740560 & 740591 & 740621 & 740652 & 740682 \\
741352 & 741383 & 741413 & 741444 & NaN & NaN \\
741383 & 741413 & 741444 & NaN & NaN & NaN
\end{tabular}

Columns 337 through 342

11-1725

Columns 15 through 21
\begin{tabular}{lllllll}
14.0667 & 15.0667 & 16.0667 & 17.0667 & 18.0667 & 19.0667 & 20.0667 \\
13.9333 & 14.9333 & 15.9333 & 16.9333 & 17.9333 & 18.9333 & 19.9333 \\
13.9333 & 14.9333 & 15.9333 & 16.9333 & 17.9333 & 18.9333 & 19.9333
\end{tabular}

Columns 22 through 28
\begin{tabular}{lllllll}
21.0667 & 22.0667 & 23.0667 & 24.0667 & 25.0667 & 26.0667 & 27.0667 \\
20.9333 & 21.9333 & 22.9333 & 23.9333 & 24.9333 & 25.9333 & 26.9333 \\
20.9333 & 21.9333 & 22.9333 & 23.9333 & 24.9333 & 25.9333 & 26.9333 \\
& & & & & & \\
Columns 29 through 35 & & & & & \\
28.0667 & 29.0667 & 30.0667 & 31.0667 & 32.0667 & 33.0667 & 34.0667 \\
27.9333 & 28.9333 & 29.9333 & 30.9333 & 31.9333 & 32.9333 & 33.9333 \\
27.9333 & 28.9333 & 29.9333 & 30.9333 & 31.9333 & 32.9333 & 33.9333
\end{tabular}

Columns 36 through 42
\begin{tabular}{lllllll}
35.0667 & 36.0667 & 37.0667 & 38.0667 & 39.0667 & 40.0667 & 41.0667 \\
34.9333 & 35.9333 & 36.9333 & 37.9333 & 38.9333 & 39.9333 & 40.9333 \\
34.9333 & 35.9333 & 36.9333 & 37.9333 & 38.9333 & 39.9333 & 40.9333 \\
& & & & & & \\
Columns 43 & through 49 & & & & \\
\\
42.0667 & 43.0667 & 44.0667 & 45.0667 & 46.0667 & 47.0667 & 48.0667 \\
41.9333 & 42.9333 & 43.9333 & 44.9333 & 45.9333 & 46.9333 & 47.9333 \\
41.9333 & 42.9333 & 43.9333 & 44.9333 & 45.9333 & 46.9333 & 47.9333
\end{tabular}

Columns 50 through 56
\begin{tabular}{lllllll}
49.0667 & 50.0667 & 51.0667 & 52.0667 & 53.0667 & 54.0667 & 55.0667 \\
48.9333 & 49.9333 & 50.9333 & 51.9333 & 52.9333 & 53.9333 & 54.9333 \\
48.9333 & 49.9333 & 50.9333 & 51.9333 & 52.9333 & 53.9333 & 54.9333
\end{tabular}

Columns 57 through 63
\begin{tabular}{lllllll}
56.0667 & 57.0667 & 58.0667 & 59.0667 & 60.0667 & 61.0667 & 62.0667 \\
55.9333 & 56.9333 & 57.9333 & 58.9333 & 59.9333 & 60.9333 & 61.9333 \\
55.9333 & 56.9333 & 57.9333 & 58.9333 & 59.9333 & 60.9333 & 61.9333
\end{tabular}

\footnotetext{
Columns 64 through 70
}
\begin{tabular}{lllllll}
63.0667 & 64.0667 & 65.0667 & 66.0667 & 67.0667 & 68.0667 & 69.0667 \\
62.9333 & 63.9333 & 64.9333 & 65.9333 & 66.9333 & 67.9333 & 68.9333 \\
62.9333 & 63.9333 & 64.9333 & 65.9333 & 66.9333 & 67.9333 & 68.9333 \\
& & & & & & \\
Columns 71 through 77 & & & & & \\
& & & & & & \\
70.0667 & 71.0667 & 72.0667 & 73.0667 & 74.0667 & 75.0667 & 76.0667 \\
69.9333 & 70.9333 & 71.9333 & 72.9333 & 73.9333 & 74.9333 & 75.9333 \\
69.9333 & 70.9333 & 71.9333 & 72.9333 & 73.9333 & 74.9333 & 75.9333
\end{tabular}

Columns 78 through 84
\begin{tabular}{lllllll}
77.0667 & 78.0667 & 79.0667 & 80.0667 & 81.0667 & 82.0667 & 83.0667 \\
76.9333 & 77.9333 & 78.9333 & 79.9333 & 80.9333 & 81.9333 & 82.9333 \\
76.9333 & 77.9333 & 78.9333 & 79.9333 & 80.9333 & 81.9333 & 82.9333
\end{tabular}

Columns 85 through 91
\begin{tabular}{lllllll}
84.0667 & 85.0667 & 86.0667 & 87.0667 & 88.0667 & 89.0667 & 90.0667 \\
83.9333 & 84.9333 & 85.9333 & 86.9333 & 87.9333 & 88.9333 & 89.9333 \\
83.9333 & 84.9333 & 85.9333 & 86.9333 & 87.9333 & 88.9333 & 89.9333 \\
& & & & & & \\
Columns 92 through 98 & & & & \\
\\
& & & & & & \\
91.0667 & 92.0667 & 93.0667 & 94.0667 & 95.0667 & 96.0667 & 97.0667 \\
90.9333 & 91.9333 & 92.9333 & 93.9333 & 94.9333 & 95.9333 & 96.9333 \\
90 & 91.9333 & 92.9333 & 93.9333 & 94.9333 & 95.9333 & 96.9333
\end{tabular}

Columns 99 through 105
\begin{tabular}{lrrrrrr}
98.0667 & 99.0667 & 100.0667 & 101.0667 & 102.0667 & 103.0667 & 104.0667 \\
97.9333 & 98.9333 & 99.9333 & 100.9333 & 101.9333 & 102.9333 & 103.9333 \\
97.9333 & 98.9333 & 99.9333 & 100.9333 & 101.9333 & 102.9333 & 103.9333
\end{tabular}

Columns 106 through 112
\begin{tabular}{lllllll}
105.0667 & 106.0667 & 107.0667 & 108.0667 & 109.0667 & 110.0667 & 111.0667 \\
104.9333 & 105.9333 & 106.9333 & 107.9333 & 108.9333 & 109.9333 & 110.9333 \\
104.9333 & 105.9333 & 106.9333 & 107.9333 & 108.9333 & 109.9333 & 110.9333
\end{tabular}

Columns 113 through 119
\begin{tabular}{lllllll}
112.0667 & 113.0667 & 114.0667 & 115.0667 & 116.0667 & 117.0667 & 118.0667 \\
111.9333 & 112.9333 & 113.9333 & 114.9333 & 115.9333 & 116.9333 & 117.9333
\end{tabular}
```

111.9333 112.9333 113.9333 114.9333 115.9333 116.9333 117.9333
Columns }120\mathrm{ through 126

| 119.0667 | 120.0667 | 121.0667 | 122.0667 | 123.0667 | 124.0667 | 125.0667 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 118.9333 | 119.9333 | 120.9333 | 121.9333 | 122.9333 | 123.9333 | 124.9333 |
| 118.9333 | 119.9333 | 120.9333 | 121.9333 | 122.9333 | 123.9333 | 124.9333 |

Columns 127 through 133

| 126.0667 | 127.0667 | 128.0667 | 129.0667 | 130.0667 | 131.0667 | 132.0667 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 125.9333 | 126.9333 | 127.9333 | 128.9333 | 129.9333 | 130.9333 | 131.9333 |
| 125.9333 | 126.9333 | 127.9333 | 128.9333 | 129.9333 | 130.9333 | 131.9333 |

Columns 134 through 140

| 133.0667 | 134.0667 | 135.0667 | 136.0667 | 137.0667 | 138.0667 | 139.0667 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 132.9333 | 133.9333 | 134.9333 | 135.9333 | 136.9333 | 137.9333 | 138.9333 |
| 132.9333 | 133.9333 | 134.9333 | 135.9333 | 136.9333 | 137.9333 | 138.9333 |

Columns 141 through 147

| 140.0667 | 141.0667 | 142.0667 | 143.0667 | 144.0667 | 145.0667 | 146.0667 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 139.9333 | 140.9333 | 141.9333 | 142.9333 | 143.9333 | 144.9333 | 145.9333 |
| 139.9333 | 140.9333 | 141.9333 | 142.9333 | 143.9333 | 144.9333 | 145.9333 |

Columns 148 through 154

| 147.0667 | 148.0667 | 149.0667 | 150.0667 | 151.0667 | 152.0667 | 153.0667 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 146.9333 | 147.9333 | 148.9333 | 149.9333 | 150.9333 | 151.9333 | 152.9333 |
| 146.9333 | 147.9333 | 148.9333 | 149.9333 | 150.9333 | 151.9333 | 152.9333 |

Columns 155 through 161

| 154.0667 | 155.0667 | 156.0667 | 157.0667 | 158.0667 | 159.0667 | 160.0667 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 153.9333 | 154.9333 | 155.9333 | 156.9333 | 157.9333 | 158.9333 | 159.9333 |
| 153.9333 | 154.9333 | 155.9333 | 156.9333 | 157.9333 | 158.9333 | 159.9333 |

Columns 162 through 168

| 161.0667 | 162.0667 | 163.0667 | 164.0667 | 165.0667 | 166.0667 | 167.0667 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 160.9333 | 161.9333 | 162.9333 | 163.9333 | 164.9333 | 165.9333 | 166.9333 |
| 160.9333 | 161.9333 | 162.9333 | 163.9333 | 164.9333 | 165.9333 | 166.9333 |

```

Columns 169 through 175
\begin{tabular}{lllllll}
168.0667 & 169.0667 & 170.0667 & 171.0667 & 172.0667 & 173.0667 & 174.0667 \\
167.9333 & 168.9333 & 169.9333 & 170.9333 & 171.9333 & 172.9333 & 173.9333 \\
167.9333 & 168.9333 & 169.9333 & 170.9333 & 171.9333 & 172.9333 & 173.9333
\end{tabular}

Columns 176 through 182
\begin{tabular}{lllllll}
175.0667 & 176.0667 & 177.0667 & 178.0667 & 179.0667 & 180.0667 & 181.0667 \\
174.9333 & 175.9333 & 176.9333 & 177.9333 & 178.9333 & 179.9333 & 180.9333 \\
174.9333 & 175.9333 & 176.9333 & 177.9333 & 178.9333 & 179.9333 & 180.9333
\end{tabular}

Columns 183 through 189
\begin{tabular}{lllllll}
182.0667 & 183.0667 & 184.0667 & 185.0667 & 186.0667 & 187.0667 & 188.0667 \\
181.9333 & 182.9333 & 183.9333 & 184.9333 & 185.9333 & 186.9333 & 187.9333 \\
181.9333 & 182.9333 & 183.9333 & 184.9333 & 185.9333 & 186.9333 & 187.9333
\end{tabular}

Columns 190 through 196
\begin{tabular}{lllllll}
189.0667 & 190.0667 & 191.0667 & 192.0667 & 193.0667 & 194.0667 & 195.0667 \\
188.9333 & 189.9333 & 190.9333 & 191.9333 & 192.9333 & 193.9333 & 194.9333 \\
188.9333 & 189.9333 & 190.9333 & 191.9333 & 192.9333 & 193.9333 & 194.9333
\end{tabular}

Columns 197 through 203
\begin{tabular}{lllllll}
196.0667 & 197.0667 & 198.0667 & 199.0667 & 200.0667 & 201.0667 & 202.0667 \\
195.9333 & 196.9333 & 197.9333 & 198.9333 & 199.9333 & 200.9333 & 201.9333 \\
195.9333 & 196.9333 & 197.9333 & 198.9333 & 199.9333 & 200.9333 & 201.9333
\end{tabular}

Columns 204 through 210
\begin{tabular}{lllllll}
203.0667 & 204.0667 & 205.0667 & 206.0667 & 207.0667 & 208.0667 & 209.0667 \\
202.9333 & 203.9333 & 204.9333 & 205.9333 & 206.9333 & 207.9333 & 208.9333 \\
202.9333 & 203.9333 & 204.9333 & 205.9333 & 206.9333 & 207.9333 & 208.9333 \\
& & & & & & \\
Columns 211 through 217 \\
& & & & & & \\
210.0667 & 211.0667 & 212.0667 & 213.0667 & 214.0667 & 215.0667 & 216.0667 \\
209.9333 & 210.9333 & 211.9333 & 212.9333 & 213.9333 & 214.9333 & 215.9333 \\
209.9333 & 210.9333 & 211.9333 & 212.9333 & 213.9333 & 214.9333 & 215.9333
\end{tabular}
\begin{tabular}{lllllll}
217.0667 & 218.0667 & 219.0667 & 220.0667 & 221.0667 & 222.0667 & 223.0667 \\
216.9333 & 217.9333 & 218.9333 & 219.9333 & 220.9333 & 221.9333 & 222.9333 \\
216.9333 & 217.9333 & 218.9333 & 219.9333 & 220.9333 & 221.9333 & 222.9333
\end{tabular}

Columns 225 through 231
\begin{tabular}{lllllll}
224.0667 & 225.0667 & 226.0667 & 227.0667 & 228.0667 & 229.0667 & 230.0667 \\
223.9333 & 224.9333 & 225.9333 & 226.9333 & 227.9333 & 228.9333 & 229.9333 \\
223.9333 & 224.9333 & 225.9333 & 226.9333 & 227.9333 & 228.9333 & 229.9333
\end{tabular}

Columns 232 through 238
\begin{tabular}{lllllll}
231.0667 & 232.0667 & 233.0667 & 234.0667 & 235.0667 & 236.0667 & 237.0667 \\
230.9333 & 231.9333 & 232.9333 & 233.9333 & 234.9333 & 235.9333 & 236.9333 \\
230.9333 & 231.9333 & 232.9333 & 233.9333 & 234.9333 & 235.9333 & 236.9333 \\
& & & & & & \\
Columns 239 through 245 & & & & \\
238.0667 & 239.0667 & 240.0667 & 241.0667 & 242.0667 & 243.0667 & 244.0667 \\
237.9333 & 238.9333 & 239.9333 & 240.9333 & 241.9333 & 242.9333 & 243.9333 \\
237.9333 & 238.9333 & 239.9333 & 240.9333 & 241.9333 & 242.9333 & 243.9333
\end{tabular}

Columns 246 through 252
\begin{tabular}{lllllll}
245.0667 & 246.0667 & 247.0667 & 248.0667 & 249.0667 & 250.0667 & 251.0667 \\
244.9333 & 245.9333 & 246.9333 & 247.9333 & 248.9333 & 249.9333 & 250.9333 \\
244.9333 & 245.9333 & 246.9333 & 247.9333 & 248.9333 & 249.9333 & 250.9333
\end{tabular}

Columns 253 through 259
\begin{tabular}{lllllll}
252.0667 & 253.0667 & 254.0667 & 255.0667 & 256.0667 & 257.0667 & 258.0667 \\
251.9333 & 252.9333 & 253.9333 & 254.9333 & 255.9333 & 256.9333 & 257.9333 \\
251.9333 & 252.9333 & 253.9333 & 254.9333 & 255.9333 & 256.9333 & 257.9333 \\
& & & & & & \\
Columns 260 through 266 & & & & & \\
259.0667 & 260.0667 & 261.0667 & 262.0667 & 263.0667 & 264.0667 & 265.0667 \\
258.9333 & 259.9333 & 260.9333 & 261.9333 & 262.9333 & 263.9333 & 264.9333 \\
258.9333 & 259.9333 & 260.9333 & 261.9333 & 262.9333 & 263.9333 & 264.9333
\end{tabular}

Columns 267 through 273
\begin{tabular}{lllllll}
266.0667 & 267.0667 & 268.0667 & 269.0667 & 270.0667 & 271.0667 & 272.0667 \\
265.9333 & 266.9333 & 267.9333 & 268.9333 & 269.9333 & 270.9333 & 271.9333
\end{tabular}

Columns 274 through 280
\begin{tabular}{lllllll}
273.0667 & 274.0667 & 275.0667 & 276.0667 & 277.0667 & 278.0667 & 279.0667 \\
272.9333 & 273.9333 & 274.9333 & 275.9333 & 276.9333 & 277.9333 & 278.9333 \\
272.9333 & 273.9333 & 274.9333 & 275.9333 & 276.9333 & 277.9333 & 278.9333
\end{tabular}

Columns 281 through 287
\begin{tabular}{lllllll}
280.0667 & 281.0667 & 282.0667 & 283.0667 & 284.0667 & 285.0667 & 286.0667 \\
279.9333 & 280.9333 & 281.9333 & 282.9333 & 283.9333 & 284.9333 & 285.9333 \\
279.9333 & 280.9333 & 281.9333 & 282.9333 & 283.9333 & 284.9333 & 285.9333 \\
& & & & & & \\
Columns 288 through 294 & & & & \\
287.0667 & 288.0667 & 289.0667 & 290.0667 & 291.0667 & 292.0667 & 293.0667 \\
286.9333 & 287.9333 & 288.9333 & 289.9333 & 290.9333 & 291.9333 & 292.9333 \\
286.9333 & 287.9333 & 288.9333 & 289.9333 & 290.9333 & 291.9333 & 292.9333
\end{tabular}

Columns 295 through 301
\begin{tabular}{lllllll}
294.0667 & 295.0667 & 296.0667 & 297.0667 & 298.0667 & 299.0667 & 300.0667 \\
293.9333 & 294.9333 & 295.9333 & 296.9333 & 297.9333 & 298.9333 & 299.9333 \\
293.9333 & 294.9333 & 295.9333 & 296.9333 & 297.9333 & 298.9333 & 299.9333 \\
& & & & & & \\
Columns 302 through 308 & & & & \\
\\
301.0667 & 302.0667 & 303.0667 & 304.0667 & 305.0667 & 306.0667 & 307.0667 \\
300.9333 & 301.9333 & 302.9333 & 303.9333 & 304.9333 & 305.9333 & 306.9333 \\
300.9333 & 301.9333 & 302.9333 & 303.9333 & 304.9333 & 305.9333 & 306.9333
\end{tabular}

Columns 309 through 315
\begin{tabular}{lllllll}
308.0667 & 309.0667 & 310.0667 & 311.0667 & 312.0667 & 313.0667 & 314.0667 \\
307.9333 & 308.9333 & 309.9333 & 310.9333 & 311.9333 & 312.9333 & 313.9333 \\
307.9333 & 308.9333 & 309.9333 & 310.9333 & 311.9333 & 312.9333 & 313.9333
\end{tabular}

Columns 316 through 322
\begin{tabular}{lllllll}
315.0667 & 316.0667 & 317.0667 & 318.0667 & 319.0667 & 320.0667 & 321.0667 \\
314.9333 & 315.9333 & 316.9333 & 317.9333 & 318.9333 & 319.9333 & 320.9333 \\
314.9333 & 315.9333 & 316.9333 & 317.9333 & 318.9333 & 319.9333 & 320.9333
\end{tabular}

Columns 323 through 329
\begin{tabular}{rrrrrrr}
322.0667 & 323.0667 & 324.0667 & 325.0667 & 326.0667 & 327.0667 & 328.0667 \\
321.9333 & 322.9333 & 323.9333 & 324.9333 & 325.9333 & 326.9333 & 327.9333 \\
321.9333 & 322.9333 & 323.9333 & 324.9333 & 325.9333 & 326.9333 & 327.9333 \\
& & & & & & \\
Columns 330 through 336 & & & & & \\
& & & & & & \\
329.0667 & 330.0667 & 331.0667 & 332.0667 & 333.0667 & 334.0667 & 335.0667 \\
328.9333 & 329.9333 & 330.9333 & 331.9333 & 332.9333 & NaN & NaN \\
328.9333 & 329.9333 & 330.9333 & 331.9333 & NaN & NaN & NaN
\end{tabular}

Columns 337 through 343
\begin{tabular}{rrr}
336.0667 & 337.0667 & 338. \\
NaN & NaN & \\
NaN & NaN & \\
Columns 344 through 350
\end{tabular}
\begin{tabular}{rrrrrrr}
343.0667 & 344.0667 & 345.0667 & 346.0667 & 347.0667 & 348.0667 & 349.0667 \\
NaN & NaN & NaN & NaN & NaN & NaN & NaN \\
NaN & NaN & NaN & NaN & NaN & NaN & NaN \\
Columns 351 & through 357 & & & & & \\
\\
& & & & & & \\
350.0667 & 351.0667 & 352.0667 & 353.0667 & 354.0667 & 355.0667 & 356.0667 \\
NaN & NaN & NaN & NaN & NaN & NaN & NaN \\
NaN & NaN & NaN & NaN & NaN & NaN & NaN
\end{tabular}

Columns 358 through 361
\begin{tabular}{rrrr}
357.0667 & 358.0667 & 359.0667 & 360.0667 \\
NaN & NaN & NaN & NaN \\
NaN & NaN & NaN & NaN
\end{tabular}

Factors =
Columns 1 through 7
\begin{tabular}{lllllll}
1.0000 & 0.9992 & 0.9982 & 0.9970 & 0.9957 & 0.9942 & 0.9925 \\
1.0000 & 0.9944 & 0.9887 & 0.9828 & 0.9769 & 0.9711 & 0.9653 \\
1.0000 & 0.9942 & 0.9883 & 0.9824 & 0.9766 & 0.9707 & 0.9649
\end{tabular}

11-1733

Columns 8 through 14
\begin{tabular}{lllllll}
0.9907 & 0.9887 & 0.9865 & 0.9841 & 0.9816 & 0.9789 & 0.9761 \\
0.9595 & 0.9538 & 0.9481 & 0.9424 & 0.9368 & 0.9311 & 0.9255 \\
0.9592 & 0.9534 & 0.9477 & 0.9420 & 0.9364 & 0.9307 & 0.9251
\end{tabular}

Columns 15 through 21
\begin{tabular}{lllllll}
0.9731 & 0.9699 & 0.9666 & 0.9631 & 0.9594 & 0.9556 & 0.9517 \\
0.9199 & 0.9144 & 0.9089 & 0.9034 & 0.8979 & 0.8925 & 0.8871 \\
0.9195 & 0.9140 & 0.9085 & 0.9030 & 0.8975 & 0.8921 & 0.8866
\end{tabular}

Columns 22 through 28
\begin{tabular}{lllllll}
0.9475 & 0.9433 & 0.9389 & 0.9343 & 0.9296 & 0.9247 & 0.9197 \\
0.8817 & 0.8763 & 0.8710 & 0.8657 & 0.8604 & 0.8552 & 0.8499 \\
0.8813 & 0.8759 & 0.8706 & 0.8653 & 0.8600 & 0.8547 & 0.8495
\end{tabular}

Columns 29 through 35
\begin{tabular}{lllllll}
0.9146 & 0.9093 & 0.9039 & 0.8985 & 0.8932 & 0.8878 & 0.8825 \\
0.8447 & 0.8396 & 0.8344 & 0.8293 & 0.8242 & 0.8191 & 0.8140 \\
0.8443 & 0.8391 & 0.8339 & 0.8288 & 0.8237 & 0.8186 & 0.8136
\end{tabular}

Columns 36 through 42
\begin{tabular}{lllllll}
0.8772 & 0.8720 & 0.8668 & 0.8616 & 0.8564 & 0.8512 & 0.8461 \\
0.8090 & 0.8040 & 0.7990 & 0.7941 & 0.7892 & 0.7842 & 0.7794 \\
0.8085 & 0.8035 & 0.7985 & 0.7936 & 0.7887 & 0.7837 & 0.7789
\end{tabular}

Columns 43 through 49
\begin{tabular}{lllllll}
0.8410 & 0.8359 & 0.8309 & 0.8258 & 0.8208 & 0.8159 & 0.8109 \\
0.7745 & 0.7697 & 0.7649 & 0.7601 & 0.7553 & 0.7506 & 0.7458 \\
0.7740 & 0.7692 & 0.7643 & 0.7595 & 0.7548 & 0.7500 & 0.7453
\end{tabular}

Columns 50 through 56
\begin{tabular}{lllllll}
0.8060 & 0.8011 & 0.7962 & 0.7913 & 0.7865 & 0.7817 & 0.7769 \\
0.7411 & 0.7365 & 0.7318 & 0.7272 & 0.7226 & 0.7180 & 0.7134 \\
0.7406 & 0.7359 & 0.7313 & 0.7267 & 0.7220 & 0.7175 & 0.7129
\end{tabular}

Columns 57 through 63
\begin{tabular}{lllllll}
0.7722 & 0.7674 & 0.7627 & 0.7580 & 0.7533 & 0.7487 & 0.7441 \\
0.7089 & 0.7044 & 0.6999 & 0.6954 & 0.6910 & 0.6865 & 0.6821 \\
0.7084 & 0.7038 & 0.6993 & 0.6949 & 0.6904 & 0.6860 & 0.6816
\end{tabular}

Columns 64 through 70
\begin{tabular}{lllllll}
0.7395 & 0.7349 & 0.7303 & 0.7258 & 0.7213 & 0.7168 & 0.7123 \\
0.6777 & 0.6734 & 0.6690 & 0.6647 & 0.6604 & 0.6561 & 0.6519 \\
0.6772 & 0.6728 & 0.6684 & 0.6641 & 0.6598 & 0.6555 & 0.6513
\end{tabular}

Columns 71 through 77
\begin{tabular}{lllllll}
0.7079 & 0.7035 & 0.6991 & 0.6947 & 0.6903 & 0.6860 & 0.6817 \\
0.6476 & 0.6434 & 0.6392 & 0.6350 & 0.6309 & 0.6267 & 0.6226 \\
0.6470 & 0.6428 & 0.6386 & 0.6344 & 0.6302 & 0.6261 & 0.6220
\end{tabular}

Columns 78 through 84
\begin{tabular}{ll}
0.6774 & 0.6731 \\
0.6185 & 0.6144 \\
0.6179 & 0.6138 \\
& \\
olumns 85 & through 91
\end{tabular}
\begin{tabular}{lllllll}
0.6478 & 0.6437 & 0.6396 & 0.6355 & 0.6314 & 0.6274 & 0.6233 \\
0.5903 & 0.5864 & 0.5825 & 0.5785 & 0.5747 & 0.5708 & 0.5669 \\
0.5897 & 0.5857 & 0.5818 & 0.5779 & 0.5740 & 0.5701 & 0.5663
\end{tabular}

Columns 92 through 98
\begin{tabular}{lll}
0.6193 & 0.6153 \\
0.5631 & 0.5593 \\
0.5624 & 0.5586 \\
& \\
olumns 99 & through 105
\end{tabular}
\begin{tabular}{lllllll}
0.5917 & 0.5879 & 0.5840 & 0.5802 & 0.5764 & 0.5726 & 0.5688 \\
0.5368 & 0.5331 & 0.5294 & 0.5257 & 0.5221 & 0.5185 & 0.5149 \\
0.5361 & 0.5324 & 0.5287 & 0.5250 & 0.5214 & 0.5178 & 0.5142
\end{tabular}

Columns 106 through 112
\(\begin{array}{lllllll}0.5651 & 0.5614 & 0.5576 & 0.5539 & 0.5503 & 0.5466 & 0.5429\end{array}\)
0.5113
0.5077
0.5042
0.5006
0.4971
0.4936
0.4901
0.5106
0.5070
0.5034
0.4999
0.4964
0.4929
0.4894

Columns 113 through 119
\begin{tabular}{lllllll}
0.5393 & 0.5357 & 0.5321 & 0.5285 & 0.5250 & 0.5214 & 0.5179 \\
0.4866 & 0.4832 & 0.4797 & 0.4763 & 0.4729 & 0.4695 & 0.4661 \\
0.4859 & 0.4824 & 0.4790 & 0.4756 & 0.4722 & 0.4688 & 0.4654
\end{tabular}

Columns 120 through 126
\begin{tabular}{lllllll}
0.5144 & 0.5109 & 0.5074 & 0.5040 & 0.5005 & 0.4971 & 0.4937 \\
0.4628 & 0.4594 & 0.4561 & 0.4528 & 0.4495 & 0.4462 & 0.4430 \\
0.4620 & 0.4587 & 0.4554 & 0.4520 & 0.4487 & 0.4455 & 0.4422
\end{tabular}

Columns 127 through 133
\begin{tabular}{lllllll}
0.4903 & 0.4869 & 0.4835 & 0.4802 & 0.4769 & 0.4735 & 0.4702 \\
0.4397 & 0.4365 & 0.4333 & 0.4301 & 0.4269 & 0.4237 & 0.4205 \\
0.4389 & 0.4357 & 0.4325 & 0.4293 & 0.4261 & 0.4229 & 0.4197
\end{tabular}

Columns 134 through 140
\begin{tabular}{lllllll}
0.4670 & 0.4637 & 0.4604 & 0.4572 & 0.4540 & 0.4508 & 0.4476 \\
0.4174 & 0.4143 & 0.4111 & 0.4080 & 0.4049 & 0.4019 & 0.3988 \\
0.4166 & 0.4134 & 0.4103 & 0.4072 & 0.4041 & 0.4011 & 0.3980
\end{tabular}

Columns 141 through 147
\begin{tabular}{lllllll}
0.4444 & 0.4412 & 0.4381 & 0.4349 & 0.4318 & 0.4287 & 0.4256 \\
0.3958 & 0.3927 & 0.3897 & 0.3867 & 0.3837 & 0.3808 & 0.3778 \\
0.3949 & 0.3919 & 0.3889 & 0.3859 & 0.3829 & 0.3799 & 0.3769
\end{tabular}

Columns 148 through 154
\begin{tabular}{lllllll}
0.4226 & 0.4195 & 0.4165 & 0.4134 & 0.4104 & 0.4074 & 0.4044 \\
0.3748 & 0.3719 & 0.3690 & 0.3661 & 0.3632 & 0.3603 & 0.3574 \\
0.3740 & 0.3711 & 0.3681 & 0.3652 & 0.3623 & 0.3594 & 0.3566
\end{tabular}

Columns 155 through 161
\begin{tabular}{lllllll}
0.4014 & 0.3985 & 0.3955 & 0.3926 & 0.3897 & 0.3868 & 0.3839 \\
0.3546 & 0.3517 & 0.3489 & 0.3461 & 0.3433 & 0.3405 & 0.3377 \\
0.3537 & 0.3509 & 0.3480 & 0.3452 & 0.3424 & 0.3396 & 0.3368
\end{tabular}

Columns 162 through 168
\begin{tabular}{lllllll}
0.3810 & 0.3781 & 0.3753 & 0.3724 & 0.3696 & 0.3668 & 0.3640 \\
0.3350 & 0.3322 & 0.3295 & 0.3267 & 0.3240 & 0.3213 & 0.3186 \\
0.3341 & 0.3313 & 0.3286 & 0.3258 & 0.3231 & 0.3204 & 0.3177
\end{tabular}

Columns 169 through 175
\begin{tabular}{lllllll}
0.3612 & 0.3584 & 0.3557 & 0.3529 & 0.3502 & 0.3475 & 0.3448 \\
0.3160 & 0.3133 & 0.3106 & 0.3080 & 0.3054 & 0.3027 & 0.3001 \\
0.3151 & 0.3124 & 0.3097 & 0.3071 & 0.3045 & 0.3018 & 0.2992
\end{tabular}

Columns 176 through 182
\begin{tabular}{lllllll}
0.3421 & 0.3394 & 0.3367 & 0.3340 & 0.3314 & 0.3287 & 0.3261 \\
0.2975 & 0.2950 & 0.2924 & 0.2898 & 0.2873 & 0.2847 & 0.2822 \\
0.2966 & 0.2940 & 0.2915 & 0.2889 & 0.2863 & 0.2838 & 0.2813
\end{tabular}

Columns 183 through 189
\begin{tabular}{lllllll}
0.3235 & 0.3209 & 0.3183 & 0.3157 & 0.3132 & 0.3106 & 0.3081 \\
0.2797 & 0.2772 & 0.2747 & 0.2722 & 0.2698 & 0.2673 & 0.2649 \\
0.2788 & 0.2763 & 0.2738 & 0.2713 & 0.2688 & 0.2663 & 0.2639
\end{tabular}

Columns 190 through 196
\begin{tabular}{lllllll}
0.3055 & 0.3030 & 0.3005 & 0.2980 & 0.2955 & 0.2931 & 0.2906 \\
0.2624 & 0.2600 & 0.2576 & 0.2552 & 0.2528 & 0.2504 & 0.2480 \\
0.2615 & 0.2590 & 0.2566 & 0.2542 & 0.2518 & 0.2494 & 0.2470
\end{tabular}

Columns 197 through 203
\begin{tabular}{lllllll}
0.2881 & 0.2857 & 0.2833 & 0.2809 & 0.2784 & 0.2760 & 0.2737 \\
0.2457 & 0.2433 & 0.2410 & 0.2386 & 0.2363 & 0.2340 & 0.2317 \\
0.2447 & 0.2423 & 0.2400 & 0.2376 & 0.2353 & 0.2330 & 0.2307
\end{tabular}

Columns 204 through 210
\begin{tabular}{lllllll}
0.2713 & 0.2689 & 0.2666 & 0.2642 & 0.2619 & 0.2596 & 0.2573 \\
0.2294 & 0.2271 & 0.2249 & 0.2226 & 0.2204 & 0.2181 & 0.2159 \\
0.2284 & 0.2261 & 0.2239 & 0.2216 & 0.2193 & 0.2171 & 0.2149
\end{tabular}

Columns 211 through 217
\begin{tabular}{lllllll}
0.2550 & 0.2527 & 0.2504 & 0.2481 & 0.2458 & 0.2436 & 0.2414 \\
0.2137 & 0.2115 & 0.2093 & 0.2071 & 0.2049 & 0.2027 & 0.2005 \\
0.2126 & 0.2104 & 0.2082 & 0.2060 & 0.2038 & 0.2017 & 0.1995
\end{tabular}

Columns 218 through 224
\begin{tabular}{lllllll}
0.2391 & 0.2369 & 0.2347 & 0.2325 & 0.2303 & 0.2281 & 0.2259 \\
0.1984 & 0.1962 & 0.1941 & 0.1920 & 0.1899 & 0.1877 & 0.1856 \\
0.1973 & 0.1952 & 0.1931 & 0.1909 & 0.1888 & 0.1867 & 0.1846
\end{tabular}

Columns 225 through 231
\begin{tabular}{lllllll}
0.2238 & 0.2216 & 0.2195 & 0.2173 & 0.2152 & 0.2131 & 0.2110 \\
0.1836 & 0.1815 & 0.1794 & 0.1773 & 0.1753 & 0.1732 & 0.1712 \\
0.1825 & 0.1804 & 0.1783 & 0.1763 & 0.1742 & 0.1722 & 0.1701
\end{tabular}

Columns 232 through 238
\begin{tabular}{lllllll}
0.2089 & 0.2068 & 0.2047 & 0.2027 & 0.2006 & 0.1986 & 0.1965 \\
0.1692 & 0.1671 & 0.1651 & 0.1631 & 0.1611 & 0.1591 & 0.1572 \\
0.1681 & 0.1661 & 0.1640 & 0.1620 & 0.1600 & 0.1581 & 0.1561
\end{tabular}

Columns 239 through 245
\begin{tabular}{lllllll}
0.1945 & 0.1925 & 0.1904 & 0.1884 & 0.1864 & 0.1844 & 0.1825 \\
0.1552 & 0.1532 & 0.1513 & 0.1493 & 0.1474 & 0.1455 & 0.1436 \\
0.1541 & 0.1521 & 0.1502 & 0.1482 & 0.1463 & 0.1444 & 0.1424
\end{tabular}

Columns 246 through 252
\begin{tabular}{lllllll}
0.1805 & 0.1785 & 0.1766 & 0.1746 & 0.1727 & 0.1707 & 0.1688 \\
0.1416 & 0.1397 & 0.1378 & 0.1359 & 0.1341 & 0.1322 & 0.1303 \\
0.1405 & 0.1386 & 0.1367 & 0.1348 & 0.1329 & 0.1311 & 0.1292
\end{tabular}

Columns 253 through 259
\begin{tabular}{lllllll}
0.1669 & 0.1650 & 0.1631 & 0.1612 & 0.1593 & 0.1575 & 0.1556 \\
0.1285 & 0.1266 & 0.1248 & 0.1229 & 0.1211 & 0.1193 & 0.1175 \\
0.1273 & 0.1255 & 0.1236 & 0.1218 & 0.1200 & 0.1181 & 0.1163
\end{tabular}

Columns 260 through 266
0.1537
0.1519
0.1500
0.1482
0.1464
0.1446
0.1427
0.1157
0.1139
0.1121
0.1103
0.1085
0.1068
0.1050
\(0.1145 \quad 0.1127 \quad 0.1109 \quad 0.1091\)
0.1074
0.1056
0.1038

Columns 267 through 273
\begin{tabular}{lllllll}
0.1409 & 0.1391 & 0.1374 & 0.1356 & 0.1338 & 0.1320 & 0.1303 \\
0.1032 & 0.1015 & 0.0998 & 0.0980 & 0.0963 & 0.0946 & 0.0929 \\
0.1021 & 0.1003 & 0.0986 & 0.0968 & 0.0951 & 0.0934 & 0.0917
\end{tabular}

Columns 274 through 280
\begin{tabular}{lllllll}
0.1285 & 0.1268 & 0.1250 & 0.1233 & 0.1216 & 0.1199 & 0.1182 \\
0.0912 & 0.0895 & 0.0878 & 0.0861 & 0.0844 & 0.0827 & 0.0811 \\
0.0900 & 0.0883 & 0.0866 & 0.0849 & 0.0832 & 0.0815 & 0.0798
\end{tabular}

Columns 281 through 287
\begin{tabular}{lllllll}
0.1165 & 0.1148 & 0.1131 & 0.1114 & 0.1097 & 0.1080 & 0.1064 \\
0.0794 & 0.0778 & 0.0761 & 0.0745 & 0.0728 & 0.0712 & 0.0696 \\
0.0782 & 0.0765 & 0.0749 & 0.0732 & 0.0716 & 0.0700 & 0.0684
\end{tabular}

Columns 288 through 294
\begin{tabular}{lllllll}
0.1047 & 0.1031 & 0.1014 & 0.0998 & 0.0982 & 0.0966 & 0.0950 \\
0.0680 & 0.0664 & 0.0648 & 0.0632 & 0.0616 & 0.0600 & 0.0584 \\
0.0667 & 0.0651 & 0.0635 & 0.0619 & 0.0603 & 0.0587 & 0.0572
\end{tabular}

Columns 295 through 301
\begin{tabular}{lllllll}
0.0933 & 0.0917 & 0.0902 & 0.0886 & 0.0870 & 0.0854 & 0.0838 \\
0.0568 & 0.0553 & 0.0537 & 0.0522 & 0.0506 & 0.0491 & 0.0476 \\
0.0556 & 0.0540 & 0.0525 & 0.0509 & 0.0494 & 0.0478 & 0.0463
\end{tabular}

Columns 302 through 308
\begin{tabular}{lllllll}
0.0823 & 0.0807 & 0.0792 & 0.0776 & 0.0761 & 0.0746 & 0.0730 \\
0.0460 & 0.0445 & 0.0430 & 0.0415 & 0.0400 & 0.0385 & 0.0370 \\
0.0448 & 0.0432 & 0.0417 & 0.0402 & 0.0387 & 0.0372 & 0.0357
\end{tabular}

Columns 309 through 315
\begin{tabular}{lllllll}
0.0715 & 0.0700 & 0.0685 & 0.0670 & 0.0655 & 0.0640 & 0.0625 \\
0.0355 & 0.0340 & 0.0325 & 0.0311 & 0.0296 & 0.0281 & 0.0267 \\
0.0342 & 0.0327 & 0.0312 & 0.0298 & 0.0283 & 0.0268 & 0.0254
\end{tabular}

Columns 316 through 322
\begin{tabular}{lllllll}
0.0610 & 0.0596 & 0.0581 & 0.0566 & 0.0552 & 0.0537 & 0.0523 \\
0.0252 & 0.0238 & 0.0223 & 0.0209 & 0.0195 & 0.0180 & 0.0166 \\
0.0239 & 0.0225 & 0.0210 & 0.0196 & 0.0181 & 0.0167 & 0.0153
\end{tabular}

Columns 323 through 329
\begin{tabular}{lllllll}
0.0508 & 0.0494 & 0.0480 & 0.0466 & 0.0451 & 0.0437 & 0.0423 \\
0.0152 & 0.0138 & 0.0124 & 0.0110 & 0.0096 & 0.0082 & 0.0068 \\
0.0139 & 0.0125 & 0.0111 & 0.0097 & 0.0083 & 0.0069 & 0.0055
\end{tabular}

Columns 330 through 336
\begin{tabular}{llr}
0.0409 & 0.0395 & 0 \\
0.0055 & 0.0041 & 0 \\
0.0041 & 0.0027 & 0 \\
& & \\
olumns & 337 & through \\
\hline
\end{tabular}
\begin{tabular}{rrr}
0.0313 & 0.0299 & 0.0286 \\
NaN & NaN & NaN \\
NaN & NaN & NaN
\end{tabular}
0.0272
NaN
NaN
0.0259
NaN
0.0245
NaN
0.0232

NaN
NaN
Columns 344 through 350
\(\begin{array}{rr}0.0219 & 0.0205 \\ \mathrm{NaN} & \mathrm{NaN}\end{array}\)
0.0192

NaN NaN
0.0166
NaN
NaN
0.0153

NaN NaN
0.0140 NaN NaN

Columns 351 through 357
\begin{tabular}{rrrr}
0.0127 & 0.0114 & 0.0101 & 0.0088 \\
NaN & NaN & NaN & NaN \\
NaN & NaN & NaN & NaN \\
& & & \\
olumns 358 & through 361 \\
& & & \\
0.0038 & 0.0025 & 0.0012 & 0 \\
NaN & NaN & NaN & NaN \\
NaN & NaN & NaN & NaN
\end{tabular}

Columns 358 through 361

Each output is a 3-by-361 element matrix padded with NaN's wherever elements are missing.

\section*{Calculate Payment, Principal, Interest, and Prepayment for a Single Mortgage}

Given a mortgage with the following characteristics, compute payments, principal, interest, and prepayment.

Define the mortgage characteristics.
```

Settle = datenum('17-April-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
PrepaySpeed = 100;

```

Use mbscfamonts to evaluate the mortgage.
```

[Payment, Principal, Interest, Prepayment] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, PrepaySpeed)

```
Payment =
 Columns 1 through 7
\begin{tabular}{lllllll}
-0.0033 & 0.0118 & 0.0120 & 0.0121 & 0.0120 & 0.0119 & 0.0119
\end{tabular}
 Columns 8 through 14
 \(\begin{array}{lllllll}0.0118 & 0.0117 & 0.0117 & 0.0116 & 0.0115 & 0.0115 & 0.0114\end{array}\)
 Columns 15 through 21
 \(\begin{array}{lllllll}0.0114 & 0.0113 & 0.0112 & 0.0112 & 0.0111 & 0.0110 & 0.0110\end{array}\)
 Columns 22 through 28
 \(\begin{array}{lllllll}0.0109 & 0.0109 & 0.0108 & 0.0107 & 0.0107 & 0.0106 & 0.0106\end{array}\)
 Columns 29 through 35
0.0105
0.0105
0.0104
0.0103
0.0103
0.0102
0.0102

Columns 36 through 42
0.0101
0.0101
0.0100
0.0099
0.0099
0.0098
0.0098

Columns 43 through 49
0.0097
0.0097
0.0096
0.0096
0.0095
0.0095
0.0094

Columns 50 through 56
0.0094
0.0093
0.0093
0.0092
0.0092
0.0091
0.0090

Columns 57 through 63
0.0090
0.0089
0.0089
0.0088
0.0088
0.0087
0.0087

Columns 64 through 70
0.0087
0.0086
0.0086
0.0085
0.0085
0.0084
0.0084

Columns 71 through 77
\(\begin{array}{lllllll}0.0083 & 0.0083 & 0.0082 & 0.0082 & 0.0081 & 0.0081 & 0.0080\end{array}\)
Columns 78 through 84
\(\begin{array}{lllllll}0.0080 & 0.0079 & 0.0079 & 0.0079 & 0.0078 & 0.0078 & 0.0077\end{array}\)
Columns 85 through 91
\(\begin{array}{lllllll}0.0077 & 0.0076 & 0.0076 & 0.0075 & 0.0075 & 0.0075 & 0.0074\end{array}\)
Columns 92 through 98
0.0074
0.0073
0.0073
0.0073
0.0072
0.0072
0.0071

Columns 99 through 105
\(\begin{array}{lllllll}0.0071 & 0.0070 & 0.0070 & 0.0070 & 0.0069 & 0.0069 & 0.0068\end{array}\)
Columns 106 through 112
0.0068
0.0068
0.0067
0.0067
0.0066
0.0066
0.0066

Columns 113 through 119
0.0065
0.0065
0.0065
0.0064
0.0064
0.0063
0.0063

Columns 120 through 126
0.0063
0.0062
0.0062
0.0062
0.0061
0.0061
0.0061

Columns 127 through 133
\(\begin{array}{lllllll}0.0060 & 0.0060 & 0.0059 & 0.0059 & 0.0059 & 0.0058 & 0.0058\end{array}\)
Columns 134 through 140
0.0058
0.0057
0.0057
0.0057
0.0056
0.0056
0.0056

Columns 141 through 147
\(\begin{array}{lllllll}0.0055 & 0.0055 & 0.0055 & 0.0054 & 0.0054 & 0.0054 & 0.0053\end{array}\)
Columns 148 through 154
\(\begin{array}{lllllll}0.0053 & 0.0053 & 0.0052 & 0.0052 & 0.0052 & 0.0052 & 0.0051\end{array}\)
Columns 155 through 161
0.0051
0.0051
0.0050
0.0050
0.0050
0.0049
0.0049

Columns 162 through 168
\(\begin{array}{lllllll}0.0049 & 0.0048 & 0.0048 & 0.0048 & 0.0048 & 0.0047 & 0.0047\end{array}\)
Columns 169 through 175
0.0047
0.0046
0.0046
0.0046
0.0046
0.0045
0.0045

Columns 176 through 182
\(\begin{array}{lllllll}0.0045 & 0.0044 & 0.0044 & 0.0044 & 0.0044 & 0.0043 & 0.0043\end{array}\)
Columns 183 through 189
0.0043
0.0043
0.0042
0.0042
0.0042
0.0041
0.0041

Columns 190 through 196
\(\begin{array}{lllllll}0.0041 & 0.0041 & 0.0040 & 0.0040 & 0.0040 & 0.0040 & 0.0039\end{array}\)
Columns 197 through 203
0.0039
0.0039
0.0039
0.0038
0.0038
0.0038
0.0038

Columns 204 through 210
0.0037
0.0037
0.0037
0.0037
0.0036
0.0036
0.0036

Columns 211 through 217
0.0036
0.0035
0.0035
0.0035
0.0035
0.0035
0.0034

Columns 218 through 224
\(\begin{array}{lllllll}0.0034 & 0.0034 & 0.0034 & 0.0033 & 0.0033 & 0.0033 & 0.0033\end{array}\)
Columns 225 through 231
0.0033
0.0032
0.0032
0.0032
0.0032
0.0031
0.0031

Columns 232 through 238
0.0031
0.0031
0.0031
0.0030
0.0030
0.0030
0.0030

Columns 239 through 245
\(\begin{array}{lllllll}0.0030 & 0.0029 & 0.0029 & 0.0029 & 0.0029 & 0.0029 & 0.0028\end{array}\)
Columns 246 through 252
0.0028
0.0028
0.0028
0.0028
0.0027
0.0027
0.0027

Columns 253 through 259
\(\begin{array}{lllllll}0.0027 & 0.0027 & 0.0026 & 0.0026 & 0.0026 & 0.0026 & 0.0026\end{array}\)

Columns 260 through 266
0.0025
0.0025
0.0025
0.0025
0.0025
0.0024
0.0024

Columns 267 through 273
0.0024
0.0024
0.0024
0.0024
0.0023
0.0023
0.0023

Columns 274 through 280
0.0023
0.0023
0.0023
0.0022
0.0022
0.0022
0.0022

Columns 281 through 287
0.0022
0.0021
0.0021
0.0021
0.0021
0.0021
0.0021

Columns 288 through 294
0.0020
0.0020
0.0020
0.0020
0.0020
0.0020
0.0020

Columns 295 through 301
0.0019
0.0019
0.0019
0.0019
0.0019
0.0019
0.0018

Columns 302 through 308
\(\begin{array}{lllllll}0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0017 & 0.0017\end{array}\)
Columns 309 through 315
\(\begin{array}{lllllll}0.0017 & 0.0017 & 0.0017 & 0.0017 & 0.0017 & 0.0016 & 0.0016\end{array}\)
Columns 316 through 322
\(\begin{array}{lllllll}0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0015 & 0.0015\end{array}\)
Columns 323 through 329
0.0015
0.0015
0.0015
0.0015
0.0015
0.0014
0.0014

Columns 330 through 334
\(\begin{array}{lllll}0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0014\end{array}\)

Principal =

Columns 1 through 6
\begin{tabular}{llllll}
731323 & 731337 & 731368 & 731398 & 731429 & 731460
\end{tabular}

Columns 7 through 12

Columns 13 through 18
731672

Columns 19 through 24
\begin{tabular}{llllll}
731855 & 731886 & 731916 & 731947 & 731978 & 732007
\end{tabular}

Columns 25 through 30
\begin{tabular}{llllll}
732038 & 732068 & 732099 & 732129 & 732160 & 732191
\end{tabular}

Columns 31 through 36
\(732221 \quad 732252\)
732282
732313
732344
732372
Columns 37 through 42
\(732403 \quad 732433\)
732464
732494
732525
732556
Columns 43 through 48
732586 732017
732678
732709
732737
Columns 49 through 54
\(732768 \quad 732798\)
732829
732859
732890
732921
Columns 55 through 60
732951
Columns 61 through 66
\begin{tabular}{llllll}
733133 & 733163 & 733194 & 733224 & 733255 & 733286
\end{tabular}

Columns 67 through 72
\(733316 \quad 733347\)

Columns 73 through 78
\(733499 \quad 733529\)

Columns 79 through 84
\(733682 \quad 733713\)

Columns 85 through 90
\(733864-733894\)

Columns 91 through 96

73404

Columns 97 through 102
\begin{tabular}{lllll}
734229 & 734259 & 734290 & 734320 & 734351
\end{tabular}

Columns 103 through 108

734412734443
734473
734504
734535
734563

Columns 109 through 114

734594

Columns 115 through 120
\(734777 \quad 734808\)
734838
734869
734900
734929

Columns 121 through 126
734960

Columns 127 through 132
\(\begin{array}{lllll}735143 & 735174 & 735204 & 735235 & 735266\end{array}\)

Columns 265 through 270
\begin{tabular}{llllll}
739343 & 739373 & 739404 & 739434 & 739465 & 739496
\end{tabular}

Columns 271 through 276
\begin{tabular}{lllll}
739526 & 739557 & 739587 & 739618 & 739649
\end{tabular}

Columns 277 through 282

739708

Columns 283 through 288
\(739891 \quad 739922\)
739952
739983
740014
740042

Columns 289 through 294

740073

Columns 295 through 300

740317
740348
740379
740407

Columns 301 through 306
\(740438 \quad 740468\)
740499
740529
740560
740591

Columns 307 through 312

740621
740682
740713
740744
740773

Columns 313 through 318
\(740804-740834\)
740865
740895
740926
740957

Columns 319 through 324

740987
741048
741079
741110
741138

Columns 325 through 330

741169741199
741230
741260
741291
741322
```

    Columns 331 through 334
        741352 741383
            7 4 1 4 1 3
        741444
    Interest =
Columns 1 through 7
lllllll
Columns 8 through 14
6.9333 7.9333 8.9333 9.9333 10.9333 11.9333 12.9333
Columns 15 through 21
13.9333 14.9333 15.9333 16.9333 17.9333 18.9333 19.9333
Columns 22 through 28
20.9333 21.9333 22.9333 23.9333 24.9333 25.9333 26.9333
Columns 29 through 35
27.9333 28.9333 29.9333 30.9333 31.9333 32.9333 33.9333
Columns 36 through 42
34.9333 35.9333 36.9333 37.9333 38.9333 39.9333 40.9333
Columns 43 through 49
41.9333 42.9333 43.9333 44.9333 45.9333 46.9333 47.9333
Columns 50 through 56
48.9333 49.9333 50.9333 51.9333 52.9333 53.9333 54.9333
Columns 57 through 63
55.9333 56.9333 57.9333 58.9333 59.9333 60.9333 61.9333

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Columns 64 through 70} \\
\hline 62.9333 & 63.9333 & 64.9333 & 65.9333 & 66.9333 & 67.9333 & 68.9333 \\
\hline \multicolumn{7}{|l|}{Columns 71 through 77} \\
\hline 69.9333 & 70.9333 & 71.9333 & 72.9333 & 73.9333 & 74.9333 & 75.9333 \\
\hline \multicolumn{7}{|l|}{Columns 78 through 84} \\
\hline 76.9333 & 77.9333 & 78.9333 & 79.9333 & 80.9333 & 81.9333 & 82.9333 \\
\hline \multicolumn{7}{|l|}{Columns 85 through 91} \\
\hline 83.9333 & 84.9333 & 85.9333 & 86.9333 & 87.9333 & 88.9333 & 89.9333 \\
\hline \multicolumn{7}{|l|}{Columns 92 through 98} \\
\hline 90.9333 & 91.9333 & 92.9333 & 93.9333 & 94.9333 & 95.9333 & 96.9333 \\
\hline \multicolumn{7}{|l|}{Columns 99 through 105} \\
\hline 97.9333 & 98.9333 & 99.9333 & 100.9333 & 101.9333 & 102.9333 & 103.9333 \\
\hline \multicolumn{7}{|l|}{Columns 106 through 112} \\
\hline 104.9333 & 105.9333 & 106.9333 & 107.9333 & 108.9333 & 109.9333 & 110.9333 \\
\hline \multicolumn{7}{|l|}{Columns 113 through 119} \\
\hline 111.9333 & 112.9333 & 113.9333 & 114.9333 & 115.9333 & 116.9333 & 117.9333 \\
\hline \multicolumn{7}{|l|}{Columns 120 through 126} \\
\hline 118.9333 & 119.9333 & 120.9333 & 121.9333 & 122.9333 & 123.9333 & 124.9333 \\
\hline \multicolumn{7}{|l|}{Columns 127 through 133} \\
\hline 125.9333 & 126.9333 & 127.9333 & 128.9333 & 129.9333 & 130.9333 & 131.9333 \\
\hline \multicolumn{7}{|l|}{Columns 134 through 140} \\
\hline 132.9333 & 133.9333 & 134.9333 & 135.9333 & 136.9333 & 137.9333 & 138.9333 \\
\hline
\end{tabular}
```

Columns 141 through 147
139.9333 140.9333 141.9333 142.9333 143.9333 144.9333 145.9333
Columns 148 through 154
146.9333 147.9333 148.9333 149.9333 150.9333 151.9333 152.9333
Columns 155 through 161
153.9333 154.9333 155.9333 156.9333 157.9333 158.9333 159.9333
Columns 162 through 168
160.9333 161.9333 162.9333 163.9333 164.9333 165.9333 166.9333
Columns 169 through 175
167.9333 168.9333 169.9333 170.9333 171.9333 172.9333 173.9333
Columns 176 through 182
174.9333 175.9333 176.9333 177.9333 178.9333 179.9333 180.9333
Columns 183 through 189
181.9333 182.9333 183.9333 184.9333 185.9333 186.9333 187.9333
Columns }190\mathrm{ through 196
188.9333 189.9333 190.9333 191.9333 192.9333 193.9333 194.9333
Columns }197\mathrm{ through 203
195.9333 196.9333 197.9333 198.9333 199.9333 200.9333 201.9333
Columns 204 through 210
202.9333 203.9333 204.9333 205.9333 206.9333 207.9333 208.9333
Columns 211 through 217
209.9333 210.9333 211.9333 212.9333 213.9333 214.9333 215.9333

```
```

Columns 218 through 224
216.9333 217.9333 218.9333 219.9333 220.9333 221.9333 222.9333
Columns 225 through 231
223.9333 224.9333 225.9333 226.9333 227.9333 228.9333 229.9333
Columns 232 through 238
230.9333 231.9333 232.9333 233.9333 234.9333 235.9333 236.9333
Columns 239 through 245
237.9333 238.9333 239.9333 240.9333 241.9333 242.9333 243.9333
Columns 246 through 252
244.9333 245.9333 246.9333 247.9333 248.9333 249.9333 250.9333
Columns 253 through 259
251.9333 252.9333 253.9333 254.9333 255.9333 256.9333 257.9333
Columns 260 through 266
258.9333 259.9333 260.9333 261.9333 262.9333 263.9333 264.9333
Columns 267 through 273
265.9333 266.9333 267.9333 268.9333 269.9333 270.9333 271.9333
Columns 274 through 280
272.9333 273.9333 274.9333 275.9333 276.9333 277.9333 278.9333
Columns 281 through 287
279.9333 280.9333 281.9333 282.9333 283.9333 284.9333 285.9333
Columns 288 through 294
286.9333 287.9333 288.9333 289.9333 290.9333 291.9333 292.9333

```

Columns 295 through 301
\(293.9333 \quad 294.9333 \quad 295.9333 \quad 296.9333 \quad 297.9333 \quad 298.9333 \quad 299.9333\)

Columns 302 through 308
\(300.9333 \quad 301.9333 \quad 302.9333 \quad 303.9333 \quad 304.9333 \quad 305.9333 \quad 306.9333\)
Columns 309 through 315
\(307.9333 \quad 308.9333 \quad 309.9333 \quad 310.9333 \quad 311.9333 \quad 312.9333 \quad 313.9333\)
Columns 316 through 322
\(314.9333 \quad 315.9333 \quad 316.9333 \quad 317.9333 \quad 318.9333 \quad 319.9333 \quad 320.9333\)
Columns 323 through 329
\(321.9333 \quad 322.9333 \quad 323.9333 \quad 324.9333 \quad 325.9333 \quad 326.9333 \quad 327.9333\)
Columns 330 through 334
\(328.9333 \quad 329.9333 \quad 330.9333 \quad 331.9333 \quad 332.9333\)

Prepayment =
Columns 1 through 7
1.0000
0.9944
0.9887
0.9828
0.9769
0.9711
0.9653

Columns 8 through 14
\begin{tabular}{lllllll}
0.9595 & 0.9538 & 0.9481 & 0.9424 & 0.9368 & 0.9311 & 0.9255
\end{tabular}

Columns 15 through 21
\begin{tabular}{lllllll}
0.9199 & 0.9144 & 0.9089 & 0.9034 & 0.8979 & 0.8925 & 0.8871
\end{tabular}

Columns 22 through 28
\begin{tabular}{lllllll}
0.8817 & 0.8763 & 0.8710 & 0.8657 & 0.8604 & 0.8552 & 0.8499
\end{tabular}

Columns 29 through 35
0.8447
0.8396
0.8344
0.8293
0.8242
0.8191
0.8140

Columns 36 through 42
0.8090
0.8040
0.7990
0.7941
0.7892
0.7842
0.7794

Columns 43 through 49
0.7745
0.7697
0.7649
0.7601
0.7553
0.7506
0.7458

Columns 50 through 56
0.7411
0.7365
0.7318
0.7272
0.7226
0.7180
0.7134

Columns 57 through 63
0.7089
0.7044
0.6999
0.6954
0.6910
0.6865
0.6821

Columns 64 through 70
0.6777
0.6734
0.6690
0.6647
0.6604
0.6561
0.6519

Columns 71 through 77
0.6476
0.6434
0.6392
0.6350
0.6309
0.6267
0.6226

Columns 78 through 84
0.6185
0.6144
0.6104
0.6063
0.6023
0.5983
0.5943

Columns 85 through 91
0.5903
0.5864
0.5825
0.5785
0.5747
0.5708
0.5669

Columns 92 through 98
0.5631
0.5593
0.5555
0.5517
0.5479
0.5442
0.5405

Columns 99 through 105
0.5368
0.5331
0.5294
0.5257
0.5221
0.5185
0.5149

Columns 106 through 112
0.5113
0.5077
0.5042
0.5006
0.4971
0.4936
0.4901

Columns 113 through 119
0.4866
0.4832
0.4797
0.4763
0.4729
0.4695
0.4661

Columns 120 through 126
0.4628
0.4594
0.4561
0.4528
0.4495
0.4462
0.4430

Columns 127 through 133
0.4397
0.4365
0.4333
0.4301
0.4269
0.4237
0.4205

Columns 134 through 140
0.4174
0.4143
0.4111
0.4080
0.4049
0.4019
0.3988

Columns 141 through 147
0.3958
0.3927
0.3897
0.3867
0.3837
0.3808
0.3778

Columns 148 through 154
0.3748
0.3719
0.3690
0.3661
0.3632
0.3603
0.3574

Columns 155 through 161
0.3546
0.3517
0.3489
0.3461
0.3433
0.3405
0.3377

Columns 162 through 168
\(\begin{array}{lllllll}0.3350 & 0.3322 & 0.3295 & 0.3267 & 0.3240 & 0.3213 & 0.3186\end{array}\)
Columns 169 through 175
0.3160
0.3133
0.3106
0.3080
0.3054
0.3027
0.3001

Columns 176 through 182
0.2975
0.2950
0.2924
0.2898
0.2873
0.2847
0.2822

Columns 183 through 189
0.2797
0.2772
0.2747
0.2722
0.2698
0.2673
0.2649

Columns 190 through 196
0.2624
0.2600
0.2576
0.2552
0.2528
0.2504
0.2480

Columns 197 through 203
0.2457
0.2433
0.2410
0.2386
0.2363
0.2340
0.2317

Columns 204 through 210
0.2294
0.2271
0.2249
0.2226
0.2204
0.2181
0.2159

Columns 211 through 217
0.2137
0.2115
0.2093
0.2071
0.2049
0.2027
0.2005

Columns 218 through 224
0.1984
0.1962
0.1941
0.1920
0.1899
0.1877
0.1856

Columns 225 through 231
0.1836
0.1815
0.1794
0.1773
0.1753
0.1732
0.1712

Columns 232 through 238
0.1692
0.1671
0.1651
0.1631
0.1611
0.1591
0.1572

Columns 239 through 245
0.1552
0.1532
0.1513
0.1493
0.1474
0.1455
0.1436

Columns 246 through 252
0.1416
0.1397
0.1378
0.1359
0.1341
0.1322
0.1303

Columns 253 through 259
0.1285
0.1266
0.1248
0.1229
0.1211
0.1193
0.1175

Columns 260 through 266
0.1157
0.1139
0.1121
0.1103
0.1085
0.1068
0.1050

Columns 267 through 273
0.1032
0.1015
0.0998
0.0980
0.0963
0.0946
0.0929

Columns 274 through 280
0.0912
0.0895
0.0878
0.0861
0.0844
0.0827
0.0811

Columns 281 through 287
0.0794
0.0778
0.0761
0.0745
0.0728
0.0712
0.0696

Columns 288 through 294
0.0680
0.0664
0.0648
0.0632
0.0616
0.0600
0.0584

Columns 295 through 301
0.0568
0.0553
0.0537
0.0522
0.0506
0.0491
0.0476

Columns 302 through 308
0.0460
0.0445
0.0430
0.0415
0.0400
0.0385
0.0370

Columns 309 through 315
0.0355
0.0340
0.0325
0.0311
0.0296
0.0281
0.0267

Columns 316 through 322
0.0252
0.0238
0.0223
0.0209
0.0195
0.0180
0.0166

Columns 323 through 329
0.0152
0.0138
0.0124
0.0110
0.0096
0.0082
0.0068

Columns 330 through 334
\(\begin{array}{llll}0.0055 & 0.0041 & 0.0027 & 0.0014\end{array}\)
0
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{References}
[1] PSA Uniform Practices, SF-4

\section*{See Also}
cmosched | cmoschedcf | cmoseqcf | mbsnoprepay | mbspassthrough
Introduced in R2012a

\section*{mbsconvp}

Convexity of mortgage pool given price

\section*{Syntax}

Convexity = mbsconvp(Price, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Price & Clean price for every \(\$ 100\) face value. \\
\hline Settle & \begin{tabular}{l}
Settlement date. A serial date number or date character \\
vector. Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A serial date number or date character vector. \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline CouponRate & Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay & Delay in days. \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) to \\
the benchmark model. Default = 0. Set PrepaySpeed to [] if \\
you input a customized prepayment matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Used only when PrepaySpeed is unspecified. \\
Customized prepayment vector. A NaN-padded matrix of size \\
max (TermRemaining) -by-NMBS. Each column corresponds to \\
each mortgage-backed security, and each row corresponds to \\
each month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS-by-1) vectors.

\section*{Description}

Convexity = mbsconvp(Price, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes mortgage-backed security convexity, given time information, price at settlement, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it is seasoned with how long the debt has been outstanding (the loan's age).

\section*{Examples}

\section*{Compute a Mortgage-Backed Security Convexity}

This example shows how to compute a mortgage-backed security convexity, given a mortgage-backed security with the following characteristics.
```

Price = 101;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;
Convexity = mbsconvp(Price, Settle, Maturity, IssueDate,...
GrossRate, CouponRate, Delay, Speed)

```

\section*{Convexity =}
```

    71.6299
    ```
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{References}
[1] PSA Uniform Practices, SF-49

\author{
See Also \\ mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough \\ Introduced before R2006a
}

\section*{mbsconvy}

Convexity of mortgage pool given yield

\section*{Syntax}

Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Yield & Mortgage yield, compounded monthly (in decimal). \\
\hline Settle & \begin{tabular}{l}
Settlement date. A serial date number or date character vector. \\
Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A serial date number or date character vector. \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline CouponRate & Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay & Delay in days. \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) to the \\
benchmark model. Default = 0. Set PrepaySpeed to [] if you \\
input a customized prepayment matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Used only when PrepaySpeed is unspecified. \\
Customized prepayment vector. A NaN-padded matrix of size \\
max(TermRemaining) -by-NMBS. Each column corresponds to \\
each mortgage-backed security, and each row corresponds to each \\
month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}

Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes mortgage-backed security convexity, given time information, semiannual mortgage yield, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it is seasoned with how long the debt has been outstanding (the loan's age).

\section*{Examples}

\section*{Compute the Convexity of a Mortgage Pool Given Yield}

This example shows how to compute the convexity of mortgage pool given yield for a mortgage-backed security with the following characteristics.
```

Yield = 0.07125;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
Speed = 100;
CouponRate = 0.075;
Delay = 14;
Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, ...
GrossRate, CouponRate, Delay, Speed)

```

\section*{Convexity =}
72.8263
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{References}
[1] PSA Uniform Practices, SF-49

\author{
See Also \\ mbsconvp | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough \\ Introduced before R2006a
}

\section*{mbsdurp}

Duration of mortgage pool given price

\section*{Syntax}
[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Price & Clean price for every \$100 face value. \\
\hline Settle & \begin{tabular}{l}
Settlement date. A serial date number or date character vector. \\
Settle must be earlier than or equal to Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A serial date number or date character vector. \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline CouponRate & (Optional) Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay & (Optional) Delay in days. \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) to the \\
benchmark model. Default = 0. Set PrepaySpeed to [] if you \\
input a customized prepayment matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Used only when PrepaySpeed is unspecified. \\
Customized prepayment vector. A NaN-padded matrix of size \\
max (TermRemaining)-by-NMBS. Each column corresponds to \\
each mortgage-backed security, and each row corresponds to each \\
month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}
[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes the mortgage-backed security Macaulay (YearDuration) in years and modified (ModDuration) durations in years, given time information, price at settlement, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it is seasoned with how long the debt has been outstanding (the loan's age).

\section*{Examples}

\section*{Find the Duration of a Mortgage Pool}

This example shows how to find the duration of mortgage pool given a mortgage-backed security with the following characteristics.
```

Price = 101;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;;
Delay = 14;
Speed = 100;

```
[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,...
IssueDate, GrossRate, CouponRate, Delay, Speed)
YearDuration =
 6.4380
ModDuration =
 6.2080
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{References}
[1] PSA Uniform Practices, SF-49

\author{
See Also \\ mbsconvp | mbsconvy | mbsdury | mbsnoprepay | mbspassthrough \\ Introduced before R2006a
}

\section*{mbsdury}

Duration of mortgage pool given yield

\section*{Syntax}
[YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Yield & Mortgage yield, compounded monthly, in decimal. \\
\hline Settle & \begin{tabular}{l}
Settlement date. A serial date number or date character vector. \\
Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A serial date number or date character vector. \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline CouponRate & Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay & Delay in days. \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) to the \\
benchmark model. Default = 0. Set PrepaySpeed to [] if you \\
input a customized prepayment matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Used only when PrepaySpeed is unspecified. \\
Customized prepayment vector. A NaN-padded matrix of size \\
max (TermRemaining) -by-NMBS. Each column corresponds to \\
each mortgage-backed security, and each row corresponds to \\
each month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}
[YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes the mortgage-backed security Macaulay (YearDuration) and Modified (ModDuration) durations, given time information, yield to maturity, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it is seasoned with how long the debt has been outstanding (the loan's age).

\section*{Examples}

\section*{Find the Duration of a Mortgage Pool Given the Yield}

This example shows how to find the duration of mortgage pool given a mortgage-backed security with the following characteristics.
```

Yield = 0.07298413;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
Speed = 100;
CouponRate = 0.075;
Delay = 14;
[YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity,...
IssueDate, GrossRate, CouponRate, Delay, Speed)
YearDuration =
6.4380
ModDuration =
6.2080

```
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{References}
[1] PSA Uniform Practices, SF-49

\author{
See Also \\ mbsconvp | mbsconvy | mbsdurp | mbsnoprepay | mbspassthrough \\ Introduced before R2006a
}

\section*{mbsnoprepay}

End-of-month mortgage cash flows and balances without prepayment

\section*{Syntax}
[Balance, Interest, Payment, Principal] = mbsnoprepay(OriginalBalance, GrossRate, Term)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline OriginalBalance & Original face value in dollars. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline Term & Term of the mortgage in months. \\
\hline
\end{tabular}

All inputs are number of mortgage-backed securities (NMBS)-by-1 vectors.

\section*{Description}
[Balance, Interest, Payment, Principal] = mbsnoprepay(OriginalBalance, GrossRate, Term) computes end-of-month mortgage balance, interest payments, principal payments, and cash flow payments with zero prepayment rate.

The function returns amortizing cash flows and balances over a specified term with no prepayment. When the lengths of pass-throughs are not the same, MATLAB software pads the shorter ones with NaN .

Balance lists the end-of-month balances over the life of the pass-through.
Interest lists all end-of-month interest payments over the life of the pass-through.
Payment lists all end-of-month payments over the life of the pass-through.
Principal lists all scheduled end-of-month principal payments over the life of the passthrough.

All outputs are Term-by-1 vectors.

\section*{Examples}

Given mortgage pools with the following characteristics, compute an amortization schedule.
```

OriginalBalance = 400000000;
CouponRate = 0.08125;
Term = [357; 355]; % Three- and five-month old mortgage pools.
[Balance, Interest, Payment, Principal] = ...
mbsnoprepay(OriginalBalance, CouponRate, Term);

```

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{See Also}
mbsconvp | mbsconvy | mbsdurp | mbspassthrough
Introduced before R2006a

\section*{mbsoas2price}

Price given option-adjusted spread

\section*{Syntax}

Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ZeroCurve & \begin{tabular}{l}
A matrix of three columns: \\
\(-\quad\) Column 1: Serial date numbers. \\
Column 2: Spot rates with maturities corresponding to the \\
dates in Column 1, in decimal (for example, 0.075). \\
- \\
Column 3: Compounding of the rates in Column 2. (This is the \\
agency spot rate on the settlement date.)
\end{tabular} \\
\hline OAS & Option-adjusted spreads in basis points.
\end{tabular}\(\left|\begin{array}{l}\text { Settlement date (scalar only). A serial date number or date } \\
\text { character vector. Date when option-adjusted spread is calculated. } \\
\text { Settle must be earlier than Maturity. }\end{array}\right|\)\begin{tabular}{ll}
Settle & \begin{tabular}{l}
Maturity date. Scalar or vector in serial date number or date \\
character vector.
\end{tabular} \\
\hline Maturity & Issue date. A serial date number or date character vector. \\
\hline IssueDate & Gross coupon rate (including fees), in decimal. \\
\hline GrossRate & (Optional) Net coupon rate, in decimal. Default = GrossRate. \\
\hline CouponRate & \begin{tabular}{l}
(Optional) Delay (in days) between payment from homeowner and \\
receipt by bondholder. Default = 0 (no delay between payment \\
and receipt).
\end{tabular} \\
\hline Delay & \begin{tabular}{l}
Interpolation method. Computes the corresponding spot rates \\
for the bond's cash flow. Available methods are (0) nearest, (1)
\end{tabular} \\
\hline Interpolation
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
linear, and (2) cubic spline. Default = 1. See interp1 for more \\
information.
\end{tabular} \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) \\
to the benchmark model. Default = end of month's CPR. Set \\
PrepaySpeed to [] if you input a customized prepayment \\
matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Customized prepayment matrix. A matrix of size \\
max(TermRemaining)-by-NMBS. Missing values are padded with \\
NaNs. Each column corresponds to a mortgage-backed security, \\
and each row corresponds to each month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}

Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed, PrepayMatrix) computes the clean price of a pass-through security for each \(\$ 100\) face value of outstanding principal.

\section*{Examples}

\section*{Compute the Theoretical Price of a Mortgage Pool}

Given an option-adjusted spread, a spot curve, and a prepayment assumption, compute theoretical price of a mortgage pool. First, create the bonds matrix:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bonds = [datenum(\({ }^{\text {(11/21/2002') }}\) & 0 & 100 & 0 & 2 & ; \\
\hline datenum(\({ }^{\text {(02/20/2003') }}\) & 0 & 100 & 0 & 2 & ; \\
\hline datenum('07/31/2004') & 0.03 & 100 & 2 & 3 & ; \\
\hline & 0.035 & 100 & 2 & 3 & ; \\
\hline datenum('08/15/2012') & 0.04875 & 100 & 2 & 3 & ; \\
\hline datenum('02/15/2031') & 0.05375 & 100 & 2 & 3 & \(1]\) \\
\hline
\end{tabular}

Choose a settlement date.
```

Settle = datenum('20-Aug-2002');

```

Assume the following clean prices for the bonds:
```

Prices = [ 98.97467;
98.58044;
100.10534;
98.18054;
101.38136;
99.25411];

```

Use the following formula to compute spot compounding for the bonds:
```

SpotCompounding = 2*ones(size(Prices));

```

Compute the zero curve.
[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]

ZeroCurve =
\(1.0 \mathrm{e}+05\) *
\begin{tabular}{lll}
7.3154 & 0.0000 & 0.0000 \\
7.3163 & 0.0000 & 0.0000 \\
7.3216 & 0.0000 & 0.0000 \\
7.3327 & 0.0000 & 0.0000 \\
7.3510 & 0.0000 & 0.0000 \\
7.4185 & 0.0000 & 0.0000
\end{tabular}

Assign the following parameters:
```

OAS = [26.0502; 28.6348; 31.2222];
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

```

Calculate the theoretical price from the option-adjusted spread.
Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, ...

IssueDate, GrossRate, CouponRate, Delay, Interpolation, ... PrepaySpeed)

Price \(=\)
95.0006
95.0006
95.0006
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\author{
See Also \\ mbspassthrough | mbsprice2oas | mbsyield2oas
}

Introduced before R2006a

\section*{mbsoas2yield}

Yield given option-adjusted spread

\section*{Syntax}
[MYield, BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ZeroCurve & \begin{tabular}{l}
A matrix of three columns: \\
- \\
- Column 1: Serial date numbers. \\
Column 2: Spot rates with maturities corresponding to the \\
dates in Column 1, in decimal (for example, 0.075). \\
- Column 3: Compounding of the rates in Column 2. (This is \\
the agency spot rate on the settlement date.)
\end{tabular} \\
\hline OAS & Option-adjusted spreads in basis points. \\
\hline Settle & \begin{tabular}{l}
Settlement date (scalar only). A serial date number or date \\
character vector. Date when option-adjusted spread is \\
calculated. Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Maturity date. Scalar or vector in serial date number or date \\
character vector.
\end{tabular} \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline CouponRate & (Optional) Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay & \begin{tabular}{l}
(Optional) Delay (in days) between payment from homeowner \\
and receipt by bondholder. Default = 0 (no delay between \\
payment and receipt).
\end{tabular} \\
\hline Interpolation & \begin{tabular}{l}
Interpolation method. Computes the corresponding spot rates \\
for the bond's cash flow. Available methods are (0) nearest, (1)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
linear, and (2) cubic spline. Default = 1. See interp1 for more \\
information.
\end{tabular} \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) \\
to the benchmark model. Default = end of month's CPR. Set \\
PrepaySpeed to [] if you input a customized prepayment \\
matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Customized prepayment matrix. A matrix of size \\
max (TermRemaining)-by-NMBS. Missing values are padded \\
with NaNs. Each column corresponds to a mortgage-backed \\
security, and each row corresponds to each month after \\
settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}
[MYield, BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed, PrepayMatrix) computes the mortgage and bond-equivalent yields of a pass-through security.

MYield is the yield to maturity of the mortgage-backed security (the mortgage yield). This yield is compounded monthly (12 times per year). For example:
0.075 (7.5\%)

BEMBSYield is the corresponding bond equivalent yield of the mortgage-backed security. This yield is compounded semiannually (two times per year). For example:
0.0761 (7.61\%)

\section*{Examples}

\section*{Compute the Theoretical Yield to Maturity of a Mortgage Pool}

Given an option-adjusted spread, a spot curve, and a prepayment assumption, compute the theoretical yield to maturity of a mortgage pool. First, create the bonds matrix:
```

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

```

Choose a settlement date.
```

Settle = datenum('20-Aug-2002');

```

Assume the following clean prices for the bonds:
```

Prices = [ 98.97467;
98.58044;
100.10534;
98.18054;
101.38136;
99.25411];

```

Use the following formula to compute spot compounding for the bonds:
SpotCompounding = 2*ones(size(Prices));
Compute the zero curve.
```

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]
ZeroCurve =
1.0e+05 *
7.3154 0.0000 0.0000
7.3163 0.0000 0.0000
7.3216 0.0000 0.0000
7.3327 0.0000 0.0000
7.3510 0.0000 0.0000
7.4185 0.0000 0.0000

```

Assign the following parameters:
```

OAS = [26.0502; 28.6348; 31.2222];
Maturity = datenum('02-Jan-2030');

```
```

IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

```

Compute the mortgage yield and bond equivalent mortgage yield.
[MYield BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle, ... Maturity, IssueDate, GrossRate, CouponRate, Delay, ... Interpolation, PrepaySpeed)

MYield =
0.0802
0.0814
0.0828

BEMBSYield =
0.0816
0.0828
0.0842
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\author{
See Also \\ mbsoas2price | mbspassthrough | mbsprice2oas | mbsyield2oas \\ Introduced before R2006a
}

\section*{mbspassthrough}

Mortgage pool cash flows and balances with prepayment

\section*{Syntax}
[Balance, Payment, Principal, Interest, Prepayment] = mbspassthrough(OriginalBalance, GrossRate, OriginalTerm, TermRemaining, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline OriginalBalance & \begin{tabular}{l}
Original balance value in dollars (balance at the beginning of \\
each TermRemaining).
\end{tabular} \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline OriginalTerm & Term of the mortgage in months. \\
\hline TermRemaining & \begin{tabular}{l}
(Optional) Number of full months between settlement and \\
maturity.
\end{tabular} \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) \\
to the benchmark model. Default = (no prepayment). Set \\
PrepaySpeed to [] if you input a customized prepayment \\
matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Used only when PrepaySpeed is unspecified. \\
Customized prepayment vector. A NaN-padded matrix of size \\
max(TermRemaining) -by-NMBS. Each column corresponds to \\
each mortgage-backed security, and each row corresponds to \\
each month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}
[Balance, Payment, Principal, Prepayment, Interest] = mbspassthrough(OriginalBalance, GrossRate, OriginalTerm, TermRemaining, PrepaySpeed, PrepayMatrix)

All outputs are TermRemaining-by-1 vectors of end-of-month values.
Balance is a matrix for the principal balance at end of month.
Payment is a matrix for the total monthly payment.
Principal is a matrix for the principal portion of the payment.
Interest is a matrix for the interest portion of the payment.
Prepayment is a matrix that indicates any unscheduled principal payment.
By default, the securities are seasoned. The applicable CPR depends upon TermRemaining based on a 30 -year prepayment model (PSA or FHA). You may supply a different CPR vector of size TermRemaining-by-1.

\section*{Examples}

\section*{Compute the Cash Flow of Principal, Interest, and Prepayment of a Pass-Through Security}

This example shows how to compute the cash flows and balances of a 3-month old mortgage pool with original term of 360 months, assuming a prepayment speed of 100 .
```

OriginalBalance = 100000;
GrossRate = 0.08125;
OriginalTerm = 360;
TermRemaining = 357;
PrepaySpeed = 100;
[Balance, Payment, Principal, Interest, Prepayment] =...
mbspassthrough(OriginalBalance, GrossRate, OriginalTerm,...
TermRemaining, PrepaySpeed)

```

Balance =
1.0e+04 *
9.9866
9.9715
9.9548
9.9363
9.9161
9.8942
9.8707
9.8454
9.8185
9.7900
9.7598
9.7280
9.6946
9.6596
9.6230
9.5848
9.5450
9.5037
9.4609
9.4166
9.3708
9.3235
9.2748
9.2247
9.1731
9.1202
9.0659
9.0119
8.9582
8.9047
8.8515
8.7985
8.7458
8.6934
8.6412
8.5893
8.5376
8.4862
8.4351
8.3842
8.3335
8.2831
8.2329
8.1830
8.1333
8.0839
8.0347
7.9858
7.9371
7.8886
7.8404
7.7924
7.7446
7.6971
7.6498
7.6027
7.5559
7.5093
7.4629
7.4168
7.3708
7.3251
7.2797
7.2344
7.1894
7.1445
7.0999
7.0556
7.0114
6.9674
6.9237
6.8802
6.8368
6.7937
6.7508
6.7082
6.6657
6.6234
6.5813
6.5395
6.4978
6.4563
6.4151
6.3740
6.3331
6.2925
6.2520
6.2117
6.1716
6.1317
6.0920
6.0525
6.0132
5.9741
5.9351
5.8964
5.8578
5.8194
5.7812
5.7432
5.7054
5.6678
5.6303
5.5930
5.5559
5.5189
5.4822
5.4456
5.4092
5.3730
5.3369
5.3010
5.2653
5.2298
5.1944
5.1592
5.1241
5.0893
5.0545
5.0200
4.9856
4.9514
4.9174
4.8835
4.8497
4.8162
4.7827
4.7495
4.7164
4.6834
4.6507

\footnotetext{
4.6180
4.5855
4.5532
4.5211
4.4890
4.4572
4.4254
4.3939
4.3624
4.3312
4.3000
4.2691
4.2382
4.2075
4.1770
4.1466
4.1163
4.0862
4.0562
4.0264
3.9967
3.9671
3.9377
3.9084
3.8792
3.8502
3.8213
3.7926
3.7640
3.7355
3.7071
3.6789
3.6508
3.6229
3.5950
3.5673
3.5398
3.5123
3.4850
3.4578
3.4307
3.4038
3.3770
3.3503
}
3.3237
3.2972
3.2709
3.2447
3.2186
3.1926
3.1668
3.1410
3.1154
3.0899
3.0645
3.0393
3.0141
2.9891
2.9641
2.9393
2.9146
2.8900
2.8655
2.8412
2.8169
2.7928
2.7687
2.7448
2.7210
2.6972
2.6736
2.6501
2.6267
2.6034
2.5802
2.5571
2.5342
2.5113
2.4885
2.4658
2.4432
2.4208
2.3984
2.3761
2.3539
2.3318
2.3099
2.2880
2.2662
2.2445
2.2229
2.2014
2.1800
2.1587
2.1374
2.1163
2.0953
2.0743
2.0535
2.0327
2.0120
1.9915
1.9710
1.9506
1.9303
1.9100
1.8899
1.8698
1.8499
1.8300
1.8102
1.7905
1.7709
1.7513
1.7319
1.7125
1.6932
1.6740
1.6549
1.6359
1.6169
1.5980
1.5792
1.5605
1.5419
1.5233
1.5048
1.4864
1.4681
1.4498
1.4317
1.4136
1.3956
1.3776
1.3597
1.3419
1.3242
1.3066
1.2890
1.2715
1.2541
1.2367
1.2194
1.2022
1.1851
1.1680
1.1510
1.1341
1.1172
1.1004
1.0837
1.0671
1.0505
1.0340
1.0175
1.0011
0.9848
0.9685
0.9524
0.9362
0.9202
0.9042
0.8883
0.8724
0.8566
0.8409
0.8252
0.8096
0.7940
0.7786
0.7631
0.7478
0.7325
0.7172
0.7020
0.6869

\footnotetext{
0.6719
0.6569
0.6419
0.6270
0.6122
0.5974
0.5827
0.5680
0.5535
0.5389
0.5244
0.5100
0.4956
0.4813
0.4670
0.4528
0.4387
0.4246
0.4105
0.3965
0.3826
0.3687
0.3548
0.3411
0.3273
0.3136
0.3000
0.2864
0.2729
0.2594
0.2460
0.2326
0.2193
0.2060
0.1928
0.1796
0.1665
0.1534
0.1403
0.1273
0.1144
0.1015
0.0887
0.0759
}
0.0631
0.0504
0.0377
0.0251
0.0125

0

Payment =
743.9671
743.4693
742.8468
742.0999
741.2285
740.2329
739.1132
737.8699
736.5034
735.0139
733.4021
731.6684
729.8136
727.8383
725.7432
723.5292
721.1972
718.7479
716.1826
713.5021
710.7075
707.8002
704.7812
701.6518
698.4134
695.0674
691.6152
688.0582
684.5195
680.9990
677.4966
674.0122
670.5458
667.0971
663.6663
660.2530
656.8573
653.4791
650.1182
646.7747
643.4483
640.1390
636.8468
633.5715
630.3130
627.0713
623.8463
620.6378
617.4459
614.2704
611.1112
607.9682
604.8414
601.7307
598.6360
595.5572
592.4942
589.4470
586.4155
583.3996
580.3991
577.4141
574.4445
571.4901
568.5509
565.6269
562.7178
559.8238
556.9446
554.0802
551.2306
548.3956
545.5752
542.7693
539.9778
537.2007
534.4379
531.6893
528.9548
526.2343
523.5279
520.8354
518.1567
515.4919
512.8407
510.2031
507.5791
504.9687
502.3716
499.7879
497.2175
494.6603
492.1162
489.5853
487.0673
484.5623
482.0702
479.5909
477.1244
474.6705
472.2293
469.8006
467.3844
464.9807
462.5893
460.2102
457.8433
455.4886
453.1460
450.8155
448.4969
446.1903
443.8955
441.6126
439.3414
437.0818
434.8339
432.5976
430.3727
428.1593
425.9573
423.7666
421.5871
419.4189
417.2618
415.1158
412.9809
410.8569
408.7439
406.6417
404.5503
402.4697
400.3998
398.3406
396.2919
394.2538
392.2261
390.2089
388.2020
386.2055
384.2192
382.2432
380.2773
378.3215
376.3758
374.4401
372.5144
370.5985
368.6925
366.7963
364.9099
363.0332
361.1661
359.3086
357.4607
355.6223
353.7933
351.9737
350.1635
348.3626
346.5710
344.7886
343.0153
341.2512
339.4961
337.7501
336.0130
334.2849
332.5657
330.8553
329.1537
327.4609
325.7767
324.1013
322.4344
320.7761
319.1264
317.4851
315.8523
314.2278
312.6117
311.0040
309.4045
307.8132
306.2301
304.6552
303.0883
301.5295
299.9788
298.4360
296.9011
295.3742
293.8550
292.3437
290.8402
289.3444
287.8563
286.3759
284.9030
283.4378
281.9800
280.5298
279.0871
277.6517
276.2237
274.8031
273.3898
271.9838
270.5849
269.1933
267.8088
266.4315
265.0612
263.6980
262.3418
260.9926
259.6503
258.3149
256.9864
255.6647
254.3498
253.0417
251.7403
250.4456
249.1576
247.8761
246.6013
245.3330
244.0713
242.8160
241.5672
240.3248
239.0888
237.8592
236.6359
235.4189
234.2081
233.0036
231.8052
230.6131
229.4270
228.2471
227.0732
225.9054
224.7435
223.5877
222.4377
221.2937
220.1556
219.0234
217.8969
216.7763
215.6614
214.5522
213.4488
212.3510
211.2589
210.1724
209.0915
208.0161
206.9463
205.8820
204.8231
203.7697
202.7217
201.6791
200.6419
199.6100
198.5834
197.5621
196.5460
195.5352
194.5295
193.5290
192.5337
191.5435
190.5584
189.5784
188.6034
187.6334
186.6684
185.7083
184.7532
183.8030
182.8577
181.9173
180.9817
180.0509
179.1249
178.2037
177.2872
176.3754
175.4683
174.5658
173.6680
172.7749
171.8863
171.0023
170.1228
169.2479
168.3774
167.5114
166.6499
165.7928
164.9402
164.0919
163.2480
162.4084
161.5731
160.7421
159.9154
159.0930
158.2748
157.4608
156.6509
155.8453
155.0438
154.2464
153.4531
152.6639
151.8787
151.0976
150.3205
149.5474
148.7783
148.0131
147.2519
146.4946
145.7411
144.9916
144.2459
143.5040
142.7660
142.0317
141.3013
140.5746
139.8516
139.1323
138.4168
137.7049
136.9967
136. 2921
135.5911
134.8938
134.2000
133.5098
132.8232
132.1401
131.4605
130.7844
130.1118
129.4426
128.7769
128.1146
127.4557
126.8002
126.1480

Principal =
66.8837
67.2915
67.6904
68.0802
68.4607
68.8317
69.1929
69.5442
69.8854
70.2163
70.5367
70.8464
71.1453
71.4331
71.7098
71.9751
72.2289
72.4710
72.7012
72.9195
73.1257
73.3197
73.5013
73.6704
73.8269
73.9706
74.1016
74.2196
74.3379
74.4563
74.5749
74.6937
74.8127
74.9319
75.0512
75.1708
75.2905
75.4105
75.5306
75.6509
75.7714
75.8921
76.0130
76.1341
76.2554
76.3769
76.4985
76.6204
76.7425
76.8647
76.9871
77.1098
77.2326
77.3557
77.4789
77.6023
77.7259
77.8497
77.9738
78.0980
78.2224
78.3470
78.4718
78.5968
78.7220
78.8474
78.9730
79.0988
79.2248
79.3510
79.4774
79.6040
79.7308
79.8579
79.9851
80.1125
80.2401
80.3679
80.4960
80.6242
80.7526
80.8813
81.0101
81.1392
81.2684
81.3979
81.5275
81.6574
81.7875
81.9178
82.0483
82.1790
82.3099
82.4410
82.5723
82.7039
82.8356
82.9676
83.0997
83.2321
83.3647
83.4975
83.6305
83.7637
83.8972
84.0308
84.1647
84.2988
84.4330
84.5675
84.7023
84.8372
84.9723
85.1077
85.2433
85.3791
85.5151
85.6513
85.7877
85.9244
86.0613
86.1984
86.3357
86.4732
86.6110
86.7489
86.8871
87.0256
87.1642
87.3030
87.4421
87.5814
87.7209
87.8607
88.0006
88.1408
88.2812
88.4218
88.5627
88.7038
88.8451
88.9866
89.1284
89.2704
89.4126
89.5550
89.6977
89.8405
89.9837
90.1270
90.2706
90.4144
90.5584
90.7027
90.8472
90.9919
91.1368
91.2820
91.4274
91.5731
91.7189
91.8650
92.0114
92.1580
92.3048
92.4518
92.5991
92.7466
92.8943
93.0423
93.1905
93.3390
93.4877
93.6366
93.7858
93.9352
94.0848
94.2347
94.3848
94.5352
94.6857
94.8366
94.9877
95.1390
95.2905
95.4423
95.5944
95.7466
95.8992
96.0519
96.2049
96.3582
96.5117
96.6654
96.8194
96.9737
97.1281
97.2829
97.4378
97.5931
97.7485
```

97.9042
98.0602
98.2164
98.3729
98.5296
98.6865
98.8437
99.0012
99.1589
99.3169
99.4751
99.6335
99.7923
99.9512
100.1104
100.2699
100.4297
100.5896
100.7499
100.9104
101.0711
101.2321
101.3934
101.5549
101.7167
101.8787
102.0410
102.2036
102.3664
102.5294
102.6928
102.8564
103.0202
103.1843
103.3487
103.5133
103.6782
103.8434
104.0088
104.1745
104.3404
104.5067
104.6731
104.8399

```
105.0069
105.1742
105.3417
105.5095
105.6776
105.8459
106.0145
106.1834
106.3526
106.5220
106.6917
106.8616
107.0319
107.2024
107.3732
107.5442
107.7155
107.8871
108.0590
108.2311
108.4035
108.5762
108.7492
108.9224
109.0959
109. 2697
109.4438
109.6181
109.7927
109.9676
110.1428
110.3183
110.4940
110.6700
110.8463
111.0229
111.1998
111.3769
111.5543
111.7320
111.9100
112.0883
112.2669
112.4457
112.6248
112.8042
112.9839
113.1639
113.3442
113.5247
113.7056
113.8867
114.0681
114.2498
114.4318
114.6141
114.7967
114.9796
115.1627
115.3462
115.5299
115.7140
115.8983
116.0829
116.2679
116.4531
116.6386
116.8244
117.0105
117.1969
117.3836
117.5706
117.7579
117.9455
118.1333
118.3215
118.5100
118.6988
118.8879
119.0773
119.2670
119.4570
119.6473
119.8379
120.0288
120.2200
120.4115
120.6033
120.7954
120.9878
121.1806
121.3736
121.5670
121.7606
121.9546
122.1488
122.3434
122.5383
122.7335
122.9290
123.1249
123.3210
123.5175
123.7142
123.9113
124.1087
124.3064
124.5044
124.7027
124.9014
125.1004
125.2996

Interest =
677.0833
676.1777
675.1564
674.0196
672.7678
671.4012
669.9203
668.3257
666.6179
664.7976
662.8654
660.8220
658.6683
656.4052
654.0334
651.5541
```

648.9683
646.2770
643.4813
640.5825
637.5818
634.4805
631.2799
627.9815
624.5866
621.0968
617.5136
613.8385
610.1816
606.5427
602.9217
599.3185
595.7331
592.1653
588.6150
585.0822
581.5668
578.0686
574.5877
571.1238
567.6769
564.2469
560.8338
557.4374
554.0576
550.6945
547.3477
544.0174
540.7034
537.4056
534.1240
530.8584
527.6088
524.3750
521.1571
517.9549
514.7683
511.5973
508.4417
505.3016

```
502.1768
499.0671
495.9727
492.8933
489.8289
486.7795
483.7448
480.7250
477.7198
474.7292
471.7531
468.7915
465.8443
462.9114
459.9927
457.0882
454.1978
451.3213
448.4588
445.6102
442.7753
439.9541
437.1466
434.3527
431.5723
428.8053
426.0516
423.3113
420.5841
417.8701
415.1692
412.4813
409.8064
407.1443
404.4950
401.8585
399.2346
396.6234
394.0247
391.4384
388.8646
386.3031
383.7539
381.2169
378.6921
376.1793
373.6786
371.1898
368.7130
366.2479
363.7947
361.3531
358.9232
356.5049
354.0981
351.7028
349.3188
346.9462
344.5850
342.2349
339.8960
337.5682
335.2514
332.9457
330.6508
328.3669
326.0937
323.8314
321.5797
319.3387
317.1082
314.8883
312.6789
310.4799
308.2913
306.1129
303.9449
301.7870
299.6393
297.5017
295.3742
293.2566
291.1489
289.0512
286.9633
284.8851
282.8167
280.7580
278.7089
276.6693
274.6393
272.6188
270.6077
268.6059
266.6135
264.6304
262.6565
260.6917
258.7361
256.7896
254.8520
252.9235
251.0039
249.0932
247.1914
245.2983
243.4140
241.5383
239.6713
237.8130
235.9632
234.1219
232.2890
230.4646
228.6486
226.8409
225.0416
223.2504
221.4675
219.6927
217.9260
216.1674
214.4168
212.6742
210.9396
209.2129
207.4940
205.7829
204.0796
202.3840
200.6962
199.0160
197.3433
195.6783
194.0208
192.3708
190.7282
189.0930
187.4652
185.8447
184.2315
182.6256
181.0269
179.4353
177.8509
176.2735
174.7033
173.1400
171.5837
170.0344
168.4920
166.9564
165.4277
163.9058
162.3906
160.8822
159.3804
157.8853
156.3968
154.9149
153.4395
151.9706
150.5082
149.0522
147.6027
146.1595
144.7226
143.2920
141.8677
140.4497
139.0378
137.6321
136.2325
134.8390
133.4516
132.0702
130.6948
129.3254
127.9619
126.6043
125.2525
123.9066
122.5665
121.2322
119.9036
118.5808
117.2636
115.9520
114.6461
113.3458
112.0510
110.7617
109.4780
108.1997
106.9268
105.6593
104.3973
103.1405
101.8891
100.6430
99.4021
98.1664
96.9360
95.7107
94.4906
93.2756
92.0657
90.8608
89.6610
88.4661
87.2763
86.0914
84.9114
83.7363
82.5661
81.4007
80.2401
79.0844
77.9333
76.7870
75.6455
74.5086
73.3763
72.2487
71.1257
70.0073
68.8934
67.7841
66.6792
65.5788
64.4829
63.3914
62.3044
61.2217
60.1433
59.0693
57.9996
56.9341
55.8730
54.8160
53.7633
52.7147
51.6703
50.6301
49.5940
48.5619
47.5340
46.5100
45.4902
44.4743
43.4623
42.4544
41.4504
40.4503
39.4540
38.4617
37.4732
36.4885
35.5076
34.5305
33.5572
32.5876
31.6217
30.6595
29.7010
28.7461
27.7949
26.8473
25.9033
24.9628
24.0259
23.0926
22.1627
21.2363
20.3134
19.3940
18.4780
17.5654
16.6562
15.7503
14.8478
13.9487
13.0528
12.1603
11.2710
10.3850
9.5022
8.6226
7.7463
6.8731
6.0031
5.1362
4.2725
3.4118
2.5543
1.6998
0.8484

Prepayment =
66.8676
83.5494
100.2000
116.8108
133.3731
149.8785
166.3183
182.6840
198.9672
215.1593
231.2520
247.2369
263.1058
278.8505
294.4628
309.9347
325.2583
340.4258
355.4294
370.2615
384.9145
399.3813
413.6545
427.7270
441.5919
455.2424
468.6720
465.8799
463.1015
460.3369
457.5858
454.8483
452.1242
449.4136
446.7162
444.0322
441.3613
438.7035
436.0588
433.4271
430.8083
428.2023
425.6091
423.0286
420.4608
417.9056
415.3628
412.8326
410.3147
407.8091
405.3158
402.8347
400.3657
397.9088
395.4638
393.0308
390.6097
388.2004
385.8029
383.4171
381.0428
378.6802
376.3291
373.9894
371.6611
369.3441
367.0384
364.7439
362.4606
360.1883
357.9271
355.6769
353.4376
351.2091
348.9915
346.7846
344.5884
342.4029
340.2279
338.0634
335.9095
333.7659
331.6327
329.5098
327.3972
325.2947
323.2024
321.1202
319.0481
316.9859
314.9337
312.8913
310.8588
308.8361
306.8230
304.8197
302.8260
300.8418
298.8672
296.9021
294.9464
293.0000
291.0630
289.1353
287.2168
285.3074
283.4072
281.5161
279.6340
277.7609
275.8968
274.0415
272.1951
270.3575
268.5286
266.7085
264.8970
263.0941
261.2998
259.5140
257.7367
255.9679
254.2074
252.4553
250.7115
248.9759
247.2485
245.5294
243.8183
242.1154
240.4204
238.7335
237.0546
235.3835
233.7204
232.0650
230.4175
228.7777
227.1456
225.5212
223.9044
222.2952
220.6935
219.0994
217.5127
215.9334
214.3616
212.7971
211.2399
209.6899
208.1472
206.6117
205.0834
203.5621
202.0480
200.5409
199.0408
197.5476
196.0614
194.5821
193.1097
191.6441
190.1852
188.7331
187.2877
185.8490
184.4170
182.9915
181.5726
180.1603
178.7544
177.3551
175.9621
174.5756
173.1954
171.8215
170.4540
169.0927
167.7376
166.3887
165.0460
163.7094
162.3789
161.0545
159.7361
158.4238
157.1173
155.8169
154.5223
153.2336
151.9507
150.6736
149.4024
148.1368
146.8770
145.6229
144.3744
143.1316
141.8943
140.6626
139.4365
138.2158
137.0007
135.7910
134.5866
133.3877
132.1942
131.0059
129.8230
128.6453
127.4729
126.3057
125.1437
123.9869
122.8352
121.6886
120.5470
119.4105
118.2791
117.1526
116.0311
114.9145
113.8029
112.6961
111.5942
110.4972
109.4049
108.3175
107.2347
106.1568
105.0835
104.0149
102.9509
101.8916
100.8369
99.7868
98.7412
97.7002
96.6636
95.6316
94.6040
93.5808
92.5620
91.5476
90.5376
89.5319
88.5306
87.5335
86.5407
85.5521
84.5677
83.5875
82.6115
81.6397
80.6720
79.7084
78.7488
77.7934
76.8419
75.8945
74.9511
74.0116
73.0761
72.1445
71.2169
70.2931
69.3731
68.4571
67.5448
66.6363
65.7316
64.8307
63.9335
63.0400
62.1503
61.2642
60.3817
59.5029
58.6277
57.7561
56.8881
56.0236
55.1626
54.3052
53.4513
52.6008
51.7538
50.9103
50.0701
49.2334
48.4000
47.5700
46.7434
45.9200
45.1000
44.2833
43.4698
42.6596
41.8526
41.0488
40.2482
39.4508
38.6566
37.8655
37.0775
36.2927
35.5109
34.7322
33.9566
33.1839
32.4144
31.6478
30.8842
30.1236
29.3659
28.6112
27.8593
27.1104
26.3644
25.6213
24.8810
24.1435
23.4089
22.6770
21.9480
21.2217
20.4982
19.7774
19.0594
18.3440
17.6314
16.9215
16.2142
15.5095
14.8075
14.1081
13.4113
12.7171
12.0255
11.3365
10.6499
9.9660
9.2845
8.6055
7.9290
7.2550
6.5835
5.9144
5.2477
4.5834
3.9215
3.2621
2.6050
1.9502
1.2978
0.6477
0.0000
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{See Also \\ mbswal}

\section*{Introduced before R2006a}

\section*{mbsprice}

Mortgage-backed security price given yield

\section*{Syntax}
[Price, AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Yield & Mortgage yield, compounded monthly (in decimal). \\
\hline Settle & \begin{tabular}{l}
Settlement date. A serial date number or date character vector. \\
Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A serial date number or date character vector. \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline CouponRate & (Optional) Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay & \begin{tabular}{l}
(Optional) Delay (in days) between payment from homeowner and \\
receipt by bondholder. Default = 0 (no delay between payment and \\
receipt.
\end{tabular} \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) to the \\
benchmark model. Default = 0 (no prepayment). Set PrepaySpeed \\
to [] if you input a customized prepayment matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Customized prepayment matrix. A matrix of size \\
max (TermRemaining) -by-NMBS. Missing values are padded with \\
NaNs. Each column corresponds to a mortgage-backed security, \\
and each row corresponds to each month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}
[Price, AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes a mortgage-backed security price, given time information, mortgage yield at settlement, and optionally, a prepayment model.

All outputs are scalar values.
Price is the clean price for every \(\$ 100\) face value of the securities.
AccrInt is the accrued interest of the mortgage-backed securities.

\section*{Examples}

\section*{Determine the Mortgage-Backed Security Price Given the Yield}

This example shows how to determine the mortgage-backed security price given a mortgage-backed security with the following characteristics.
```

Yield = 0.0725;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;
[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...
GrossRate, CouponRate, Delay, Speed)
Price =
101.3147
AccrInt =
0.2917

```

\section*{Determine the Mortgage-Backed Security Price Using a Customized PrePaytMatrix}

This example shows how to determine the mortgage-backed security price, given a mortgage-backed security, and PrePaytMatrix with the following characteristics:
```

Yield = 0.0725;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(360,1);

```
[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...
GrossRate, PrepayMatrix)

\section*{Price =}
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
```

    34.8583
    34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
34.8583
AccrInt =
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194

```
\[
\begin{aligned}
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194
\end{aligned}
\]
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
\[
\begin{aligned}
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194
\end{aligned}
\]
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
\[
\begin{aligned}
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194
\end{aligned}
\]
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
\[
\begin{aligned}
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194 \\
& 0.0194
\end{aligned}
\]
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{References}
[1] PSA Uniform Practices, SF-49

\section*{See Also}
mbsyield

Introduced before R2006a

\section*{mbsprice2oas}

Option-adjusted spread given price

\section*{Syntax}

OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ZeroCurve & \begin{tabular}{l}
A matrix of three columns: \\
- \\
- Column 1: Serial date numbers. \\
Column 2: Spot rates with maturities corresponding to the \\
dates in Column 1, in decimal (for example, 0.075). \\
- \\
Column 3: Compounding of the rates in Column 2. \\
Values are 1 (annual), 2 (semiannual, 3 (three times per \\
year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and \\
-1 (continuous).
\end{tabular} \\
\hline Price & \begin{tabular}{l}
Clean price for every \$100 face value of bond issue.
\end{tabular} \\
\hline Settle & \begin{tabular}{l}
Settlement date (scalar only). A serial date number or date \\
character vector. Date when option-adjusted spread is \\
calculated. Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Maturity date. Scalar or vector in serial date number or date \\
character vector.
\end{tabular} \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline CouponRate & (Optional) Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay & \begin{tabular}{l}
(Optional) Delay (in days) between payment from homeowner \\
and receipt by bondholder. Default = 0 (no delay between \\
payment and receipt.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Interpolation & \begin{tabular}{l}
Interpolation method. Computes the corresponding spot rates \\
for the bond's cash flow. Available methods are (0) nearest, (1) \\
linear, and (2) cubic spline. Default = 1. See interp1 for more \\
information.
\end{tabular} \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) \\
to the benchmark model. Default = end of month's CPR. Set \\
PrepaySpeed to [] if you input a customized prepayment \\
matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Customized prepayment matrix. A matrix of size \\
max (TermRemaining)-by-NMBS. Missing values are padded \\
with NaNs. Each column corresponds to a mortgage-backed \\
security, and each row corresponds to each month after \\
settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}

OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed, PrepayMatrix) computes the monthly option-adjusted spread in basis points.

\section*{Examples}

\section*{Calculate the Option-Adjusted Spread of a 30-Year Fixed-Rate Mortgage}

Calculate the option-adjusted spread of a 30-year fixed-rate mortgage with about a 28year weighted average maturity remaining, given assumptions of 0,50 , and 100 PSA prepayments. First, create the bonds matrix:
```

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

```

Choose a settlement date.
```

Settle = datenum('20-Aug-2002');

```

Assume the following clean prices for the bonds:
```

Prices = [ 98.97467;
98.58044;
100.10534;
98.18054;
101.38136;
99.25411];

```

Use the following formula to compute spot compounding for the bonds:
SpotCompounding = 2*ones(size(Prices));
Compute the zero curve.
```

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]
ZeroCurve =
1.0e+05 *

7.3154	0.0000	0.0000
7.3163	0.0000	0.0000
7.3216	0.0000	0.0000
7.3327	0.0000	0.0000
7.3510	0.0000	0.0000
7.4185	0.0000	0.0000

```

Assign the following parameters:
```

Price = 95;
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0; 50; 100];

```

\section*{Interpolation = 1;}

Compute the option-adjusted spread.
OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, ... IssueDate, GrossRate, CouponRate, Delay, Interpolation, ... PrepaySpeed)

OAS =
26.0508
28.6355
31.2232
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{See Also}
mbsoas2price | mbsoas2yield | mbsyield2oas

\section*{Introduced before R2006a}

\section*{mbsprice2speed}

Implied PSA prepayment speeds given price

\section*{Syntax}
[ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = mbsprice2speed(Price, Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate, Delay)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Price & Clean price for every \(\$ 100\) face value. \\
\hline Settle & \begin{tabular}{l}
Settlement date. A serial date number or date character vector. \\
Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A serial date number or date character vector. \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline PrepayMatrix & \begin{tabular}{l}
Customized prepayment matrix. A matrix of size \\
max(TermRemaining) -by-NMBS. Missing values are padded with \\
NaNs. Each column corresponds to a mortgage-backed security, and \\
each row corresponds to each month after settlement.
\end{tabular} \\
\hline CouponRate & (Optional) Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay & \begin{tabular}{l}
(Optional) Delay (in days) between payment from homeowner and \\
receipt by bondholder. Default = (no delay between payment and \\
receipt.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS)-by-1 vectors.

\section*{Description}
[ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = mbsprice2speed(Price, Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate,

Delay) computes PSA prepayment speeds implied by pool prices and projected (userdefined) prepayment vectors. The calculated PSA speed produces the same price, modified duration, or modified convexity, depending upon the output requested.

ImpSpdOnPrc calculates the equivalent PSA benchmark prepayment speed for the passthrough to carry the same price.

ImpSpdOnDur calculates the equivalent PSA benchmark prepayment speed for the passthrough to carry the same modified duration.

ImpSpdOnCnv calculates the equivalent PSA benchmark prepayment speed for the passthrough to carry the same modified convexity.

All outputs are NMBS-by-1 vectors.

\section*{Examples}

\section*{Compute PSA Prepayment Speeds}

This example shows how to compute the equivalent PSA benchmark prepayment speeds for a mortgage pool with the following characteristics and prepayment matrix.
```

Price = 101;
Settle = datenum('1-Jan-2000');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(360,1);
CouponRate = 0.075;
Delay = 14;
[ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = ...
mbsprice2speed(Price,Settle, Maturity, IssueDate, ...
GrossRate, PrepayMatrix, CouponRate, Delay)
ImpSpdOnPrc =
118.5980
ImpSpdOnDur =

```

\section*{ImpSpdOnCnv =}
109.5115
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{References}
[1] PSA Uniform Practices, SF-49

\author{
See Also \\ mbsprice | mbsyield2speed \\ Introduced before R2006a
}

\section*{mbswal}

Weighted average life of mortgage pool

\section*{Compatibility}

PSA

\section*{Syntax}

WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Settle & \begin{tabular}{l}
Settlement date. A serial date number or date character vector. \\
Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A serial date number or date character vector. \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline CouponRate & (Optional) Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay & \begin{tabular}{l}
(Optional) Delay (in days) between payment from homeowner and \\
receipt by bondholder. Default = 0 (no delay between payment and \\
receipt).
\end{tabular} \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) \\
to the benchmark model. Default = end of month's CPR. Set \\
PrepaySpeed to [] if you input a customized prepayment matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Customized prepayment matrix. A matrix of size \\
max (TermRemaining)-by-NMBS. Missing values are padded with \\
NaNs. Each column corresponds to a mortgage-backed security, and \\
each row corresponds to each month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}

WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes the weighted average life, in number of years, of a mortgage pool, as measured from the settlement date.

\section*{Examples}

\section*{Determine the Weighted Average Life of a Mortgage Pool}

This example shows how to determine the weighted average life of a mortgage pool, given a pass-through security with the following characteristics.
```

Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;
WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, Speed)

```
WAL =
 10.5477
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{References}
[1] PSA Uniform Practices, SF-49

\author{
See Also \\ mbspassthrough
}

Introduced before R2006a

\section*{mbsyield}

Mortgage-backed securities yield given price

\section*{Syntax}
[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Price & Clean price for every \(\$ 100\) face value. \\
\hline Settle & \begin{tabular}{l}
Settlement date. A serial date number or date character vector. \\
Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A serial date number or date character vector. \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline CouponRate & (Optional) Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay & \begin{tabular}{l}
(Optional) Delay (in days) between payment from homeowner and \\
receipt by bondholder. Default = 0 (no delay between payment and \\
receipt.
\end{tabular} \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) to the \\
benchmark model. Default = 0 (no prepayment). Set PrepaySpeed \\
to [] if you input a customized prepayment matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Customized prepayment matrix. A matrix of size \\
max (TermRemaining)-by-NMBS. Missing values are padded with \\
NaNs. Each column corresponds to a mortgage-backed security, and \\
each row corresponds to each month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}
[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes a mortgage-backed security yield to maturity and the bond equivalent yield, given time information, price at settlement, and optionally, a prepayment model.

MYield is the yield to maturity of the mortgage-backed security (the mortgage yield). This yield is compounded monthly (12 times a year).

BEMBSYield is the corresponding bond equivalent yield of the mortgage-backed security. This yield is compounded semiannually (two times a year).

\section*{Examples}

\section*{Determine a Mortgage-Backed Security Yield Given the Price}

This example shows how to determine the mortgage-backed security yield, given a mortgage-backed security with the following characteristics.
```

Price = 102;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;
[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Speed)

```
MYield =
0.0715

BEMBSYield =
0.0725

\section*{Determine Multiple Mortgage-Backed Securities Yields Given the Price}

This example shows how to determine multiple mortgage-backed securities yields, given a portfolio of mortgage-backed securities with the following characteristics.
```

Price = 102;
Settle = datenum(['13-Feb-2000';'17-Apr-2002';'17-May-2002';...
'13-Jan-2000']);
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = [0.075; 0.07875; 0.0775; 0.08125];
Delay = 14;
Speed = 100;
[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity,...
IssueDate, GrossRate, CouponRate, Delay, Speed)
MYield =
0.0717
0.0751
0.0739
0.0779
BEMBSYield =
0.0728
0.0763
0.0750
0.0791

```
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{References}
[1] PSA Uniform Practices, SF-49

\author{
See Also \\ mbsprice
}

Introduced before R2006a

\section*{mbsyield2oas}

Option-adjusted spread given yield

\section*{Syntax}

OAS = mbsyield2oas(ZeroCurve, Yield, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation PrepaySpeed, PrepayMatrix)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ZeroCurve & \begin{tabular}{l}
A matrix of three columns: \\
\(-\quad\) Column 1: Serial date numbers. \\
Column 2: Spot rates with maturities corresponding to the dates \\
in Column 1, in decimal (for example, 0.075). \\
Column 3: Compounding of the rates in Column 2. Values \\
are 1 (annual), 2 (semiannual, 3 (three times per year), \\
4 (quarterly), 6 (bimonthly), 12 (monthly), and -1 (continuous).
\end{tabular} \\
\hline Yield & Mortgage yield, compounded monthly (in decimal).
\end{tabular}\(\left|\begin{array}{l}\text { Settlement date (scalar only). A serial date number or date } \\
\text { character vector. Date when option-adjusted spread is calculated. } \\
\text { Settle must be earlier than Maturity. }\end{array}\right|\)\begin{tabular}{ll}
Settle & Maturity date. Scalar or vector in serial date number or date \\
character vector.
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
linear, and (2) cubic spline. Default = 1. See interp1 for more \\
information.
\end{tabular} \\
\hline PrepaySpeed & \begin{tabular}{l}
(Optional) Relation of the conditional payment rate (CPR) \\
to the benchmark model. Default = end of month's CPR. Set \\
PrepaySpeed to [] if you input a customized prepayment matrix.
\end{tabular} \\
\hline PrepayMatrix & \begin{tabular}{l}
(Optional) Customized prepayment matrix. A matrix of size \\
max (TermRemaining) -by-NMBS. Missing values are padded with \\
NaNs. Each column corresponds to a mortgage-backed security, and \\
each row corresponds to each month after settlement.
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}

OAS = mbsyield2oas(ZeroCurve, Yield, Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed, PrepayMatrix) computes the option-adjusted spread in basis points.

\section*{Examples}

\section*{Calculate the Option-Adjusted Spread of a 30-Year Fixed-Rate Mortgage Pool}

Calculate the option-adjusted spread of a 30 -year, fixed-rate mortgage pool with about 28 -year weighted average maturity left, given assumptions of 0,50 , and 100 PSA prepayments. First, create the bonds matrix:

Choose a settlement date.
```

Settle = datenum('20-Aug-2002');

```

Assume the following clean prices for the bonds:
```

Prices = [ 98.97467;
98.58044;
100.10534;
98.18054;
101.38136;
99.25411];

```

Use the following formula to compute spot compounding for the bonds:
SpotCompounding = 2*ones(size(Prices));
Compute the zero curve.
```

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);

```
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]
ZeroCurve =
\begin{tabular}{ccc}
\(1.0 \mathrm{e}+05\) * & & \\
& & \\
7.3154 & 0.0000 & 0.0000 \\
7.3163 & 0.0000 & 0.0000 \\
7.3216 & 0.0000 & 0.0000 \\
7.3327 & 0.0000 & 0.0000 \\
7.3510 & 0.0000 & 0.0000 \\
7.4185 & 0.0000 & 0.0000
\end{tabular}

Assign the following parameters:
```

Price = 95;
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

```

Compute the yield, and from the yield, compute the option-adjusted spread.
[mbsyld, beyld] = mbsyield(Price, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed);
```

OAS = mbsyield2oas(ZeroCurve, mbsyld, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, ...
Interpolation, PrepaySpeed)
OAS =

```
 26.0508
 28.6355
 31.2232
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\author{
See Also \\ mbsoas2price | mbsoas2yield | mbsprice2oas \\ Introduced before R2006a
}

\section*{mbsyield2speed}

Implied PSA prepayment speeds given yield

\section*{Syntax}
[ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = mbsyield2speed(Yield, Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate, Delay)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Yield & Mortgage yield, compounded monthly, in decimal. \\
\hline Settle & \begin{tabular}{l}
Settlement date. A serial date number or date character vector. \\
Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A serial date number or date character vector. \\
\hline IssueDate & Issue date. A serial date number or date character vector. \\
\hline GrossRate & Gross coupon rate (including fees), in decimal. \\
\hline PrepayMatrix & \begin{tabular}{l}
Customized prepayment matrix. A matrix of size \\
max (TermRemaining) -by-NMBS. Missing values are padded \\
with NaNs. Each column corresponds to a mortgage-backed \\
security, and each row corresponds to each month after \\
settlement.
\end{tabular} \\
\hline CouponRate & \begin{tabular}{l}
(Optional) Net coupon rate, in decimal. Default = GrossRate. \\
\hline Delay
\end{tabular} \begin{tabular}{l}
(Optional) Delay (in days) between payment from homeowner \\
and receipt by bondholder. Default = (no delay between \\
payment and receipt).
\end{tabular} \\
\hline
\end{tabular}

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1 vectors.

\section*{Description}
[ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = mbsyield2speed(Yield, Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate, Delay) computes PSA prepayment speeds implied by pool yields and projected (userdefined) prepayment vectors. The calculated PSA speed produces the same yield, modified duration, or modified convexity, depending upon the output requested.

ImpSpdOnPrc calculates the equivalent PSA benchmark prepayment speed for the passthrough to carry the same price.

ImpSpdOnDur calculates the equivalent PSA benchmark prepayment speed for the passthrough to carry the same modified duration.

ImpSpdOnCnv calculates the equivalent PSA benchmark prepayment speed for the passthrough to carry the same modified convexity.

All outputs are NMBS-by-1 vectors.

\section*{Examples}

Calculate the equivalent PSA benchmark prepayment speeds for a security with these characteristics and prepayment matrix.
```

Yield = 0.065;
Settle = datenum('1-Jan-2000');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(360,1);
CouponRate = 0.075;
Delay = 14;
[ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = ...
mbsyield2speed(Yield, Settle, Maturity, IssueDate, GrossRate, ...
PrepayMatrix, CouponRate, Delay)
ImpSpdOnYld =
117.7644
ImpSpdOnDur =
116.7436

```

\section*{ImpSpdOnCnv =}
108.3309

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{References}
[1] PSA Uniform Practices, SF-49

\section*{See Also}
mbsprice2speed | mbsyield

Introduced before R2006a

\section*{psaspeed2default}

\author{
Benchmark default
}

\section*{Syntax}
```

[ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed)

```

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline DefaultSpeed & \begin{tabular}{l}
Annual speed relative to the benchmark. PSA benchmark \(=\) \\
100.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
[ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed) computes the benchmark default on the performing balance of mortgage-backed securities per PSA benchmark speed.

ADRPSA is the PSA default rate, in decimal (360-by-1).
MDRPSA is the PSA monthly default rate, in decimal (360-by-1).

\section*{Examples}

\section*{Compute the Benchmark Default Rates on the Performing Balance of Mortgage-Backed Securities Per PSA Benchmark Speed}

This example shows how to compute the benchmark default rates on the performing balance of mortgage-backed securities per PSA benchmark speed, given a mortgagebacked security with annual speed set at the PSA default benchmark.
```

DefaultSpeed = 100;

```
[ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed)
ADRPSA \(=\)
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018
0.0020
0.0022
0.0024
0.0026
0.0028
0.0030
0.0032
0.0034
0.0036
0.0038
0.0040
0.0042
0.0044
0.0046
0.0048
0.0050
0.0052
0.0054
0.0056
0.0058
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
```

0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0060
0.0059
0.0058
0.0057
0.0056
0.0055
0.0054
0.0053
0.0052
0.0051
0.0051
0.0050
0.0049
0.0048
0.0047
0.0046
0.0045
0.0044
0.0043
0.0042
0.0041
0.0040
0.0039
0.0038
0.0037

```
0.0036
0.0035
0.0034
0.0033
0.0032
0.0032
0.0031
0.0030
0.0029
0.0028
0.0027
0.0026
0.0025
0.0024
0.0023
0.0022
0.0021
0.0020
0.0019
0.0018
0.0017
0.0016
0.0015
0.0014
0.0013
0.0013
0.0012
0.0011
0.0010
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
```

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

```
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
```

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

```
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
```

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

```
\begin{tabular}{|c|c|}
\hline & 0 \\
\hline MDRPSA = & \\
\hline \(1.0 \mathrm{e}-03\) & 3 \\
\hline 0.016 & \\
\hline 0.0333 & \\
\hline 0.0500 & \\
\hline 0.066 & \\
\hline 0.083 & \\
\hline 0.100 & \\
\hline 0.116 & \\
\hline 0.133 & \\
\hline 0.150 & \\
\hline 0.1668 & \\
\hline 0.1835 & \\
\hline 0.2002 & \\
\hline 0.2169 & \\
\hline 0.2336 & \\
\hline 0.2503 & \\
\hline 0.267 & \\
\hline 0.2838 & \\
\hline 0.3005 & \\
\hline 0.3172 & \\
\hline 0.3339 & \\
\hline 0.350 & \\
\hline 0.367 & \\
\hline 0.384 & \\
\hline 0.4009 & \\
\hline 0.4176 & \\
\hline 0.434 & \\
\hline
\end{tabular}
```

0.4511
0.4679
0.4846
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.5014
0.4934
0.4855
0.4775
0.4695
0.4616
0.4536
0.4457
0.4377
0.4298
0.4218

```
0.4139
0.4059
0.3980
0.3900
0.3821
0.3741
0.3662
0.3582
0.3503
0.3423
0.3344
0.3264
0.3185
0.3105
0.3026
0.2946
0.2867
0.2788
0.2708
0.2629
0.2549
0.2470
0.2391
0.2311
0.2232
0.2153
0.2073
0.1994
0.1915
0.1835
0.1756
0.1677
0.1597
0.1518
0.1439
0.1359
0.1280
0.1201
0.1122
0.1042
0.0963
0.0884
0.0805
0.0725
```

0.0646
0.0567
0.0488
0.0408
0.0329
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250

```
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
```

0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250

```
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
```

0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250

```
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250

0
0
0
0
0
0
0
0
0
0
0
0
- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\author{
See Also \\ psaspeed2rate
}

\section*{Introduced before R2006a}

\section*{psaspeed2rate}

Single monthly mortality rate given PSA speed

\section*{Syntax}
[CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed)

\section*{Arguments}
\begin{tabular}{|l|l}
\hline PSASpeed & Any value \(>0\) representing the annual speed relative to the
\end{tabular} benchmark. PSA benchmark \(=100\).

\section*{Description}
[CPRPSA, SMMPSA] = psaspeed2rate(PSASpeed) calculates vectors of PSA prepayments, each containing 360 prepayment elements, to represent the 360 months in a 30 -year mortgage pool.

CPRPSA is the PSA conditional prepayment rate, in decimal [360-by-1].
SMMPSA is the PSA single monthly mortality rate, in decimal [360-by-1].

\section*{Examples}

\section*{Compute the Prepayment and Mortality Rates}

This example shows how to compute the prepayment and mortality rates, given a mortgage-backed security with annual speed set at the PSA default benchmark.
```

PSASpeed = [100 200];
[CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed);
% view the plot of the output
psaspeed2rate(PSASpeed)

```

- "Generating Prepayment Vectors" on page 5-4
- "Mortgage Prepayments" on page 5-6
- "Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model"

\section*{More About}
- "What Are Mortgage-Backed Securities?" on page 5-2

\section*{See Also \\ psaspeed2default}

11 Functions - Alphabetical List

Introduced before R2006a

\section*{stepcpncfamounts}

Cash flow amounts and times for bonds and stepped coupons

\section*{Syntax}
[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Settle & Settlement date. A scalar or vector of serial date numbers. Settle must be earlier than Maturity. \\
\hline Maturity & Maturity date. A scalar or vector of serial date numbers. \\
\hline ConvDates & Matrix of serial date numbers representing conversion dates after Settle. Size = number of instruments by maximum number of conversions. Fill unspecified entries with NaN. \\
\hline CouponRates & Matrix indicating the coupon rates for each bond in decimal form. Size = number of instruments by maximum number of conversions +1 . First column of this matrix contains rates applicable between Settle and the first conversion date (date in the first column of ConvDates). Fill unspecified entries with NaN. See Note below. \\
\hline Period & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12. Default \(=2\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline Face & (Optional) Face value of each bond in the portfolio. Default = 100. \\
\hline
\end{tabular}

All arguments must be scalars or number of bonds (NUMBONDS)-by-1 vectors, except for ConvDates and CouponRates.

Note ConvDates has the same number of rows as CouponRates to reflect the same number of bonds. However, ConvDates has one less column than CouponRates. This situation is illustrated by

Rate1 Rate2 Rate3

\section*{Description}
[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ConvDates, CouponRates, Period, Basis, EndMonthRule, Face) returns matrices of cash flow amounts, cash flow dates, and time factors for a portfolio of NUMBONDS stepped-coupon bonds.

CFlows is a matrix of cash flow amounts. The first entry in each row vector is a negative number indicating the accrued interest due at settlement. If no accrued interest is due, the first column is 0 .

CDates is a matrix of cash flow dates in serial date number form. At least two columns are always present, one for settlement and one for maturity.

CTimes is a matrix of time factors for the SIA semiannual price/yield conversion.
DiscountFactor \(=(1+\) Yield/2).^(-TFactor \()\)
Time factors are in units of semiannual coupon periods. In computing time factors, use SIA actual/actual conventions for all time factor calculations.

Note For bonds with fixed coupons, use cfamounts. If you use a fixed-coupon bond with stepcpncfamounts, MATLAB software generates an error.

\section*{Examples}

This example generates stepped cash flows for three different bonds, all paying interest semiannually. Their life span is about 18-19 years each:
- Bond A has two conversions, but the first one occurs on the settlement date and immediately expires.
- Bond B has three conversions, with conversion dates exactly on the coupon dates.
- Bond C has three conversions, with some conversion dates not on the coupon dates. It has the longest maturity. This case illustrates that only cash flows for full periods after conversion dates are affected, as illustrated below.

The following table illustrates the interest rate characteristics of this bond portfolio.
\begin{tabular}{llllll}
Bond A Dates & Bond A Rates & Bond B Dates & Bond B Rates & Bond C Dates & Bond C Rates \\
Settle (02- & \(7.5 \%\) & Settle (02- & \(7.5 \%\) & \begin{tabular}{l}
Settle (02- \\
Aug-92)
\end{tabular} & \\
Aug-92) & & \(2.5 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bond A Dates & Bond A Rates & Bond B Dates & Bond B Rates & Bond C Dates & Bond C Rates \\
\hline \begin{tabular}{l}
First \\
Conversion (02-Aug-92)
\end{tabular} & 8.875\% & \begin{tabular}{l}
First \\
Conversion (15-Jun-97))
\end{tabular} & 8.875\% & \begin{tabular}{l}
First \\
Conversion (14-Jun-97))
\end{tabular} & 5.0\% \\
\hline Second Conversion (15-Jun-03) & 9.25\% & \begin{tabular}{l}
Second \\
Conversion (15-Jun-01)
\end{tabular} & 9.25\% & \begin{tabular}{l}
Second \\
Conversion (14- \\
Jun-01)
\end{tabular} & 7.5\% \\
\hline \multirow[t]{2}{*}{Maturity (15-Jun-10)} & \multirow[t]{2}{*}{NaN} & \begin{tabular}{l}
Third \\
Conversion (15-Jun-05)
\end{tabular} & 10.0\% & \begin{tabular}{l}
Third \\
Conversion (14-Jun-05)
\end{tabular} & 10.0\% \\
\hline & & Maturity (15-Jun-10) & NaN & \begin{tabular}{l}
Maturity (15- \\
Jun-11)
\end{tabular} & NaN \\
\hline
\end{tabular}
```

Settle = datenum('02-Aug-1992');
ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'), ...
nan;
datenum('15-Jun-1997'), datenum('15-Jun-2001'),...
datenum('15-Jun-2005');
datenum('14-Jun-1997'), datenum('14-Jun-2001'),...
datenum('14-Jun-2005')];
Maturity = [datenum('15-Jun-2010');
datenum('15-Jun-2010');
datenum('15-Jun-2011')];
CouponRates = [0.075 0.08875 0.0925 nan;
0.075 0.08875 0.0925 0.1;
0.025 0.05 0.0750 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;

```

Call stepcpncfamounts to compute cash flows and timings.
```

[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ...
ConvDates, CouponRates);

```

Visualize the third bond cash flows (2.5-5-7.5-10) using the cfplot function.
```

cfplot(CDates(3,:),CFlows(3,:));
xlabel('Dates in Serial Number Format')
ylabel('Relative Amounts of Cash Flows')
title('CashFlow of 2.5 - 5 - 7.5 - 10 Stepped Coupon Bond')

```


\section*{More About}
- "Managing Present Value with Bond Futures" on page 7-13

\author{
See Also \\ cfplot | stepcpnprice | stepcpnyield \\ Introduced before R2006a
}

\section*{stepcpnprice}

Price bond with stepped coupons

\section*{Syntax}
[Price, AccruedInterest] = stepcpnprice(Yield, Settle, Maturity, ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Yield & Scalar or vector containing yield to maturity of instruments. \\
\hline Settle & \begin{tabular}{l}
Settlement date. A scalar or vector of serial date numbers. \\
Settle must be earlier than Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A scalar or vector of serial date numbers. \\
\hline ConvDates & \begin{tabular}{l}
Matrix of serial date numbers representing conversion dates \\
after Settle. Size = number of instruments by maximum \\
number of conversions. Fill unspecified entries with NaN.
\end{tabular} \\
\hline CouponRates & \begin{tabular}{l}
Matrix indicating the coupon rates for each bond in decimal \\
form. Size = number of instruments by maximum number of \\
conversions + 1. First column of this matrix contains rates \\
applicable between Settle and the first conversion date (date \\
in the first column of ConvDates). Fill unspecified entries with \\
NaN. See Note below.
\end{tabular} \\
\hline Period & \begin{tabular}{l}
(Optional) Coupons per year of the bond. A vector of integers. \\
Allowed values are 0, 1, 2, 3, 4, 6, and 12. Default = 2.
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of \\
integers. \\
- \(\quad 0=\) actual/actual (default) \\
\\
- \(1=30 / 360\) (SIA) \\
- \(2=\) actual/360
\end{tabular} \\
\hline & \(3=\) actual/365
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\mathrm{actual} / 365\) (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline Face & (Optional) Face value of each bond in the portfolio. Default = 100. \\
\hline
\end{tabular}

All arguments must be scalars or number of bonds (NUMBONDS)-by-1 vectors, except for ConvDates and CouponRates.

Note ConvDates has the same number of rows as CouponRate to reflect the same number of bonds. However, ConvDates has one less column than CouponRate. This situation is illustrated by

Rate1 Rate2 Rate3

\section*{Description}
[Price, AccruedInterest] = stepcpnprice(Yield, Settle, Maturity, ConvDates, CouponRates, Period, Basis, EndMonthRule, Face) computes the
price of bonds with stepped coupons given the yield to maturity. The function supports any number of conversion dates.

Price is a NUMBONDS-by- 1 vector of clean prices.
AccruedInterest is a NUMBONDS-by-1 vector of accrued interest payable at settlement dates.

Note For bonds with fixed coupons, use bndprice. If you use a fixed-coupon bond with stepcpnprice, you will receive the error: incorrect number of inputs.

\section*{Examples}

Compute the price and accrued interest due on a portfolio of stepped-coupon bonds having a yield of \(7.221 \%\), given three conversion scenarios:
- Bond A has two conversions, the first one falling on the settle date and immediately expiring.
- Bond B has three conversions, with conversion dates exactly on the coupon dates.
- Bond C has three conversions, with one or more conversion dates not on coupon dates. This case illustrates that only cash flows for full periods after conversion dates are affected, as illustrated below.

The following table illustrates the interest rate characteristics of this bond portfolio.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bond A Dates & Bond A Rates & Bond B Dates & Bond B Rates & Bond C Dates & Bond C Rates \\
\hline \begin{tabular}{l}
Settle (02- \\
Aug-92)
\end{tabular} & 7.5\% & \begin{tabular}{l}
Settle (02- \\
Aug-92)
\end{tabular} & 7.5\% & \begin{tabular}{l}
Settle (02- \\
Aug-92)
\end{tabular} & 7.5\% \\
\hline First Conversion (02-Aug-92) & 8.875\% & \begin{tabular}{l}
First \\
Conversion (15-Jun-97)
\end{tabular} & 8.875\% & \begin{tabular}{l}
First \\
Conversion (14-Jun-97)
\end{tabular} & 8.875\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bond A Dates & Bond A Rates & Bond B Dates & Bond B Rates & Bond C Dates & Bond C Rates \\
\hline \begin{tabular}{l}
Second Conversion \\
(15-Jun-03)
\end{tabular} & 9.25\% & \begin{tabular}{l}
Second \\
Conversion (15-Jun-01)
\end{tabular} & 9.25\% & \begin{tabular}{l}
Second \\
Conversion (14- \\
Jun-01)
\end{tabular} & 9.25\% \\
\hline \multirow[t]{2}{*}{Maturity (15-Jun-10)} & \multirow[t]{2}{*}{NaN} & \begin{tabular}{l}
Third \\
Conversion (15-Jun-05)
\end{tabular} & 10.0\% & \begin{tabular}{l}
Third \\
Conversion (14-Jun-05)
\end{tabular} & 10.0\% \\
\hline & & \begin{tabular}{l}
Maturity (15- \\
Jun-10)
\end{tabular} & NaN & \begin{tabular}{l}
Maturity (15- \\
Jun-10)
\end{tabular} & NaN \\
\hline
\end{tabular}
```

Yield = 0.07221;
Settle = datenum('02-Aug-1992');
ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'),...
nan;
datenum('15-Jun-1997'), datenum('15-Jun-2001'),...
datenum('15-Jun-2005');
datenum('14-Jun-1997'), datenum('14-Jun-2001'),...
datenum('14-Jun-2005')];
Maturity = datenum('15-Jun-2010');
CouponRates = [0.075 0.08875 0.0925 nan;
0.075 0.08875 0.0925 0.1;
0.075 0.08875 0.0925 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;
[Price, AccruedInterest] = ...
stepcpnprice(Yield, Settle, Maturity, ConvDates, CouponRates, ...
Period, Basis, EndMonthRule, Face)
Price =
117.3824
113.4339
113.4339
AccruedInterest =
1.1587
0.9792
0.9792

```

\section*{More About}
- "Managing Present Value with Bond Futures" on page 7-13

\section*{References}

This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest. 3rd Edition. Vol. 1, pp. 120-123, on zero-coupon instruments pricing.
```

See Also
bndprice | cdprice | stepcpncfamounts | stepcpnprice | stepcpnyield |
tbillprice

```

\section*{Introduced before R2006a}

\section*{stepcpnyield}

Yield to maturity of bond with stepped coupons

\section*{Syntax}

Yield = stepcpnyield(Price, Settle, Maturity, ConvDates, CouponRate, Period, Basis, EndMonthRule, Face)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline Price & Vector containing price of the bonds. \\
\hline Settle & \begin{tabular}{l}
Settlement date. A vector of serial date numbers. Settle must \\
be earlier than Maturity.
\end{tabular} \\
\hline Maturity & Maturity date. A vector of serial date numbers. \\
\hline ConvDates & \begin{tabular}{l}
Matrix of serial date numbers representing conversion dates \\
after Settle. Size = number of instruments by maximum \\
number of conversions. Fill unspecified entries with NaN.
\end{tabular} \\
\hline CouponRates & \begin{tabular}{l}
Matrix indicating the coupon rates for each bond in decimal \\
form. Size = number of instruments by maximum number of \\
conversions + 1. First column of this matrix contains rates \\
applicable between Settle and the first conversion date (date \\
in the first column of ConvDates). Fill unspecified entries with \\
NaN. See Note below.
\end{tabular} \\
\hline Period & \begin{tabular}{l}
(Optional) Coupons per year of the bond. A vector of integers. \\
Allowed values are 0, 1, 2, 3, 4, 6, and 12. Default = 2.
\end{tabular} \\
\hline Basis & \begin{tabular}{l}
\((\) Optional) Day-count basis of the instrument. A vector of \\
integers. \\
\(-\quad 0=\) actual/actual (default) \\
\(-\quad 1=30 / 360\) (SIA) \\
\(-\quad 2=\) actual/360 \\
\(\cdot \quad 3=\) actual/365
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA) \\
- 12 = actual/365 (ISDA) \\
- 13 = BUS/252 \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline Face & (Optional) Face value of each bond in the portfolio. Default = 100. \\
\hline
\end{tabular}

All arguments must be number of bonds (NUMBONDS)-by-1 vectors, except for ConvDates and CouponRate.

Note ConvDates has the same number of rows as CouponRate to reflect the same number of bonds. However, ConvDates has one less column than CouponRate. This situation is illustrated by
 Rate1 Rate2 Rate3

\section*{Description}

Yield = stepcpnyield(Price, Settle, Maturity, ConvDates, CouponRate, Period, Basis, EndMonthRule, Face) computes the yield to maturity of bonds
with stepped coupons given the price. The function supports any number of conversion dates.

Yield is a NUMBONDS-by-1 vector of yields to maturity in decimal form.

Note For bonds with fixed coupons, use bndyield. You will receive the error incorrect number of inputs if you use a fixed-coupon bond with stepcpnyield.

\section*{Examples}

Find the yield to maturity of three stepped-coupon bonds of known price, given three conversion scenarios:
- Bond A has two conversions, the first one falling on the settle date and immediately expiring.
- Bond B has three conversions, with conversion dates exactly on the coupon dates.
- Bond C has three conversions, with one or more conversion dates not on coupon dates. This case illustrates that only cash flows for full periods after conversion dates are affected, as illustrated below.

The following table illustrates the interest rate characteristics of this bond portfolio.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bond A Dates & Bond A Rates & Bond B Dates & Bond B Rates & Bond C Dates & Bond C Rates \\
\hline \begin{tabular}{l}
Settle (02- \\
Aug-92)
\end{tabular} & 7.5\% & Settle (02-Aug-92) & 7.5\% & \begin{tabular}{l}
Settle (02- \\
Aug-92)
\end{tabular} & 7.5\% \\
\hline First Conversion (02-Aug-92) & 8.875\% & \begin{tabular}{l}
First \\
Conversion (15- \\
Jun-97)
\end{tabular} & 8.875\% & \begin{tabular}{l}
First \\
Conversion (14- \\
Jun-97)
\end{tabular} & 8.875\% \\
\hline \begin{tabular}{l}
Second Conversion \\
(15-Jun-03)
\end{tabular} & 9.25\% & \begin{tabular}{l}
Second \\
Conversion (15- \\
Jun-01)
\end{tabular} & 9.25\% & Second Conversion (14-Jun-01) & 9.25\% \\
\hline
\end{tabular}
\begin{tabular}{llllll}
\hline Bond A Dates & Bond A Rates & Bond B Dates & Bond B Rates & Bond C Dates & Bond C Rates \\
Maturity (15- & NaN & Third & \(10.0 \%\) & Third & \(10.0 \%\) \\
Jun-10) & & Conversion (15- & & Conversion (14- & \\
& Jun-05) & & Jun-05) & \\
& & Maturity (15- & NaN & Maturity (15- & NaN \\
& & Jun-10) & & Jun-10) &
\end{tabular}
```

format long
Price = [117.3824; 113.4339; 113.4339];
Settle = datenum('02-Aug-1992');
ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'), nan;
datenum('15-Jun-1997'), datenum('15-Jun-2001'), datenum('15-Jun-2005');
datenum('14-Jun-1997'), datenum('14-Jun-2001'), datenum('14-Jun-2005')];
Maturity = datenum('15-Jun-2010');
CouponRates = [0.075 0.08875 0.0925 nan;
0.075 0.08875 0.0925 0.1;
0.075 0.08875 0.0925 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;
Yield = stepcpnyield(Price, Settle, Maturity, ConvDates, ...
CouponRates, Period, Basis, EndMonthRule, Face)
Yield =
0.07221440204915
0.07221426780036
0.07221426780036

```

\section*{More About}
- "Managing Present Value with Bond Futures" on page 7-13

\section*{References}

This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and Accrued Interest. 3rd Edition. Vol. 1 , pp. 120-123, on zero-coupon instruments pricing.
```

See Also
bndprice | cdprice | stepcpncfamounts | stepcpnprice | stepcpnprice | tbillprice | zeroprice

```

Introduced before R2006a

\section*{Hutbyprice}

Future prices of Treasury bonds given spot price

\section*{Syntax}
[QtdFutPrice, AccrInt] = tfutbyprice(SpotCurve, Price, SettleFut, MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline SpotCurve & \begin{tabular}{l}
Treasury spot curve; a number of futures (NFUT) by 3 matrix in the \\
form of \\
[SpotDates SpotRates Compounding]. \\
Allowed compounding values are -1, 1, 2 (default), 3, 4, and 12, \\
where - 1 is continuous compounding.
\end{tabular} \\
\hline Price & \begin{tabular}{l}
Scalar or vector containing prices of Treasury bonds or notes per \\
\(\$ 100\) notional. Use bndprice for theoretical value of bond.
\end{tabular} \\
\hline SettleFut & \begin{tabular}{l}
Scalar or vector of identical elements containing settlement date of \\
futures contract.
\end{tabular} \\
\hline MatFut & \begin{tabular}{l}
Scalar or vector containing maturity dates (or anticipated delivery \\
dates) of futures contract.
\end{tabular} \\
\hline ConvFactor & Conversion factor. See convfactor. \\
\hline CouponRate & \begin{tabular}{l}
Scalar or vector containing underlying bond annual coupon in \\
decimal.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Scalar or vector containing underlying bond maturity.
\end{tabular} \\
\hline Interpolation & \begin{tabular}{l}
(Optional) Interpolation method. Available methods are (0) \\
nearest, (1) linear, and (2) cubic. Default = 1. See interp1 for \\
more information.
\end{tabular} \\
\hline
\end{tabular}

Inputs (except SpotCurve) must either be a scalar or a vector of size equal to the number of Treasury futures (NFUT) by 1 or 1 -by-NFUT.

\section*{Description}
[QtdFutPrice, AccrInt] = tfutbyprice(SpotCurve, Price, SettleFut, MatFut, ConvFactor, CouponRate, Maturity, Interpolation) computes future prices of Treasury notes and bonds given the spot price. The output arguments are:
- QtdFutPrice - Quoted futures price, per \(\$ 100\) notional.
- Accr Int - Accrued interest due at delivery date, per \(\$ 100\) notional.

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an IRDataCurve object with a Dates property to create a vector of dates and data acceptable for tfutbyprice. For more information, see "Converting an IRDataCurve or IRFunctionCurve Object" on page 9-40.

\section*{Examples}

\section*{Determine the Future Prices of Treasury Bonds Given the Spot Price}

This example shows how to determine the future price of two Treasury bonds based upon a spot rate curve constructed from data for November 14, 2002.
```

% construct spot curve from Nov 14, data
Bonds = [datenum('02/13/2003'), 0;
datenum('05/15/2003'), 0;
datenum('10/31/2004'), 0.02125;
datenum('11/15/2007'), 0.03;
datenum('11/15/2012'), 0.04;
datenum('02/15/2031'), 0.05375];
Yields = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;
Settle = datenum('11/15/2002');
[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);
SpotCurve = [CurveDates, ZeroRates];
% calculate a particular bond's future quoted price
RefDate = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];

```
```

MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
Maturity = [datenum('15-Aug-2009');datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
ConvFactor = convfactor(RefDate, Maturity, CouponRate);
Price = [114.416; 113.171];
Interpolation = 1;
[QtdFutPrice, AccrInt] = tfutbyprice(SpotCurve, Price, Settle, ...
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

```

\section*{QtdFutPrice =}
```

114.0409
113.4029
AccrInt $=$
1.9891
0.4448

```
- "Computing Treasury Bill Price and Yield"

\section*{More About}
- "Treasury Bills Defined"

\author{
See Also \\ convfactor | tfutbyyield
}

Introduced before R2006a

\section*{ffutbyyield}

Future prices of Treasury bonds given current yield

\section*{Syntax}
[QtdFutPrice, AccrInt] = tfutbyyield(SpotCurve, Yield, SettleFut, MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline SpotCurve & \begin{tabular}{l}
Treasury spot curve. A number of futures (NFUT)-by-3 matrix in \\
the form of [SpotDates SpotRates Compounding]. \\
Allowed compounding values are - 1, 1, 2 (default), 3, 4, and 12, \\
where -1 is continuous compounding.
\end{tabular} \\
\hline Yield & \begin{tabular}{l}
Scalar or vector containing yield to maturity of bonds. Use \\
bndyield for theoretical value of bond yield.
\end{tabular} \\
\hline SettleFut & \begin{tabular}{l}
Scalar or vector of identical elements containing settlement date of \\
futures contract.
\end{tabular} \\
\hline MatFut & \begin{tabular}{l}
Scalar or vector containing maturity dates (or anticipated delivery \\
dates) of futures contract.
\end{tabular} \\
\hline ConvFactor & Conversion factor. See convfactor. \\
\hline CouponRate & \begin{tabular}{l}
Scalar or vector containing underlying bond annual coupon in \\
decimal.
\end{tabular} \\
\hline Maturity & \begin{tabular}{l}
Scalar or vector containing underlying bond maturity. \\
\hline Interpolation
\end{tabular} \begin{tabular}{l}
(Optional) Interpolation method. Available methods are (0) \\
nearest, (1) linear, and (2) cubic. Default = 1. See interp1 for \\
more information.
\end{tabular} \\
\hline
\end{tabular}

Inputs (except SpotCurve) must either be a scalar or a vector of size equal to the number of Treasury futures (NFUT) by 1 or 1 -by-NFUT.

\section*{Description}
[QtdFutPrice, AccrInt] = tfutbyyield(SpotCurve, Yield, SettleFut, MatFut, ConvFactor, CouponRate, Maturity, Interpolation) computes future prices of Treasury notes and bonds given current yields of Treasury bonds/notes. The output arguments are:
- QtdFutPrice - Quoted futures price, per \(\$ 100\) notional.
- AccrInt - Accrued Interest due at delivery date, per \(\$ 100\) notional.

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an IRDataCurve object with a Dates property to create a vector of dates and data acceptable for tfutbyyield. For more information, see "Converting an IRDataCurve or IRFunctionCurve Object" on page 9-40.

\section*{Examples}

\section*{Determine Future Prices of Treasury Bonds Given the Current Yield}

This example shows how to determine the future price of two Treasury bonds based upon a spot rate curve constructed from data for November 14, 2002.
```

% construct spot curve from Nov 14, data
Bonds = [datenum('02/13/2003'), 0;
datenum('05/15/2003'), 0;
datenum('10/31/2004'), 0.02125;
datenum('11/15/2007'), 0.03;
datenum('11/15/2012'), 0.04;
datenum('02/15/2031'), 0.05375];
Yields = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;
Settle = datenum('11/15/2002');
[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);
SpotCurve = [CurveDates, ZeroRates];
% calculate a particular bond's future quoted price
RefDate = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];

```
```

MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
Maturity = [datenum('15-Aug-2009');datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
ConvFactor = convfactor(RefDate, Maturity, CouponRate);
Yield = [0.03576; 0.03773];
Interpolation = 1;
[QtdFutPrice, AccrInt] = tfutbyyield(SpotCurve, Yield, Settle, ...
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

```

\section*{QtdFutPrice =}
```

114.0416
113.4034
Accrint $=$
1.9891
0.4448

```
- "Computing Treasury Bill Price and Yield"

\section*{More About}
- "Treasury Bills Defined"

\author{
See Also \\ convfactor | tfutbyprice
}

Introduced before R2006a

\section*{Ifutimprepo}

Implied repo rates for Treasury bond future given price

\section*{Syntax}

ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, Settle, MatFut, ConvFactor, CouponRate, Maturity)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline ReinvestData & \begin{tabular}{l}
Number of futures (NFUT) by 2 matrix of rates and bases for \\
the reinvestment of intervening coupons in the form of \\
[ReinvestRate ReinvestBasis]. \\
ReinvestRate is the simple reinvestment rate, in decimal. \\
Specify ReinvestBasis as 0 = not reinvested, 2 = actual/360, \\
or \(3=\) actual/365.
\end{tabular} \\
\hline Price & Current bond price per \(\$ 100\) notional. \\
\hline QtdFutPrice & Quoted bond futures price per \(\$ 100\) notional. \\
\hline Settle & Settlement/valuation date of futures contract. \\
\hline MatFut & \begin{tabular}{l}
Maturity date (or anticipated delivery dates) of futures \\
contract.
\end{tabular} \\
\hline ConvFactor & Conversion factor. See convfactor. \\
\hline CouponRate & Underlying bond annual coupon, in decimal. \\
\hline Maturity & Underlying bond maturity date. \\
\hline
\end{tabular}

Inputs (except ReinvestData) must either be a scalar or a vector of size equal to the number of Treasury futures (NFUT) by 1 or 1 -by-NFUT.

\section*{Description}

ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, Settle, MatFut, ConvFactor, CouponRate, Maturity) computes the implied repo rate
that prevents arbitrage of Treasury bond futures, given the clean price at the settlement and delivery dates.

ImpliedRepo is the implied annual repo rate, in decimal, with an actual/360 basis.

\section*{Examples}

\section*{Compute the Implied Repo Rates for Treasury Bond Futures Given the Price}

This example shows how to compute the implied repo rate given the following set of data.
```

ReinvestData = [0.018 3];
Price = [114.4160; 113.1710];
QtdFutPrice = [114.1201; 113.7090];
Settle = datenum('11/15/2002');
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor = [1; 0.9854];
CouponRate = [0.06; 0.0575];
Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];
ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, ...
Settle, MatFut, ConvFactor, CouponRate, Maturity)
ImpliedRepo =
0.0200
0.0200

```
- "Computing Treasury Bill Price and Yield"

\section*{More About}
- "Treasury Bills Defined"

\author{
See Also \\ tfutpricebyrepo | tfutyieldbyrepo \\ Introduced before R2006a
}

\section*{futpricebyrepo}

Calculates Treasury bond futures price given the implied repo rates

\section*{Syntax}
[QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ReinvestData, Price, Settle, MatFut, ConvFactor, CouponRate, Maturity)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RepoData & \begin{tabular}{l}
Number of futures (NFUT) by 2 matrix of simple term repo/ \\
funding rates in decimal and their bases in the form of \\
[RepoRate RepoBasis]. \\
Specify RepoBasis as 2 = actual/360 or 3 = actual/365.
\end{tabular} \\
\hline ReinvestData & \begin{tabular}{l}
Number of futures (NFUT) by 2 matrix of rates and bases for the \\
reinvestment of intervening coupons in the form of \\
[ReinvestRate ReinvestBasis]. \\
ReinvestRate is the simple reinvestment rate, in decimal. \\
Specify ReinvestBasis as 0 = not reinvested, 2 = actual/360, or \\
\(3=\) actual/365.
\end{tabular} \\
\hline Price & \begin{tabular}{l}
Quoted clean prices of Treasury bonds per \(\$ 100\) notional at \\
Settle.
\end{tabular} \\
\hline Settle & Settlement/valuation date of futures contract. \\
\hline MatFut & Maturity date (or anticipated delivery dates) of futures contract. \\
\hline ConvFactor & Conversion factor. See convfactor. \\
\hline CouponRate & Underlying bond annual coupon, in decimal. \\
\hline Maturity & Underlying bond maturity date. \\
\hline
\end{tabular}

Inputs (except RepoData and ReinvestData) must either be a scalar or a vector of size equal to the number of Treasury futures (NFUT) by 1 or 1 -by-NFUT.

\section*{Description}
[QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ReinvestData, Price, Settle, MatFut, ConvFactor, CouponRate, Maturity) computes the theoretical futures bond price given the settlement price, the repo/funding rates, and the reinvestment rate.

QtdFutPrice is the quoted futures price, per \(\$ 100\) notional.
AccrInt is the accrued interest due at the delivery date, per \(\$ 100\) notional.

\section*{Examples}

\section*{Compute Treasury Bond Futures Price Given the Implied Repo Rates}

This example shows how to compute the quoted futures price and accrued interest due on the target delivery date, given the following data.
```

RepoData = [0.020 2];
ReinvestData = [0.018 3];
Price = [114.416; 113.171];
Settle = datenum('11/15/2002');
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor = [1 ; 0.9854];
CouponRate = [0.06;0.0575];
Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];
[QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ...
ReinvestData, Price, Settle, MatFut, ConvFactor, CouponRate, ...
Maturity)

```

\section*{QtdFutPrice =}
```

114.1201
113.7090

```

Accrint \(=\)
1.9891
0.4448
- "Computing Treasury Bill Price and Yield"

\section*{More About}
- "Treasury Bills Defined"

\author{
See Also \\ tfutimprepo | tfutyieldbyrepo \\ Introduced before R2006a
}

\section*{ffutyieldbyrepo}

Calculates Treasury bond futures yield given the implied repo rates

\section*{Syntax}

FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield, Settle, MatFut, ConvFactor, CouponRate, Maturity)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline RepoData & \begin{tabular}{l}
Number of futures (NFUT) by 2 matrix of simple term repo/ \\
funding rates in decimal and their bases in the form of [RepoRate \\
RepoBasis]. \\
Specify RepoBasis as 2 = actual/360 or 3 = actual/365.
\end{tabular} \\
\hline ReinvestData & \begin{tabular}{l}
Number of futures (NFUT) by 2 matrix of rates and bases for the \\
reinvestment of intervening coupons in the form of \\
[ReinvestRate ReinvestBasis]. \\
ReinvestRate is the simple reinvestment rate, in decimal. \\
Specify ReinvestBasis as 0 = not reinvested, 2 = actual/360, or \\
\(3=\) actual/365.
\end{tabular} \\
\hline Yield & Yield to maturity of Treasury bonds per \(\$ 100\) notional at Settle. \\
\hline Settle & Settlement/valuation date of futures contract. \\
\hline MatFut & Maturity date (or anticipated delivery dates) of futures contract. \\
\hline ConvFactor & Conversion factor. See convfactor. \\
\hline CouponRate & Underlying bond annual coupon, in decimal. \\
\hline Maturity & Underlying bond maturity date. \\
\hline
\end{tabular}

Inputs (except RepoData and ReinvestData) must either be a scalar or a vector of size equal to the number of Treasury futures (NFUT) by 1 or 1 -by-NFUT.

\section*{Description}

FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield, Settle, MatFut, ConvFactor, CouponRate, Maturity) computes the theoretical futures bond yield given the settlement yield, the repo/funding rate, and the reinvestment rate.

FwdYield is the forward yield to maturity, in decimal, compounded semiannually.

\section*{Examples}

\section*{Compute the Treasury Bond Futures Yield Given the Implied Repo Rates}

This example shows how to compute the quoted futures bond yield, given the following data.
```

RepoData = [0.020 2];
ReinvestData = [0.018 3];
Yield = [0.0215; 0.0257];
Settle = datenum('11/15/2002');
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor = [1; 0.9854];
CouponRate = [0.06; 0.0575];
Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];

```
FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield,...
 Settle, MatFut, ConvFactor, CouponRate, Maturity)
FwdYield =
 0.0221
 0.0282
- "Computing Treasury Bill Price and Yield"

\section*{More About}
- "Treasury Bills Defined"

\author{
See Also \\ tfutimprepo | tfutpricebyrepo \\ Introduced before R2006a
}

\section*{toRateSpec}

Convert IRDataCurve object to RateSpec

\section*{Class}
@IRDataCurve

\section*{Syntax}

F = toratespec(CurveObj, InpDates)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline CurveObj & Interest-rate curve object that is constructed using IRDataCurve. \\
\hline InpDates & \begin{tabular}{l}
Vector of input dates using MATLAB date format. The input dates \\
must be after the settle date.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

F = toratespec(CurveObj, InpDates) returns a RateSpec object that is identical to the RateSpec structure created by the Financial Instruments Toolbox function intenvset.

\section*{Examples}

\section*{Convert an IRDataCurve Object to a RateSpec}

This example shows how to convert an IRDataCurve object to a RateSpec. First, an IRDataCurve object is created using the function IRDataCurve constructor with Dates and Data, then this object is converted to a RateSpec structure using the toRateSpec method.
```

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Forward',CurveSettle,Dates,Data);
toRateSpec(irdc, CurveSettle+30:30:CurveSettle+365)
ans =
struct with fields:
FinObj: 'RateSpec'
Compounding: 2
Disc: [12\times1 double]
Rates: [12\times1 double]
EndTimes: [12\times1 double]
StartTimes: [12\times1 double]
EndDates: [12\times1 double]
StartDates: 736391
ValuationDate: 736391
Basis: 0
EndMonthRule: 1

```
- "Creating Interest-Rate Curve Objects" on page 9-4
- "Creating an IRDataCurve Object" on page 9-6
- "Using the toRateSpec Method" on page 9-40

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\section*{See Also}
"@IRDataCurve" on page A-7

\section*{Introduced in R2008b}

\section*{toRateSpec}

Convert IRFunctionCurve object to RateSpec

\section*{Class}
@IRFunctionCurve

\section*{Syntax}

F = toRateSpec(CurveObj, InpDates)

\section*{Arguments}
\begin{tabular}{|l|l|}
\hline CurveObj & \begin{tabular}{l}
Interest-rate curve object that is constructed using \\
IRFunctionCurve.
\end{tabular} \\
\hline InpDates & \begin{tabular}{l}
Vector of input dates using MATLAB date format. The input dates \\
must be after the settle date.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

F = toRateSpec(CurveObj, InpDates) returns a RateSpec object that is identical to the RateSpec structure created by the Financial Instruments Toolbox function intenvset.

\section*{Examples}

\section*{Convert an IRFunctionCurve Object to a RateSpec}

This example shows how to convert an IRFunctionCurve object to a RateSpec. First, an IRFunctionCurve object is created using the function IRFunctionCurve constructor, then a RateSpec structure is created using the toRateSpec method.
```

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
toRateSpec(irfc, today+30:30:today+365)
ans =
struct with fields:
Fin0bj: 'RateSpec'
Compounding: 2
Disc: [12\times1 double]
Rates: [12\times1 double]
EndTimes: [12\times1 double]
StartTimes: [12\times1 double]
EndDates: [12\times1 double]
StartDates: 736572
ValuationDate: 736572
Basis: 0
EndMonthRule: 1

```
- "Creating an IRFunctionCurve Object" on page 9-21
- "Using the toRateSpec Method" on page 9-40

\section*{More About}
- "Interest-Rate Curve Objects and Workflow" on page 9-2

\author{
See Also \\ "@IRFunctionCurve" on page A-13 \\ Introduced in R2008b
}

\section*{zeroprice}

Price zero-coupon instruments given yield

\section*{Syntax}

Price = zeroprice(Yield, Settle, Maturity, Period, Basis, EndMonthRule)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Yield & Scalar or vector containing yield to maturity of instruments. \\
\hline Settle & Settlement date. A vector of serial date numbers or date character vectors. Settle must be earlier than Maturity. \\
\hline Maturity & Maturity date. A vector of serial date numbers or date character vectors. \\
\hline Period & (Optional) Scalar or vector specifying number of quasi-coupons per year. Default = 2 . \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the bond. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- 2 = actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- 7 = actual/365 (Japanese) \\
- \(8=\) actual/actual (ICMA) \\
- \(9=\) actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
\(\bullet \quad 12=\) actual/365 (ISDA) \\
\(-\quad 13=\mathrm{BUS} / 252\) \\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & \begin{tabular}{l}
(Optional) End-of-month rule. A vector. This rule applies only \\
when Maturity is an end-of-month date for a month having \\
30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon \\
payment date is always the same numerical day of the month. \\
\(1=\) set rule on (default), meaning that a bond's coupon payment \\
date is always the last actual day of the month.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Price = zeroprice(Yield, Settle, Maturity, Period, Basis, EndMonthRule) calculates the prices for a portfolio of general short and long-term zero-coupon instruments given the yield of reference bonds. In other words, if the zerocoupon computed with this yield is used to discount the reference bond, the value of that reference bond will be equal its price.

Price is a column vector containing a price for each zero-coupon instrument per \$100 notional.

When there is less than one quasi-coupon, the function uses a simple yield based on (Period) x (Number of Days in quasi coupon period) day-year. The default period is 2 and the default number of days is 180 , which makes the user-supplied yield a simple yield on a 360 -day year.

For longer term computations (more than one quasi-coupon), use the bond equivalent yield based on present value (or compounding).

\section*{Algorithms}

To compute the price when there is 1 or 0 quasi-coupon periods to redemption, zeroprice uses the formula
\[
\text { Price }=\frac{R V}{1+\left(\frac{D S R}{E} \times \frac{Y}{M}\right)}
\]

Quasi-coupon periods are the coupon periods that would exist if the bond were paying interest at a rate other than zero.

When there is more than one quasi-coupon period to the redemption date, zeroprice uses the formula
\[
\text { Price }=\frac{R V}{\left(1+\frac{Y}{M}\right)^{N_{q}-1+\frac{D S C}{E}}}
\]

The elements of the equations are defined as follows.
\begin{tabular}{|l|l|}
\hline Variable & Definition \\
\hline\(D S C\) & \begin{tabular}{l}
Number of days from settlement date to next quasi-coupon date as if the \\
security paid periodic interest.
\end{tabular} \\
\hline\(D S R\) & \begin{tabular}{l}
Number of days from settlement date to the redemption date (call date, \\
put date, and so on).
\end{tabular} \\
\hline\(E\) & Number of days in quasi-coupon period. \\
\hline\(M\) & \begin{tabular}{l}
Number of quasi-coupon periods per year (standard for the particular \\
security involved).
\end{tabular} \\
\hline\(N q\) & \begin{tabular}{l}
Number of quasi-coupon periods between settlement date and redemption \\
date. If this number contains a fractional part, raise it to the next whole \\
number.
\end{tabular} \\
\hline Price & Dollar price per \$100 par value. \\
\hline\(R V\) & Redemption value. \\
\hline\(Y\) & Annual yield (decimal) when held to redemption. \\
\hline
\end{tabular}

\section*{Examples}

\section*{Compute the Price of a Short-Term Zero-Coupon Instrument}

This example shows how to compute the price of a short-term zero-coupon instrument.
```

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Period = 2;
Basis = 0;
Yield = 0.04;
Price = zeroprice(Yield, Settle, Maturity, Period, Basis)
Price =

```
 98.6066

\section*{Compute the Prices of a Porffolio of Two Zero-Coupon Instruments}

This example shows how to compute the prices of a portfolio of two zero-coupon instruments, one short-term, and the other long-term.
```

Settle = '24-Jun-1993';
Maturity = ['01-Nov-1993'; '15-Jan-2024'];
Basis = [0; 1];
Yield = [0.04; 0.1];
Price = zeroprice(Yield, Settle, Maturity, [], Basis)
Price =

```
 98.6066
 5.0697
- "Computing Treasury Bill Price and Yield"
- "Pricing Treasury Notes" on page 6-7
- "Pricing Corporate Bonds" on page 6-8

\section*{More About}
- "Measuring Zero-Coupon Bond Function Quality" on page 6-6

\section*{References}
[1] Mayle, Jan. Standard Securities Calculation Methods. 3rd Edition, Vol. 1, Securities Industry Association, Inc., New York, 1993, ISBN 1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

\author{
See Also \\ bndprice | cdprice | tbillprice | zeroyield
}

Introduced before R2006a

\section*{zeroyield}

Yield of zero-coupon instruments given price

\section*{Syntax}

Yield = zeroyield(Price, Settle, Maturity, Period, Basis, EndMonthRule)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Price & Scalar or vector containing prices of instruments. \\
\hline Settle & Settlement date. A vector of serial date numbers or date character vectors. Settle must be earlier than Maturity. \\
\hline Maturity & Maturity date. A vector of serial date numbers or date character vectors. \\
\hline Period & (Optional) Scalar or vector specifying number of quasi-coupons per year. Default = 2 . \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the bond. A vector of integers. \\
- \(0=\) actual/actual (default) \\
- \(1=30 / 360\) (SIA) \\
- \(2=\) actual/360 \\
- 3 = actual/365 \\
- \(4=30 / 360\) (BMA) \\
- \(5=30 / 360\) (ISDA) \\
- \(6=30 / 360\) (European) \\
- \(7=\) actual/365 (Japanese) \\
- 8 = actual/actual (ICMA) \\
- 9 = actual/360 (ICMA) \\
- \(10=\) actual/365 (ICMA) \\
- \(11=30 / 360 \mathrm{E}\) (ICMA)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
& \begin{tabular}{l}
• \(12=\) actual/365 (ISDA) \\
\\
For more information, see basis.
\end{tabular} \\
\hline EndMonthRule & \begin{tabular}{l}
(Optional) End-of-month rule. A vector. This rule applies only \\
when Maturity is an end-of-month date for a month having 30 or \\
fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment \\
date is always the same numerical day of the month. \(1=\) set rule \\
on (default), meaning that a bond's coupon payment date is always \\
the last actual day of the month.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Yield = zeroyield(Price, Settle, Maturity, Period, Basis, EndMonthRule) calculates the bond-equivalent yield for a portfolio of general short and long-term zero-coupon instruments given the price of the instruments. In other words, if the zero-coupon computed with this yield is used to discount the reference bond, the value of that reference bond will be equal its price.

Yield is a column vector containing a bond-equivalent yield for each zero-coupon instrument.

When the maturity date is fewer than 182 days away and the basis is actual/365, the function uses a simple-interest algorithm. If maturity is more than 182 days away, the function uses present value calculations.

When the basis is actual/360, the simple interest algorithm gives the money-market yield for short (1-6 months to maturity) Treasury bills.

The present value algorithm always gives the bond equivalent yield of the zero-coupon instrument. The algorithm is equivalent to calling bndyield with the zero-coupon information within one basis point.

\section*{Algorithms}

To compute the yield when there is zero or one quasi-coupon period to redemption, zeroyield uses the formula
\[
\text { Yield }=\left(\frac{R V-P}{P}\right) \times\left(\frac{M \times E}{D S R}\right)
\]

Quasi-coupon periods are the coupon periods which would exist if the bond was paying interest at a rate other than zero. The first term calculates the yield on invested dollars. The second term converts this yield to a per annum basis.

When there is more than one quasi-coupon period to the redemption date, zeroyield uses the formula
\[
\text { Yield }=\left(\left(\frac{R V}{P}\right)^{\frac{1}{N_{q-1+1} \frac{D S C}{E}}}-1\right) \times M
\]

The elements of the equations are defined as follows.
\begin{tabular}{ll}
Variable & Definition \\
DSC & \begin{tabular}{l}
Number of days from the settlement date to next quasi-coupon date as if \\
the security paid periodic interest.
\end{tabular} \\
\(D S R\) & \begin{tabular}{l}
Number of days from the settlement date to redemption date (call date, put \\
date, and so on).
\end{tabular} \\
\(E\) & \begin{tabular}{l}
Number of days in quasi-coupon period. \\
Number of quasi-coupon periods per year (standard for the particular \\
security involved).
\end{tabular} \\
\(N q\) & \begin{tabular}{l}
Number of quasi-coupon periods between the settlement date and \\
redemption date. If this number contains a fractional part, raise it to the \\
next whole number.
\end{tabular} \\
\(P\) & \begin{tabular}{l}
Dollar price per \(\$ 100\) par value. \\
\(R V\)
\end{tabular} \\
Redemption value.
\end{tabular}

\section*{Examples}

\section*{Compute the Yield of a Short-Term Zero-Coupon Instrument}

This example shows how to compute the yield of a short-term zero-coupon instrument.
```

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis = 0;
Price = 95;
Yield = zeroyield(Price, Settle, Maturity, [], Basis)
Yield =
0.1490

```

\section*{Compute the Yield of a Short-Term Zero-Coupon Instrument Using a Day-Count Basis of 30/360 (SIA)}

This example shows how to compute the yield of a short-term zero-coupon instrument using a day-count basis of 30/360 (SIA).
```

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis = 1;
Price = 95;
Yield = zeroyield(Price, Settle, Maturity, [], Basis)
Yield =
0.1492

```

\section*{Compute the Yield of a Long-Term Zero-Coupon Instrument}

This example shows how to ompute the yield of a long-term zero-coupon instrument.
```

Settle = '24-Jun-1993';
Maturity = '15-Jan-2024';

```
```

Basis = 0
Price = 9;

```
Yield = zeroyield(Price, Settle, Maturity, [], Basis)
Yield =
 0.0804
- "Computing Treasury Bill Price and Yield"
- "Pricing Treasury Notes" on page 6-7
- "Pricing Corporate Bonds" on page 6-8

\section*{More About}
- "Measuring Zero-Coupon Bond Function Quality" on page 6-6

\section*{References}
[1] Mayle, Jan. Standard Securities Calculation Methods. 3rd Edition, Vol. 1, Securities Industry Association, Inc., New York, 1993, ISBN 1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

\author{
See Also \\ bndyield | cdyield | tbillyield | zeroprice \\ \section*{Introduced before R2006a}
}

\section*{Derivatives Pricing Options}

\section*{Pricing Options Structure}
```

In this section...
"Introduction" on page B-2
"Default Structure" on page B-2
"Customizing the Structure" on page B-4

```

\section*{Introduction}

The MATLAB Options structure provides additional input to most pricing functions. The Options structure
- Tells pricing functions how to use the interest-rate tree to calculate instrument prices.
- Determines what additional information the Command Window displays along with instrument prices.
- Tells pricing functions which method to use in pricing barrier options.

The pricing options structure is primarily used in the pricing of interest-rate-based financial derivatives. However, the BarrierMethod field in the structure allows you to use it in pricing equity barrier options as well.

You provide pricing options in an optional Options argument passed to a pricing function. (See, for example, bondbyhjm, bdtprice, barrierbycrr, barrierbyeqp, or barrierbyitt.)

\section*{Default Structure}

If you do not specify the Options argument in the call to a pricing function, the function uses a default structure. To observe the default structure, use derivset without any arguments.
```

Options = derivset
Options =
Diagnostics: 'off'
Warnings: 'on'

```
```

    ConstRate: 'on'
    BarrierMethod: 'unenhanced'

```

The Options structure has four fields: Diagnostics, Warnings, ConstRate, and BarrierMethod.

\section*{Diagnostics Field}

Diagnostics indicates whether additional information is displayed if the tree is modified. The default value for this option is 'off'. If Diagnostics is set to 'on' and ConstRate is set to 'off', the pricing functions display information such as the number of nodes in the last level of the tree generated for pricing purposes.

\section*{Warnings Field}

Warnings indicates whether to display warning messages when the input tree is not adequate for accurately pricing the instruments. The default value for this option is ' on '. If both ConstRate and Warnings are 'on ', a warning is displayed if any of the instruments in the input portfolio have a cash flow date between tree dates. If ConstRate is 'off', and Warnings is 'on', a warning is displayed if the tree is modified to match the cash flow dates on the instruments in the portfolio.

\section*{ConstRate Field}

ConstRate indicates whether the interest rates should be assumed constant between tree dates. By default this option is ' on ', which is not an arbitrage-free assumption. So the pricing functions return an approximate price for instruments featuring cash flows between tree dates. Instruments featuring cash flows only on tree nodes are not affected by this option and return exact (arbitrage-free) prices. When ConstRate is 'off', the pricing function finds the cash flow dates for all instruments in the portfolio. If these cash flows do not align exactly with the tree dates, a new tree is generated and used for pricing. This new tree features the same volatility and initial rate specifications of the input tree but contains tree nodes for each date in which at least one instrument in the portfolio has a cash flow. Keep in mind that the number of nodes in a tree grows exponentially with the number of tree dates. So, setting ConstRate 'off ' dramatically increases the memory and processor demands on the computer.

\section*{BarrierMethod Field}

When using binomial trees to price barrier options, you may require a large number of tree steps to achieve an accurate result when tree nodes do not align with the barrier
level. With the BarrierMethod field, the toolbox provides an enhancement method that improves the accuracy of the results without having to use large trees.

The BarrierMethod field can be set to 'unenhanced' (default) or 'interp'. If you specify 'unenhanced ', no correction calculation is used. Otherwise, if you specify 'interp', the toolbox provides an enhanced valuation by interpolating between nodes on barrier boundaries.

You specify the barrier method in the last input argument, Options, of the functions barrierbycrr, barrierbyeqp, barrierbyitt, crrprice, eqpprice, ittprice, crrsens, eqpsens, or ittsens. Options is a structure that you create with the function derivset. Using derivset, you specify whether to use the enhanced or the unenhanced method.

For more information about this algorithm, see Derman, E., I. Kani, D. Ergener and I. Bardhan, "Enhanced Numerical Methods for Options with Barriers," Financial Analysts Journal, (Nov. - Dec. 1995), pp. 65-74.

\section*{Customizing the Structure}

Customize the Options structure by passing property name/property value pairs to the derivset function.

As an example, consider an Options structure with ConstRate 'off' and Diagnostics 'on'.
```

Options = derivset('ConstRate', 'off', 'Diagnostics', 'on')

```
Options =
 Diagnostics: 'on'
 Warnings: 'on'
 ConstRate: 'off'
BarrierMethod: 'unenhanced'

To obtain the value of a specific property from the Options structure, use derivget.
```

CR = derivget(Options, 'ConstRate')

```
CR =
Off

Note Use derivset and derivget to construct the Options structure. These functions are guaranteed to remain unchanged, while the implementation of the structure itself may be modified in the future.

Now observe the effects of setting ConstRate 'off'. Obtain the tree dates from the HJM tree.
```

TreeDates = [HJMTree.TimeSpec.ValuationDate;...
HJMTree.TimeSpec.Maturity]
TreeDates =
730486
7 3 0 8 5 2
731217
731582
731947
datedisp(TreeDates)
01-Jan-2000
01-Jan-2001
01-Jan-2002
01-Jan-2003
01-Jan-2004

```

All instruments in HJMInstSet settle on January 1, 2000, and all have cash flows once a year, except for the second bond, which features a period of 2 . This bond has cash flows twice a year, with every other cash flow consequently falling between tree dates. You can extract this bond from the portfolio to compare how its price differs by setting ConstRate to 'on' and 'off'.
```

BondPort = instselect(HJMInstSet, 'Index', 2);

```
instdisp(BondPort)
Index Type CouponRate Settle Maturity Period Basis...
1 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN...

First price the bond with ConstRate ' on ' (default).
format long
[BondPrice, BondPriceTree] = hjmprice(HJMTree, BondPort)
```

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
BondPrice =
97.52801411736377
BondPriceTree =
FinObj: 'HJMPriceTree'
PBush: {1x5 cell}
AIBush: {[0] [1\times1\times2 double] ... [1\times4\times2 double] [1\times8 double]}
tObs: [l0 1 1 2 3 4

```

Now recalculate the price of the bond setting ConstRate 'off'.
```

OptionsNoCR = derivset('ConstR', 'off')
OptionsNoCR =
Diagnostics: 'off'
Warnings: 'on'
ConstRate: 'off'
[BondPriceNoCR, BondPriceTreeNoCR] = hjmprice(HJMTree,...
BondPort, OptionsNoCR)
Warning: Not all cash flows are aligned with the tree. Rebuilding
tree.
BondPriceNoCR =
97.53342361674437
BondPriceTreeNoCR =
FinObj: 'HJMPriceTree'
PBush: {1x9 cell}
AIBush: {1x9 cell}
tObs: [l0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]

```

As indicated in the last warning, because the cash flows of the bond did not align with the tree dates, a new tree was generated for pricing the bond. This pricing method returns more accurate results since it guarantees that the process is arbitrage-free. It also takes longer to calculate and requires more memory. The tObs field of the price tree structure indicates the increased memory usage. BondPriceTree.tObs has only five elements, while BondPriceTreeNoCR.tObs has nine. While this may not seem like a large difference, it has a dramatic effect on the number of states in the last node.
```

size(BondPriceTree.PBush{end})
ans =

```

18
```

size(BondPriceTreeNoCR.PBush{end})
ans =

```

1128

The differences become more obvious by examining the price trees with treeviewer. treeviewer(BondPriceTree, BondPort)

\footnotetext{
treeviewer(BondPriceTreeNoCR, BondPort)
}

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
All =
\begin{tabular}{rrrr}
-2.76 & 10.43 & 0.00 & 98.72 \\
-3.56 & 16.64 & -0.00 & 97.53 \\
-166.18 & 13235.59 & 700.96 & 0.05 \\
-2.76 & 10.43 & 0.00 & 98.72 \\
-0.01 & 0.03 & 0 & 100.55 \\
46.95 & 1090.63 & 14.91 & 6.28 \\
-969.85 & 173969.77 & 1926.72 & 0.05 \\
-76.39 & 287.00 & 0.00 & 3.690
\end{tabular}

\section*{See Also}
instasian | instbarrier | instcompound | instlookback | instoptstock

\section*{Related Examples}
- "Pricing Equity Derivatives Using Trees" on page 3-119
- "Pricing Options Structure" on page B-2
- "Pricing European Call Options Using Different Equity Models" on page 3-150
- "Pricing Using the Black-Scholes Model" on page 3-142
- "Compute Option Prices on a Forward" on page 11-1162
- "Compute Forward Option Prices and Delta Sensitivities" on page 11-1227
- "Compute the Option Price on a Future" on page 11-1163
- "Pricing Asian Options" on page 3-105

\section*{More About}
- "Supported Interest-Rate Instruments" on page 2-2
- "Supported Equity Derivatives" on page 3-24
- "Supported Energy Derivatives" on page 3-41

\section*{Bibliography}

\author{
"Black-Derman-Toy (BDT) Modeling" on page C-2 \\ "Heath-Jarrow-Morton (HJM) Modeling" on page C-3 \\ "Hull-White (HW) and Black-Karasinski (BK) Modeling" on page C-4 \\ "Cox-Ross-Rubinstein (CRR) Modeling" on page C-5 \\ "Implied Trinomial Tree (ITT) Modeling" on page C-6 \\ "Leisen-Reimer Tree (LR) Modeling" on page C-7 \\ "Equal Probabilities Tree (EQP) Modeling" on page C-8 \\ "Closed-Form Solutions Modeling" on page C-9 \\ "Financial Derivatives" on page C-10 \\ "Fitting Interest-Rate Curve Functions" on page C-11 \\ "Interest-Rate Modeling Using Monte Carlo Simulation" on page C-12 \\ "Bootstrapping a Swap Curve" on page C-13 \\ "Bond Futures" on page C-14 \\ "Credit Derivatives" on page C-15 \\ "Convertible Bonds" on page C-16
}

\section*{Black-Derman-Toy (BDT) Modeling}

A description of the Black-Derman-Toy interest-rate model can be found in:
Black, Fischer, Emanuel Derman, and William Toy. "A One Factor Model of Interest Rates and its Application to Treasury Bond Options." Financial Analysts Journal. January - February 1990.

\section*{Heath-Jarrow-Morton (HJM) Modeling}

An introduction to Heath-Jarrow-Morton modeling, used extensively in Financial Instruments Toolbox software, can be found in:

Jarrow, Robert A. Modelling Fixed Income Securities and Interest Rate Options. McGrawHill, 1996, ISBN 0-07-912253-1.

\section*{Hull-White (HW) and Black-Karasinski (BK) Modeling}

A description of the Hull-White model and its Black-Karasinski modification can be found in:

Hull, John C. Options, Futures, and Other Derivatives. Prentice-Hall, 1997, ISBN 0-13-186479-3.

You can find additional information about the Hull-White single-factor model used in this toolbox in these papers:

Hull, J., and A. White. "Numerical Procedures for Implementing Term Structure Models I: Single-Factor Models." Journal of Derivatives. 1994.

Hull, J., and A. White. "Using Hull-White Interest Rate Trees." Journal of Derivatives. 1996.

\section*{Cox-Ross-Rubinstein (CRR) Modeling}

To learn about the Cox-Ross-Rubinstein model, see:
Cox, J. C., S. A. Ross, and M. Rubinstein. "Option Pricing: A Simplified Approach." Journal of Financial Economics. Number 7, 1979, pp. 229-263.

\section*{Implied Trinomial Tree (ITT) Modeling}

To learn about the Implied Trinomial Tree model, see:
Chriss, Neil A., E. Derman, and I. Kani. "Implied trinomial trees of the volatility smile." Journal of Derivatives. 1996.

\section*{Leisen-Reimer Tree (LR) Modeling}

To learn about the Leisen-Reimer model, see:
Leisen D.P., M. Reimer. "Binomial Models for Option Valuation - Examining and Improving Convergence." Applied Mathematical Finance. Number 3, 1996, pp. 319-346.

\section*{Equal Probabilities Tree (EQP) Modeling}

To learn about the Equal Probabilities model, see:
Chriss, Neil A. Black Scholes and Beyond: Option Pricing Models. McGraw-Hill, 1996, ISBN 0-7863-1025-1.

\section*{Closed-Form Solutions Modeling}

To learn about the Bjerksund-Stensland 2002 model, see:
Bjerksund, P. and G. Stensland. "Closed-Form Approximation of American Options." Scandinavian Journal of Management. Vol. 9, 1993, Suppl., pp. S88-S99.

Bjerksund, P. and G. Stensland. "Closed Form Valuation of American Options.", Discussion paper 2002 (http://www.scribd.com/doc/215619796/Closed-form-Valuation-of-American-Options-by-Bjerksund-and-Stensland\#scribd)

\section*{Financial Derivatives}

You can find information on the creation of financial derivatives and their role in the marketplace in numerous sources. Among those consulted in the development of Financial Instruments Toolbox software are:

Chance, Don. M. An Introduction to Derivatives. The Dryden Press, 1998, ISBN 0-030-024483-8.

Fabozzi, Frank J. Treasury Securities and Derivatives. Frank J. Fabozzi Associates, 1998, ISBN 1-883249-23-6.

Wilmott, Paul. Derivatives: The Theory and Practice of Financial Engineering. John Wiley and Sons, 1998, ISBN 0-471-983-89-6.

\section*{Fitting Interest-Rate Curve Functions}

Nelson, C.R., Siegel, A.F. "Parsimonious modelling of yield curves." Journal of Business. Number 60, 1987, pp 473-89.

Svensson, L.E.O. "Estimating and interpreting forward interest rates: Sweden 1992-4." International Monetary Fund, IMF Working Paper, 1994, p. 114.

Fisher, M., Nychka, D., Zervos, D. "Fitting the term structure of interest rates with smoothing splines." Board of Governors of the Federal Reserve System, Federal Reserve Board Working Paper, 1995.

Anderson, N., Sleath, J. "New estimates of the UK real and nominal yield curves." Bank of England Quarterly Bulletin. November, 1999, pp 384-92.

Waggoner, D. "Spline Methods for Extracting Interest Rate Curves from Coupon Bond Prices," Federal Reserve Board Working Paper, 1997, p. 10.
"Zero-coupon yield curves: technical documentation." BIS Papers, Bank for International Settlements, Number 25, October, 2005.

Bolder, D.J., Gusba,S. "Exponentials, Polynomials, and Fourier Series: More Yield Curve Modelling at the Bank of Canada." Working Papers. Bank of Canada, 2002, p. 29.

Bolder, D.J., Streliski, D. "Yield Curve Modelling at the Bank of Canada." Technical Reports. Number 84, 1999, Bank of Canada.

\section*{Interest-Rate Modeling Using Monte Carlo Simulation}

Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice with Smile, Inflation and Credit. Springer Finance, 2006.

Andersen, L. and V. Piterbarg. Interest Rate Modeling. Atlantic Financial Press. 2010.
Hull, J, Options, Futures, and Other Derivatives. Springer Finance, 2003.
Glasserman, P. Monte Carlo Methods in Financial Engineering. Prentice Hall, 2008.
Rebonato, R., K. McKay, and R. White. The Sabr/Libor Market Model: Pricing, Calibration and Hedging for Complex Interest-Rate Derivatives. John Wiley \& Sons, 2010.

\section*{Bootstrapping a Swap Curve}

Hagan, P., West, G. "Interpolation Methods for Curve Construction." Applied Mathematical Finance. Vol. 13, Number 2, 2006.

Ron, Uri. "A Practical Guide to Swap Curve Construction." Working Papers. Bank of Canada, 2000, p. 17.

\section*{Bond Futures}

Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill, 2005.

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley \& Sons, 2002.

\section*{Credit Derivatives}

Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. "Charting a Course Through the CDS Big Bang." Fitch Solutions, Quantitative Research. Global Special Report. April 7, 2009.

Hull, J., and A. White. "Valuing Credit Default Swaps I: No Counterparty Default Risk." Journal of Derivatives. Vol. 8, pp. 29-40.

O'Kane, D. and S. Turnbull. "Valuation of Credit Default Swaps." Lehman Brothers, Fixed Income Quantitative Credit Research. April, 2003.

O'Kane, D. Modelling Single-name and Multi-name Credit Derivatives. Wiley Finance, 2008, pp. 156-169.

\section*{Convertible Bonds}

Tsiveriotis, K., and C. Fernandes. "Valuing Convertible Bonds with Credit Risk." Journal of Fixed Income. Vol. 8, 1998, pp. 95-102.

Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000, pp. 646-649.

\section*{Glossary}
Abstract
Glossary of financial terminology.

\section*{American option}

\author{
arbitrary cash flow
} instrument

Asian option
asset-or-nothing option
barrier option
barrier option

\section*{basis}

An option that can be exercised any time until its expiration date. Contrast with European option.

A set of generic cash flow amounts for which a price needs to be established.

An option whose payoff depends upon the average price of the underlying asset over a certain period of time.

A digital option that pays the value of the underlying security if the option expires in the money.

An option that is activated or deactivated only if the price of the underlying asset crosses a barrier. See also knockin and knock-out. If the option fails to execute, the seller may pay to the purchaser a predetermined rebate.

An option that is activated or deactivated only if the price of the underlying asset crosses a barrier. See also knockin and knock-out. If the option fails to execute, the seller may pay to the purchaser a predetermined rebate.

Day count basis determines how interest accrues over time for various instruments and the amount transferred on interest payment dates. The calculation of accrued interest for dates between payments also uses day count basis. Day count basis is a fraction of Number of interest accrual days/Days in the relevant coupon period. Supported day count conventions and basis values are:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Basis \\
Value
\end{tabular} & Day Count Convention \\
\hline 0 & \begin{tabular}{l}
actual/actual (default) - Number of days in both \\
a period and a year is the actual number of days.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Basis \\
Value
\end{tabular} & \begin{tabular}{l}
Day Count Convention \\
\hline 1 \\
\begin{tabular}{l}
\(30 / 360\) SIA - Year fraction is calculated based \\
on a 360 day year with 30-day months, after \\
applying the following rules: If the first date and \\
the second date are the last day of February, \\
the second date is changed to the 30th. If the \\
first date falls on the 31st or is the last day of \\
February, it is changed to the 30th. If after the \\
preceding test, the first day is the 30th and the \\
second day is the 31st, then the second day is \\
changed to the 30th.
\end{tabular} \\
\hline 2
\end{tabular} \begin{tabular}{l}
actual/360 - Number of days in a period is equal \\
to the actual number of days, however the number \\
of days in a year is 360.
\end{tabular} \\
\hline 3 & \begin{tabular}{l}
actual/365 - Number of days in a period is equal \\
to the actual number of days, however the number \\
of days in a year is 365 (even in a leap year).
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
\(30 / 360\) PSA - Number of days in every month is \\
set to 30 (including February). If the start date of \\
the period is either the 31st of a month or the last \\
day of February, the start date is set to the 30th, \\
while if the start date is the 30th of a month and
\end{tabular} \\
the end date is the 31st, the end date is set to the \\
30th. The number of days in a year is 360.
\end{tabular}\(\left|\begin{array}{l}\text { 30/360 ISDA - Number of days in every month } \\
\text { is set to 30, except for February where it is the } \\
\text { actual number of days. If the start date of the } \\
\text { period is the 31st of a month, the start date is set } \\
\text { to the 30th while if the start date is the 30th of a } \\
\text { month and the end date is the 31st, the end date } \\
\text { is set to the 30th. The number of days in a year is } \\
360 .\end{array}\right|\)

Glossary-2
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Basis \\
Value
\end{tabular} & Day Count Convention \\
\hline 6 & \(30 \mathrm{E} / 360\) - Number of days in every month is set to 30 except for February where it is equal to the actual number of days. If the start date or the end date of the period is the 31 st of a month, that date is set to the 30th. The number of days in a year is 360. \\
\hline 7 & actual/365 Japanese - Number of days in a period is equal to the actual number of days, except for leap days (29th February) which are ignored. The number of days in a year is 365 (even in a leap year). \\
\hline 8 & actual/actual ICMA - Number of days in both a period and a year is the actual number of days and the compounding frequency is annual. \\
\hline 9 & actual/360 ICMA - Number of days in a period is equal to the actual number of days, however the number of days in a year is 360 and the compounding frequency is annual. \\
\hline 10 & actual/365 ICMA - Number of days in a period is equal to the actual number of days, however the number of days in a year is 365 (even in a leap year) and the compounding frequency is annual. \\
\hline 11 & 30/360 ICMA - Number of days in every month is set to 30 , except for February where it is equal to the actual number of days. If the start date or the end date of the period is the 31st of a month, that date is set to the 30th. The number of days in a year is 360 and the compounding frequency is annual. \\
\hline 12 & actual/365 ISDA - The day count fraction is calculated using the following formula: (Actual number of days in period that fall in a leap year / 366) + (Actual number of days in period that fall in a normal year / 365). \\
\hline
\end{tabular}

Glossary-3
\(\left.\begin{array}{ll|l|}\hline \begin{array}{ll}\text { Basis } \\ \text { Value }\end{array} & \text { Day Count Convention } \\ \hline 13 & \begin{array}{l}\text { bus/252 - The number of days in a period is } \\ \text { equal to the actual number of business days. The } \\ \text { number of business days in a year is 252. }\end{array} \\ \text { basket option } & \begin{array}{l}\text { An option that provides a payoff dependent on the value } \\ \text { of a portfolio of assets. }\end{array} \\ \text { beta } & \begin{array}{l}\text { The price volatility of a financial instrument relative to } \\ \text { the price volatility of a market or index as a whole. Beta is } \\ \text { most commonly used with respect to equities. A high-beta } \\ \text { instrument is riskier than a low-beta instrument. }\end{array} \\ \text { binomial model } & \begin{array}{l}\text { A method in which the probability over time of each } \\ \text { possible price or rate follows a binomial distribution. The } \\ \text { basic assumption is that prices or rates can move to only }\end{array} \\ \text { two values (one higher and one lower) over any short time } \\ \text { period. See also trinomial model. }\end{array}\right\}\)
\begin{tabular}{ll}
call swaption & \begin{tabular}{l}
Allows the option buyer to enter into an interest rate \\
swap in which the buyer of the option pays the fixed rate \\
and receives the floating rate.
\end{tabular} \\
callable bond & \begin{tabular}{l}
A bond that allows the issuer to buy back the bond at a \\
predetermined price at specified future dates. The bond \\
contains an embedded call option; that is, the holder has \\
sold a call option to the issuer. See also puttable bond.
\end{tabular} \\
cap & \begin{tabular}{l}
Interest-rate option that guarantees that the rate on a \\
floating-rate loan will not exceed a certain level.
\end{tabular} \\
caplet & \begin{tabular}{l}
An interim cap component in a multiperiod interest-rate \\
cap agreement.
\end{tabular} \\
cash-or-nothing option & \begin{tabular}{l}
A digital option that pays some fixed amount of cash if the \\
option expires in the money.
\end{tabular} \\
compound option & \begin{tabular}{l}
An option on an option, such as a call on a call, a put on a \\
put, a call on a put, or a put on a call.
\end{tabular} \\
Delta & \begin{tabular}{l}
Delta measures the rate of change of the price of a \\
derivative security relative to the price of the underlying \\
asset; that is, the first derivative of the curve that relates \\
the price of the derivative to the price of the underlying \\
security.
\end{tabular} \\
digital option & \begin{tabular}{l}
A financial instrument that is based on some underlying \\
asset. For example, an option is a derivative instrument \\
based on the right to buy or sell an underlying \\
instrument.
\end{tabular} \\
discount factor & \begin{tabular}{l}
An interest rate model in which the values of the rates in \\
the next time step are determined solely by the values of \\
the rates in the current time step.
\end{tabular} \\
derministic model & \begin{tabular}{l}
An option whose payout is fixed after the underlying stock \\
exceeds the predetermined threshold or strike price.
\end{tabular} \\
Coefficient used to compute the present value of future \\
cash flows.
\end{tabular}
\(\left.\begin{array}{ll}\text { dollar sensitivity } & \begin{array}{l}\text { Sensitivity reported as a dollar price change instead of a } \\ \text { percentage price change. }\end{array} \\ \text { down-and-in } & \begin{array}{l}\text { A type of barrier option that becomes active if the } \\ \text { barrier is reached from above. See also knock-in. }\end{array} \\ \text { down-and-out } & \begin{array}{l}\text { A type of barrier option that becomes deactivated if the } \\ \text { barrier is reached from above. See also knock-out . }\end{array} \\ \text { European option } & \begin{array}{l}\text { An option that can be exercised only on its expiration } \\ \text { date. Contrast with American option. }\end{array} \\ \text { ex-dividend date } & \begin{array}{l}\text { Date when a declared dividend belongs to the seller } \\ \text { rather than the buyer. }\end{array} \\ \text { exercise price } & \begin{array}{l}\text { The price set for buying an asset (call) or selling an asset } \\ \text { (put). The strike price. }\end{array} \\ \text { exotic option } & \begin{array}{l}\text { Any nonstandard option. Opposite of vanilla option. }\end{array} \\ \text { fixed lookback option } & \begin{array}{l}\text { Strike price is fixed at purchase. The underlying is priced } \\ \text { at its highest or lowest level, depending whether it is } \\ \text { a call or put, during the life of the option rather than } \\ \text { expiring at market. }\end{array} \\ \text { fixed-rate note } & \begin{array}{l}\text { A long-term debt security with preset interest rate } \\ \text { and maturity, by which the interest must be paid. The }\end{array} \\ \text { principal may or may not be paid at maturity. }\end{array}\right\}\)

Glossary-6
\begin{tabular}{ll}
forward curve & \begin{tabular}{l}
The curve of forward interest rates vs. maturity dates for \\
bonds.
\end{tabular} \\
forward rate & \begin{tabular}{l}
The future interest rate of a bond inferred from the term \\
structure, especially from the yield curve of zero-coupon \\
bonds, calculated from the growth factor of an investment \\
in a zero held until maturity.
\end{tabular} \\
Gamma & \begin{tabular}{l}
Gamma measures the rate of change of delta for a \\
derivative security relative to the price of the underlying \\
asset; that is, the second derivative of the option price \\
relative to the security price.
\end{tabular} \\
gap option & \begin{tabular}{l}
A digital option in which one strike decides if the option is \\
in or out of money and another strike decides the size the \\
size of the payoff.
\end{tabular} \\
Heath-Jarrow-Morton (HJM) & \begin{tabular}{l}
A model of the interest rate term structure that works \\
with a type of interest rate tree called a bushy tree
\end{tabular} \\
model \\
hedge & \begin{tabular}{l}
A securities transaction that reduces or offsets the risk on \\
an existing investment position.
\end{tabular} \\
instrument set & \begin{tabular}{l}
A collection of financial assets. A portfolio.
\end{tabular} \\
inverse discount & \begin{tabular}{l}
A factor by which the present value of an asset is \\
multiplied to find its future value. The reciprocal of the \\
discount factor.
\end{tabular} \\
mnock-in & \begin{tabular}{l}
A bond interest payment for more or less than six-months' \\
interest. The first coupon on many bonds is irregular \\
because payment is other than six months from the dated \\
date.
\end{tabular} \\
irregular coupon & \begin{tabular}{l}
A barrier option that is activated when the price of the \\
underlying asset achieves a designated target. There are \\
two types: up-and-in and down-and-in.
\end{tabular} \\
A barrier option that is deactivated when the price of \\
the underlying asset achieves a designated target. There \\
are two types: up-and-out and down-and-out.
\end{tabular}
\(\left.\begin{array}{ll}\text { Lambda } & \begin{array}{l}\text { The percentage change in an option price divided by the } \\ \text { percentage change in an underlying price. }\end{array} \\ \text { least-squares method } & \begin{array}{l}\text { A mathematical method of determining the best fit of a } \\ \text { curve to a series of observations by choosing the curve } \\ \text { that minimizes the sum of the squares of all deviations } \\ \text { from the curve. }\end{array} \\ \text { long rate } \\ \text { lookback option } & \begin{array}{l}\text { The yield on a zero-coupon Treasury bond. }\end{array} \\ \text { An option that reduces uncertainties associated with the } \\ \text { timing of market entry. Lookback options can be either } \\ \text { fixed lookback option and floating lookback option. }\end{array}\right\}\)

Glossary-8
\begin{tabular}{ll}
puttable bond & \begin{tabular}{l}
A bond that allows the holder to redeem the bond at a \\
predetermined price at specified future dates. The bond \\
contains an embedded put option; that is, the holder has \\
bought a put option. See also callable bond .
\end{tabular} \\
rainbow option & \begin{tabular}{l}
A single option linked to two or more underlying assets. \\
In order for the option to pay off, all the underlying assets \\
must move in the intended direction.
\end{tabular} \\
rate specification & \begin{tabular}{l}
A MATLAB structure that holds all information needed to \\
identify completely the evolution of interest rates.
\end{tabular} \\
rebate & \begin{tabular}{l}
A predetermined amount of money paid to the purchaser \\
of a barrier option if the option fails to execute.
\end{tabular} \\
recombining tree & \begin{tabular}{l}
A tree of prices or interest rates whose branches \\
recombine over time. Opposite of a bushy tree
\end{tabular} \\
Rho & \begin{tabular}{l}
Rho measures sensitivity to the interest rate; it is the \\
derivative of the option value with respect to the risk-free \\
interest rate.
\end{tabular} \\
self-financing hedge & \begin{tabular}{l}
A trading strategy whereby the value of a portfolio after \\
rebalancing is equal to its value at any previous time.
\end{tabular} \\
sensitivity & \begin{tabular}{l}
The "what if" relationship between variables; the degree
\end{tabular} \\
to which changes in one variable cause changes in another
\end{tabular}
puttable bond
rainbow option
rate specification
rebate
recombining tree

Rho
self-financing hedge
sensitivity

\section*{short rate}
sinking fund bond
spot curve, spot yield curve
spot rate

A bond that allows the holder to redeem the bond at a predetermined price at specified future dates. The bond contains an embedded put option; that is, the holder has bought a put option. See also callable bond .

A single option linked to two or more underlying assets. In order for the option to pay off, all the underlying assets must move in the intended direction.

A MATLAB structure that holds all information needed to identify completely the evolution of interest rates.

A predetermined amount of money paid to the purchaser of a barrier option if the option fails to execute.

A tree of prices or interest rates whose branches recombine over time. Opposite of a bushy tree .

Rho measures sensitivity to the interest rate; it is the derivative of the option value with respect to the risk-free interest rate.

A trading strategy whereby the value of a portfolio after rebalancing is equal to its value at any previous time.

The "what if" relationship between variables; the degree to which changes in one variable cause changes in another variable. A specific synonym is volatility. See also dollar sensitivity.

The annualized one-period interest rate.
A sinking fund bond is a coupon bond with a sinking fund provision. This provision obligates the issuer to amortize portions of the principal prior to maturity, affecting bond prices since the time of the principal repayment changes.

See zero curve, zero-coupon yield curve.
The current interest rate appropriate for discounting a cash flow of some given maturity.
\begin{tabular}{ll}
spread & \begin{tabular}{l}
For options, a combination of call or put options on the \\
same stock with differing exercise prices or maturity \\
dates.
\end{tabular} \\
stepped coupon bond & \begin{tabular}{l}
A step-up and step-down bond is a debt security with a \\
predetermined coupon structure over time.
\end{tabular} \\
stochastic model & \begin{tabular}{l}
Involving or containing a random variable or variables; \\
involving chance or probability.
\end{tabular} \\
strike & \begin{tabular}{l}
Exercise a put or call option.
\end{tabular} \\
strike price & \begin{tabular}{l}
See exercise price .
\end{tabular} \\
supershare option \\
swap & \begin{tabular}{l}
underlying a portfolio if the asset lies between a lower \\
and an upper bound at the expiry of the option.
\end{tabular} \\
swaption & \begin{tabular}{l}
A contract between two parties to exchange cash flows in \\
the future according to some formula.
\end{tabular} \\
Theta & \begin{tabular}{l}
An option on an interest rate swap. It grants the option \\
buyer the right to enter into an interest rate swap at a \\
future date.
\end{tabular} \\
time specification & \begin{tabular}{l}
Theta measures the sensitivity of the value of the \\
derivative to the passage of time.
\end{tabular} \\
trinomial model & \begin{tabular}{l}
A MATLAB structure that represents the mapping \\
between times and dates for interest rate quoting.
\end{tabular} \\
under-determined system & \begin{tabular}{l}
A method in which the basic assumption is that prices \\
or rates can move to one of three possible values over \\
any short time period. At any time step the price or rate \\
direction can be upward, neutral, or downward. See also \\
binomial model
\end{tabular} \\
A set of simultaneous equations in which the number of \\
independent variables exceeds the number of equations in \\
the set, leading to an infinite number of solutions.
\end{tabular}
\begin{tabular}{ll}
up-and-out & \begin{tabular}{l}
A type of barrier option that becomes deactivated if the \\
barrier is reached from below. See also knock-out
\end{tabular} \\
vanilla option & \begin{tabular}{l}
A common option, such as a put or call. Opposite of exotic \\
option.
\end{tabular} \\
vanilla swap & \begin{tabular}{l}
A swap agreement to exchange a fixed rate for a floating \\
rate.
\end{tabular} \\
Vega & \begin{tabular}{l}
Vega measures the rate of change in the price of a \\
derivative security relative to the volatility of the \\
underlying security. When Vega is large, the security is \\
sensitive to small changes in volatility.
\end{tabular} \\
volatility specification & \begin{tabular}{l}
A MATLAB structure that specifies the forward rate \\
volatility process.
\end{tabular} \\
yields & \begin{tabular}{l}
The zero coupon rate.
\end{tabular} \\
yield curve & \begin{tabular}{l}
The zero curve.
\end{tabular} \\
yield volatility & \begin{tabular}{l}
The zero coupon volatilities.
\end{tabular} \\
zero curve, zero-coupon \\
yield curve & \begin{tabular}{l}
A yield curve for zero-coupon bonds; zero rates versus \\
maturity dates. Since the maturity and duration \\
(Macaulay duration) are identical for zeros, the zero \\
curve is a pure depiction of supply/demand conditions \\
for loanable funds across a continuum of durations and \\
maturities. Also known as spot curve or spot yield curve.
\end{tabular} \\
zero-coupon bond, or zero & \begin{tabular}{l}
A bond that, instead of carrying a coupon, is sold at a \\
discount from its face value, pays no interest during its \\
life, and pays the principal only at maturity.
\end{tabular} \\
\hline
\end{tabular}```

[^0]: Data Types: char | cell

[^1]: 'IssueDate' - Bond issue date
 scalar for serial nonnegative date number | scalar for date character vector

[^2]: Data Types: single | double

[^3]: Index Type OptSpec Strike Settle

